/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2019 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file class_pad.cpp * D_PAD class implementation. */ #include #include #include #include #include #include #include // for KiROUND #include #include #include #include #include #include #include #include #include #include #include #include #include #include D_PAD::D_PAD( MODULE* parent ) : BOARD_CONNECTED_ITEM( parent, PCB_PAD_T ) { m_Size.x = m_Size.y = Mils2iu( 60 ); // Default pad size 60 mils. m_Drill.x = m_Drill.y = Mils2iu( 30 ); // Default drill size 30 mils. m_Orient = 0; // Pad rotation in 1/10 degrees. m_LengthPadToDie = 0; if( m_Parent && m_Parent->Type() == PCB_MODULE_T ) { m_Pos = GetParent()->GetPosition(); } SetShape( PAD_SHAPE_CIRCLE ); // Default pad shape is PAD_CIRCLE. SetAnchorPadShape( PAD_SHAPE_CIRCLE ); // Default shape for custom shaped pads // is PAD_CIRCLE. SetDrillShape( PAD_DRILL_SHAPE_CIRCLE ); // Default pad drill shape is a circle. m_Attribute = PAD_ATTRIB_STANDARD; // Default pad type is NORMAL (thru hole) SetProperty( PAD_PROP_NONE ); // no special fabrication property m_LocalClearance = 0; m_LocalSolderMaskMargin = 0; m_LocalSolderPasteMargin = 0; m_LocalSolderPasteMarginRatio = 0.0; // Parameters for round rect only: m_roundedCornerScale = 0.25; // from IPC-7351C standard // Parameters for chamfered rect only: m_chamferScale = 0.2; // Size of chamfer: ratio of smallest of X,Y size m_chamferPositions = RECT_NO_CHAMFER; // No chamfered corner m_ZoneConnection = ZONE_CONNECTION::INHERITED; // Use parent setting by default m_ThermalWidth = 0; // Use parent setting by default m_ThermalGap = 0; // Use parent setting by default m_customShapeClearanceArea = CUST_PAD_SHAPE_IN_ZONE_OUTLINE; // Set layers mask to default for a standard thru hole pad. m_layerMask = StandardMask(); SetSubRatsnest( 0 ); // used in ratsnest calculations m_shapesDirty = true; m_effectiveBoundingRadius = 0; } LSET D_PAD::StandardMask() { static LSET saved = LSET::AllCuMask() | LSET( 2, B_Mask, F_Mask ); return saved; } LSET D_PAD::SMDMask() { static LSET saved( 3, F_Cu, F_Paste, F_Mask ); return saved; } LSET D_PAD::ConnSMDMask() { static LSET saved( 2, F_Cu, F_Mask ); return saved; } LSET D_PAD::UnplatedHoleMask() { static LSET saved = LSET::AllCuMask() | LSET( 2, B_Mask, F_Mask ); return saved; } LSET D_PAD