/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012-2016 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #pragma once /* Note about internal units and max size for boards and items The largest distance that we (and Kicad) can support is INT_MAX, since it represents distance often in a wxCoord or wxSize. As a scalar, a distance is always positive. Because int is 32 bits and INT_MAX is 2147483647. The most difficult distance for a virtual (world) cartesian space is the hypotenuse, or diagonal measurement at a 45 degree angle. This puts the most stress on the distance magnitude within the bounded virtual space. So if we allow this distance to be our constraint of <= INT_MAX, this constraint then propagates to the maximum distance in X and in Y that can be supported on each axis. Remember that the hypotenuse of a 1x1 square is sqrt( 1x1 + 1x1 ) = sqrt(2) = 1.41421356. hypotenuse of any square = sqrt(2) * deltaX; Let maximum supported hypotenuse be INT_MAX, then: MAX_AXIS = INT_MAX / sqrt(2) = 2147483647 / 1.41421356 = 1518500251 The next choice is what to use for internal units (IU), sometimes called world units. If nanometers, then the virtual space must be limited to about 1.5 x 1.5 meters square. This is 1518500251 divided by 1e9 nm/meter. The maximum zoom factor then depends on the client window size. If we ask wx to handle something outside INT_MIN to INT_MAX, there are unreported problems in the non-Debug build because wxRound() goes silent. Pcbnew uses nanometers because we need to convert coordinates and size between millimeters and inches. using a iu = 1 nm avoid rounding issues Gerbview uses iu = 10 nm because we can have coordinates far from origin, and 1 nm is too small to avoid int overflow. (Conversions between millimeters and inches are not critical) */ /** * @brief some define and functions to convert a value in mils, decimils or mm * to the internal unit used in pcbnew, cvpcb or gerbview (nanometer or deci-mil) * depending on compile time option */ constexpr double GERB_IU_PER_MM = 1e5; // Gerbview IU is 10 nanometers. constexpr double PCB_IU_PER_MM = 1e6; // Pcbnew IU is 1 nanometer. constexpr double PL_IU_PER_MM = 1e3; // internal units in micron (should be enough) constexpr double SCH_IU_PER_MM = 1e4; // Schematic internal units 1=100nm /// Scaling factor to convert mils to internal units. #if defined(PCBNEW) || defined(CVPCB) constexpr double IU_PER_MM = PCB_IU_PER_MM; #elif defined(GERBVIEW) constexpr double IU_PER_MM = GERB_IU_PER_MM; #elif defined(PL_EDITOR) constexpr double IU_PER_MM = PL_IU_PER_MM; #elif defined(EESCHEMA) constexpr double IU_PER_MM = SCH_IU_PER_MM; #else #define UNKNOWN_IU #endif #ifndef UNKNOWN_IU constexpr double IU_PER_MILS = (IU_PER_MM * 0.0254); constexpr inline int Mils2iu( int mils ) { double x = mils * IU_PER_MILS; return int( x < 0 ? x - 0.5 : x + 0.5 ); } #if defined(EESCHEMA) constexpr inline int Iu2Mils( int iu ) { double mils = iu / IU_PER_MILS; return static_cast< int >( mils < 0 ? mils - 0.5 : mils + 0.5 ); } #else constexpr inline double Iu2Mils( int iu ) { double mils = iu / IU_PER_MILS; return static_cast< int >( mils < 0 ? mils - 0.5 : mils + 0.5 ); } #endif // Other definitions used in a few files constexpr double MM_PER_IU = ( 1 / IU_PER_MM ); /// Convert mm to internal units (iu). constexpr inline int Millimeter2iu( double mm ) { return (int) ( mm < 0 ? mm * IU_PER_MM - 0.5 : mm * IU_PER_MM + 0.5 ); } /// Convert mm to internal units (iu). constexpr inline double Iu2Millimeter( int iu ) { return iu / IU_PER_MM; } /// Convert mm to internal units (iu). // constexpr inline double Iu2Mils( int iu ) // { // return iu / IU_PER_MILS; // } // The max error is the distance between the middle of a segment, and the circle // for circle/arc to segment approximation. // Warning: too small values can create very long calculation time in zone filling // 0.05 to 0.005 mm are reasonable values constexpr int ARC_LOW_DEF = Millimeter2iu( 0.02 ); constexpr int ARC_HIGH_DEF = Millimeter2iu( 0.005 ); #else constexpr double PCB_IU_PER_MILS = (PCB_IU_PER_MM * 0.0254); constexpr double SCH_IU_PER_MILS = (SCH_IU_PER_MM * 0.0254); constexpr inline int SchMils2iu( double mils ) { double x = mils * SCH_IU_PER_MILS; return int( x < 0 ? x - 0.5 : x + 0.5 ); } constexpr inline double SchIu2Mils( int iu ) { return iu / SCH_IU_PER_MILS; } constexpr inline int PcbMillimeter2iu( double mm ) { return (int) ( mm < 0 ? mm * PCB_IU_PER_MM - 0.5 : mm * PCB_IU_PER_MM + 0.5 ); } constexpr inline double PcbIu2Millimeter( int iu ) { return iu / PCB_IU_PER_MM; } #endif