/* EDITEUR de PCB: AUTOROUTAGE: routines "graphiques" */ /******************************************************/ /* Fichier BOARD.CC */ #include "fctsys.h" #include "gr_basic.h" #include "common.h" #include "pcbnew.h" #include "autorout.h" #include "trigo.h" #include "cell.h" /* Routines externes */ /* routines internes */ void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color ); void DrawSegmentQcq(int ux0,int uy0,int ux1,int uy1,int lg,int layer, int color, int op_logique); void DrawHVSegment(int ux0,int uy0,int ux1,int uy1,int demi_largeur,int layer, int color, int op_logique); void TraceFilledCercle(BOARD * Pcb, int cx, int cy, int rayon,int masque_layer, int color, int op_logique); void TraceCercle(int ux0,int uy0,int ux1,int uy1,int lg,int layer, int color, int op_logique); void TraceArc(int ux0,int uy0,int ux1,int uy1,int ArcAngle, int lg,int layer, int color, int op_logique); /* Macro d'appel de mise a jour de cellules */ #define OP_CELL(layer,dy,dx) {if(layer < 0) \ { \ WriteCell(dy,dx,BOTTOM,color); \ if(Nb_Sides) WriteCell(dy,dx,TOP,color);\ } \ else { \ if(layer == Route_Layer_BOTTOM) WriteCell(dy,dx,BOTTOM,color);\ if(Nb_Sides) \ if(layer == Route_Layer_TOP) WriteCell(dy,dx,TOP,color);\ } } /******************************************************************************/ void Place_1_Pad_Board(BOARD * Pcb, D_PAD * pt_pad, int color, int marge, int op_logique) /******************************************************************************/ /* Initialise a la valeur color, les cellules du Board comprises dans la surface du pad pointe par pt_pad, avec la marge reservee pour l'isolement et la demi largeur de la piste Parametres: pt_pad : pointeur sur la description du pad color : masque a ecrire dans les cellules marge : valeur a ajouter au rayon ou demi cote du pad op_logique: type d'ecriture dans la cellule ( WRITE, OR ) */ { int dx , dy; wxPoint shape_pos = pt_pad->ReturnShapePos();; dx = pt_pad->m_Size.x / 2 ; dx += marge; if(pt_pad->m_PadShape == CIRCLE) { TraceFilledCercle(Pcb, shape_pos.x, shape_pos.y, dx, pt_pad->m_Masque_Layer, color, op_logique); return; } dy = pt_pad->m_Size.y / 2; dy += marge; if(pt_pad->m_PadShape == TRAPEZE) { dx += abs(pt_pad->m_DeltaSize.y) / 2; dy += abs(pt_pad->m_DeltaSize.x) / 2; } if( (pt_pad->m_Orient % 900) == 0 ) { /* Le pad est un rectangle horizontal ou vertical */ if ( (pt_pad->m_Orient == 900 ) || (pt_pad->m_Orient == 2700) ) { /* orient tournee de 90 deg */ EXCHG(dx, dy) ; } TraceFilledRectangle(Pcb, shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx, shape_pos.y + dy, pt_pad->m_Masque_Layer, color, op_logique); } else { TraceFilledRectangle(Pcb, shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx, shape_pos.y + dy, (int) pt_pad->m_Orient, pt_pad->m_Masque_Layer, color, op_logique); } } /************************************************************************/ void TraceFilledCercle(BOARD * Pcb, int cx, int cy, int rayon,int masque_layer, int color, int op_logique) /************************************************************************/ /* Initialise a la valeur color, les cellules du Board comprises dans la surface du cercle de centre cx,cy. Parametres: rayon : valeur a ajouter au rayon ou demi cote du pad masque_layer = couches occupees color : masque a ecrire dans les cellules op_logique: type d'ecriture dans la cellule ( WRITE, OR ) */ { int row, col; int ux0 , uy0 , ux1, uy1; int row_max, col_max, row_min, col_min; int trace = 0; float fdistmin, fdistx, fdisty; void (*WriteCell)(int,int,int,BoardCell); int tstwrite = 0; int distmin; /* Determination des couches occupees : */ /* routage sur 1 seule couche: sur bitmap BOTTOM et Route_Layer_B = Route_Layer_A*/ if(masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM]) trace = 1; /* Trace sur BOTTOM */ if(masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) if(Nb_Sides) trace |= 2; /* Trace sur TOP */ if( trace == 0) return; switch(op_logique) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } cx -= Pcb->m_BoundaryBox.m_Pos.x; cy -= Pcb->m_BoundaryBox.m_Pos.y; distmin = rayon ; /* Calcul du rectangle d'encadrement du cercle*/ ux0 = cx - rayon; uy0 = cy - rayon; ux1 = cx + rayon; uy1 = cy + rayon; /* Calcul des coord limites des cellules appartenant au rectangle */ row_max = uy1 / g_GridRoutingSize; col_max = ux1 / g_GridRoutingSize; row_min = uy0 / g_GridRoutingSize;// if (uy0 > row_min*g_GridRoutingSize ) row_min++; col_min = ux0 / g_GridRoutingSize;// if (ux0 > col_min*g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (Nrows-1)) row_max = Nrows-1; if( col_min < 0 ) col_min = 0; if( col_max >= (Ncols-1)) col_max = Ncols-1; /* On s'assure que l'on place toujours au moins une cellule */ if( row_min > row_max ) row_max = row_min; if( col_min > col_max ) col_max = col_min; fdistmin = (float)distmin*distmin; for( row = row_min ;row <= row_max ; row++) { fdisty = (float)(cy - (row * g_GridRoutingSize)); fdisty *= fdisty; for(col = col_min; col <= col_max; col++) { fdistx = (float)(cx - (col * g_GridRoutingSize) ); fdistx *= fdistx; if( fdistmin <= (fdistx + fdisty) ) continue; if(trace & 1) WriteCell(row,col,BOTTOM,color); if(trace & 2) WriteCell(row,col,TOP,color); tstwrite = 1; } } if (tstwrite) return; /* Si aucune cellule n'a ete ecrite, on touche les 4 voisins diagonaux (cas defavorable: pad hors grille, au centre des 4 voisins diagonaux) */ distmin = g_GridRoutingSize/2 +1; fdistmin = ((float)distmin*distmin) * 2; /* = dist centre au point diagonal*/ for( row = row_min ;row <= row_max ; row++) { fdisty = (float)(cy - (row * g_GridRoutingSize)); fdisty *= fdisty; for(col = col_min; col <= col_max; col++) { fdistx = (float)(cx - (col * g_GridRoutingSize) ); fdistx *= fdistx; if( fdistmin <= (fdistx + fdisty) ) continue; if(trace & 1) WriteCell(row,col,BOTTOM,color); if(trace & 2) WriteCell(row,col,TOP,color); } } } /******************************************************************************/ void TraceSegmentPcb(BOARD * Pcb, TRACK* pt_segm, int color, int marge, int op_logique ) /******************************************************************************/ /* trace un Segment de piste sur le BOARD de routage */ { int demi_pas, demi_largeur; int ux0 , uy0 , ux1, uy1; int layer = pt_segm->m_Layer; demi_pas = g_GridRoutingSize / 2; demi_largeur = (pt_segm->m_Width / 2) + marge; /* Calcul du rectangle d'encadrement du segment ( si H,V ou Via) */ ux0 = pt_segm->m_Start.x - Pcb->m_BoundaryBox.m_Pos.x; uy0 = pt_segm->m_Start.y - Pcb->m_BoundaryBox.m_Pos.y; ux1 = pt_segm->m_End.x - Pcb->m_BoundaryBox.m_Pos.x; uy1 = pt_segm->m_End.y - Pcb->m_BoundaryBox.m_Pos.y; if ( color == VIA_IMPOSSIBLE ) layer = -1; /* Test si VIA (cercle plein a tracer) */ if(pt_segm->m_StructType == TYPEVIA ) { TraceFilledCercle(Pcb, pt_segm->m_Start.x, pt_segm->m_Start.y, demi_largeur, 0x0000FFFF, color, op_logique); return; } /* Le segment est ici un segment de droite ou un cercle ou un arc: */ if( pt_segm->m_Shape == S_CIRCLE ) { TraceCercle(ux0,uy0,ux1,uy1,demi_largeur,layer,color,op_logique); return; } if( pt_segm->m_Shape == S_ARC ) { TraceArc(ux0,uy0,ux1,uy1,pt_segm->m_Param,demi_largeur,layer,color,op_logique); return; } /* Le segment est ici un segment de droite */ if( (ux0 != ux1) && (uy0 != uy1) ) // segment incline { DrawSegmentQcq(ux0,uy0,ux1,uy1,demi_largeur,layer,color,op_logique); return; } // Ici le segment est HORIZONTAL ou VERTICAL // DrawHVSegment(ux0,uy0,ux1,uy1,demi_largeur,layer,color,op_logique); //F4EXB 051018-01 DrawSegmentQcq(ux0,uy0,ux1,uy1,demi_largeur,layer,color,op_logique); //F4EXB 051018-01 return; //F4EXB 051018-01 } /******************************************************************************************/ void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color, int op_logique ) /******************************************************************************************/ /* trace une ligne; si layer = -1 sur toutes les couches */ { int dx, dy , lim; int cumul, inc, il, delta; void (*WriteCell)(int,int,int,BoardCell); switch(op_logique) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } if( x0 == x1 ) // ligne verticale { if(y1 < y0 ) EXCHG (y0,y1); dy = y0 / g_GridRoutingSize; lim = y1 / g_GridRoutingSize ; dx = x0 / g_GridRoutingSize; /* Clipping aux limites du board */ if( (dx < 0) || (dx >= Ncols) ) return; if( dy < 0 ) dy = 0; if( lim >= Nrows ) lim = Nrows-1; for( ; dy <= lim ; dy ++ ) { OP_CELL(layer,dy,dx); } return; } if( y0 == y1 ) // ligne horizontale { if(x1 < x0 ) EXCHG (x0,x1); dx = x0 / g_GridRoutingSize; lim = x1 / g_GridRoutingSize ; dy = y0 / g_GridRoutingSize; /* Clipping aux limites du board */ if( (dy < 0) || (dy >= Nrows) ) return; if( dx < 0 ) dx = 0; if( lim >= Ncols ) lim = Ncols-1; for( ; dx <= lim ; dx ++ ) { OP_CELL(layer,dy,dx); } return; } /* Ici l'angle est quelconque: on utilise l'algorithme de LUCAS */ if ( abs(x1-x0) >= abs(y1-y0) ) /* segment peu incline */ { if(x1 < x0) {EXCHG(x1,x0); EXCHG(y1,y0) ;} dx = x0 / g_GridRoutingSize; lim = x1 / g_GridRoutingSize ; dy = y0 / g_GridRoutingSize; inc = 1; if( y1 < y0) inc = -1; il = lim - dx; cumul = il / 2; delta = abs(y1 - y0)/g_GridRoutingSize; for( ; dx <= lim ; ) { if( (dx >= 0) && (dy >= 0) && (dx < Ncols) && (dy < Nrows) ) { OP_CELL(layer,dy,dx); } dx++; cumul += delta ; if(cumul > il ) { cumul -= il; dy += inc; } } } else { if(y1 < y0) {EXCHG(x1,x0); EXCHG(y1,y0) ;} dy = y0 / g_GridRoutingSize; lim = y1 / g_GridRoutingSize ; dx = x0 / g_GridRoutingSize; inc = 1; if( x1 < x0) inc = -1; il = lim - dy; cumul = il /2; delta = abs(x1 - x0)/g_GridRoutingSize; for( ; dy <= lim ; ) { if( (dx >= 0) && (dy >= 0) && (dx < Ncols) && (dy < Nrows) ) { OP_CELL(layer,dy,dx); } dy++; cumul += delta ; if(cumul > il ) { cumul -= il; dx += inc; } } } } /*****************************************************************/ void TraceFilledRectangle(BOARD * Pcb, int ux0, int uy0, int ux1, int uy1, int masque_layer, int color, int op_logique) /*****************************************************************/ /* Fonction Surchargee. Met a la valeur color l'ensemble des cellules du board inscrites dans le rectangle de coord ux0,uy0 ( angle haut a gauche ) a ux1,uy1 ( angle bas a droite ) Le rectangle est horizontal ( ou vertical ) Coordonnees PCB. */ { int row, col; int row_min, row_max, col_min, col_max; int trace = 0; void (*WriteCell)(int,int,int,BoardCell); if(masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM]) trace = 1; /* Trace sur BOTTOM */ if( (masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) && Nb_Sides) trace |= 2; /* Trace sur TOP */ if(trace == 0) return; switch(op_logique) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y; ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y; /* Calcul des coord limites des cellules appartenant au rectangle */ row_max = uy1 / g_GridRoutingSize; col_max = ux1 / g_GridRoutingSize; row_min = uy0 / g_GridRoutingSize; if (uy0 > row_min*g_GridRoutingSize ) row_min++; col_min = ux0 / g_GridRoutingSize; if (ux0 > col_min*g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (Nrows-1)) row_max = Nrows-1; if( col_min < 0 ) col_min = 0; if( col_max >= (Ncols-1)) col_max = Ncols-1; for( row = row_min ;row <= row_max ; row++) { for(col = col_min;col <= col_max; col++) { if(trace & 1) WriteCell(row,col,BOTTOM,color); if(trace & 2) WriteCell(row,col,TOP,color); } } } /***********************************************************************************/ void TraceFilledRectangle(BOARD * Pcb, int ux0, int uy0, int ux1, int uy1, int angle, int masque_layer, int color, int op_logique) /***********************************************************************************/ /* Fonction Surchargee. Met a la valeur color l'ensemble des cellules du board inscrites dans le rectangle de coord ux0,uy0 ( angle haut a droite ) a ux1,uy1 ( angle bas a gauche ) Le rectangle est tourne de la valeur angle (en 0,1 degres) Coordonnees PCB. */ { int row, col; int cx, cy; /* Centre du rectangle */ int rayon; /* rayon du cercle exinscrit */ int row_min, row_max, col_min, col_max; int rotrow, rotcol; int trace = 0; void (*WriteCell)(int,int,int,BoardCell); if(masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM]) trace = 1; /* Trace sur BOTTOM */ if(masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) if(Nb_Sides) trace |= 2; /* Trace sur TOP */ if(trace == 0) return; switch(op_logique) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y; ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y; cx = (ux0 + ux1) / 2; cy = (uy0 + uy1) / 2; rayon = (int) sqrt( (float)(cx - ux0) * (cx - ux0) + (float)(cy - uy0) * (cy - uy0) ); /* Calcul des coord limites des cellules appartenant au rectangle */ row_max = (cy + rayon) / g_GridRoutingSize; col_max = (cx + rayon) / g_GridRoutingSize; row_min = (cy - rayon) / g_GridRoutingSize; if (uy0 > row_min*g_GridRoutingSize ) row_min++; col_min = (cx - rayon) / g_GridRoutingSize; if (ux0 > col_min*g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (Nrows-1)) row_max = Nrows-1; if( col_min < 0 ) col_min = 0; if( col_max >= (Ncols-1)) col_max = Ncols-1; for( row = row_min ;row <= row_max ; row++) { for(col = col_min;col <= col_max; col++) { rotrow = row * g_GridRoutingSize; rotcol = col * g_GridRoutingSize; RotatePoint(&rotcol, &rotrow, cx, cy, - angle); if( rotrow <= uy0 ) continue; if( rotrow >= uy1 ) continue; if( rotcol <= ux0 ) continue; if( rotcol >= ux1 ) continue; if(trace & 1) WriteCell(row,col,BOTTOM,color); if(trace & 2) WriteCell(row,col,TOP,color); } } } /*****************************************************************/ void DrawSegmentQcq(int ux0,int uy0,int ux1,int uy1,int lg,int layer, int color, int op_logique) /*****************************************************************/ /* Remplit toutes les cellules du BOARD contenues dans le segment de demi-largeur lg, org ux,y0 fin ux,y1 a la valeur color . coord en unites PCB (0.1 mil) relatives a l'origine pt_pcb->m_PcbBox.m_Xmin,Y du board. */ { int row, col; int inc; int row_max, col_max, row_min, col_min; int demi_pas; void (*WriteCell)(int,int,int,BoardCell); int angle; int cx, cy, dx, dy; switch(op_logique) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } /* on rend la coordonnee ux1 tj > ux0 , pour simplifier les calculs */ if( ux1 < ux0 ) { EXCHG(ux1,ux0); EXCHG(uy1,uy0);} /* calcul de l'increment selon axe Y */ inc = 1; if(uy1 < uy0) inc = -1; /* Calcul de l'encadrement : */ demi_pas = g_GridRoutingSize/2; col_min = (ux0 - lg) / g_GridRoutingSize; if (col_min < 0 ) col_min = 0; col_max = (ux1 + lg + demi_pas) / g_GridRoutingSize; if (col_max > (Ncols-1) ) col_max = Ncols-1; if(inc > 0) { row_min = (uy0 - lg) / g_GridRoutingSize; row_max = (uy1 + lg + demi_pas) / g_GridRoutingSize; } else{ row_min = (uy1 - lg) / g_GridRoutingSize; row_max = (uy0 + lg + demi_pas) / g_GridRoutingSize; } if (row_min < 0 ) row_min = 0; if (row_min > (Nrows-1) ) row_min = Nrows-1; if (row_max < 0 ) row_max = 0; if (row_max > (Nrows-1) ) row_max = Nrows-1; dx = ux1 - ux0; dy = uy1 - uy0; if (dx) angle = (int)(atan2(dy,dx) * 1800 / M_PI); else { angle = 900; if (dy < 0) angle = -900; } RotatePoint(&dx, &dy, angle); /* dx = longueur, dy = 0 */ for( col = col_min; col <= col_max ; col++ ) { int cxr; cxr = (col * g_GridRoutingSize) - ux0; for(row = row_min; row <= row_max ; row ++ ) { cy = (row * g_GridRoutingSize) - uy0; cx = cxr; RotatePoint(&cx, &cy, angle); if( abs(cy) > lg) continue; /* Le point est trop loin sur l'axe Y */ /* ici le point a tester est proche du segment: la position selon l'axe X doit etre testee */ if( (cx >= 0) && (cx <= dx) ) { OP_CELL(layer,row,col); continue; } /* examen des extremites qui sont arrondies */ if( (cx < 0) && (cx >= -lg) ) { if( ((cx * cx) + (cy*cy)) <= (lg*lg) ) OP_CELL(layer,row,col); continue; } if( (cx > dx) && (cx <= (dx+lg)) ) { if( (((cx-dx) * (cx-dx)) + (cy*cy)) <= (lg*lg) ) OP_CELL(layer,row,col); continue; } } } } /********************************************************************/ void DrawHVSegment(int ux0,int uy0,int ux1,int uy1,int demi_largeur,int layer, int color, int op_logique) /********************************************************************/ /* Draw a horizontal or vertical segment. same as DrawSegmentQcq, but faster */ { int row, col; int row_max, col_max, row_min, col_min; void (*WriteCell)(int,int,int,BoardCell); switch(op_logique) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } // Modif des coord pour que les coord de fin soient > coord de debut if( uy1 < uy0 ) EXCHG(uy0,uy1) ; // ceci n'est vrai que parce que if( ux1 < ux0 ) EXCHG(ux0,ux1) ; // dx ou dy ou les 2 sonts nuls // Le segment est assimile a un rectangle. // TODO: traiter correctement les extremites arrondies // if ( ux0 == ux1 ) // Vertical Segment { ux0 -= demi_largeur; ux1 += demi_largeur; } // else // Horizontal segment { uy0 -= demi_largeur ;uy1 += demi_largeur; } // Calcul des coord limites des cellules appartenant au rectangle row_max = uy1 / g_GridRoutingSize; col_max = ux1 / g_GridRoutingSize; row_min = uy0 / g_GridRoutingSize; if (uy0 > row_min*g_GridRoutingSize ) row_min++; // Traitement de l'arrondi par defaut col_min = ux0 / g_GridRoutingSize; if (ux0 > col_min*g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (Nrows-1)) row_max = Nrows-1; if( col_min < 0 ) col_min = 0; if( col_max >= (Ncols-1)) col_max = Ncols-1; if( row_min > row_max ) row_max = row_min; if( col_min > col_max ) col_max = col_min; for( row = row_min ;row <= row_max ; row++) { for(col = col_min;col <= col_max; col++) { OP_CELL(layer,row,col); } } } /*****************************************************************/ void TraceCercle(int ux0,int uy0,int ux1,int uy1,int lg,int layer, int color, int op_logique) /*****************************************************************/ /* Remplit toutes les cellules du BOARD contenues dans le cercle de demi-largeur lg, centre ux,y0 passant par ux,y1 a la valeur color . coord en unites PCB (0.1 mil) relatives a l'origine pt_pcb->m_PcbBox.m_Xmin,Y du board. */ { int rayon, nb_segm; int x0,y0, // Point de depart du segment en cours de trace x1,y1; // point d'arrivee int ii; int angle; rayon = (int)hypot((double)(ux1-ux0),(double)(uy1-uy0) ); x0 = x1 = rayon; y0 = y1 = 0; if( lg < 1 ) lg = 1; nb_segm = (2 * rayon) / lg; if(nb_segm < 5) nb_segm = 5; if(nb_segm > 100) nb_segm = 100; for( ii = 1 ; ii < nb_segm ; ii++) { angle = (3600 * ii) / nb_segm; x1 = (int)(rayon * fcosinus[angle]); y1 = (int)(rayon * fsinus[angle]); DrawSegmentQcq(x0+ux0,y0+uy0, x1+ux0,y1+uy0,lg,layer, color, op_logique); x0 = x1; y0 = y1; } DrawSegmentQcq(x1+ux0,y1+uy0, ux0+rayon, uy0,lg,layer, color, op_logique); } /****************************************************************************/ void TraceArc(int ux0,int uy0,int ux1,int uy1, int ArcAngle, int lg,int layer, int color, int op_logique) /****************************************************************************/ /* Remplit toutes les cellules du BOARD contenues dans l'arc de "longueur" angle de demi-largeur lg, centre ux,y0 commencant en ux,y1 a la valeur color . coord en unites PCB (0.1 mil) relatives a l'origine pt_pcb->m_PcbBox.m_Xmin,Y du board. */ { int rayon, nb_segm; int x0,y0, // Point de depart du segment en cours de trace x1,y1; // point d'arrivee int ii; int angle, StAngle; rayon = (int)hypot((double)(ux1-ux0),(double)(uy1-uy0) ); x0 = ux1 - ux0; y0 = uy1 - uy0; StAngle = ArcTangente(uy1 - uy0, ux1 - ux0); if( lg < 1 ) lg = 1; nb_segm = (2 * rayon) / lg; nb_segm = (nb_segm * abs(ArcAngle)) / 3600; if(nb_segm < 5) nb_segm = 5; if(nb_segm > 100) nb_segm = 100; for( ii = 1 ; ii <= nb_segm ; ii++) { angle = (ArcAngle * ii) / nb_segm; angle += StAngle; while ( angle >= 3600 ) angle -= 3600; while ( angle < 0 ) angle += 3600; x1 = (int)(rayon * fcosinus[angle]); y1 = (int)(rayon * fsinus[angle]); DrawSegmentQcq(x0+ux0,y0+uy0, x1+ux0,y1+uy0,lg,layer, color, op_logique); x0 = x1; y0 = y1; } // DrawSegmentQcq(x1+ux0,y1+uy0, ux0+rayon, uy0,lg,layer, color, op_logique); }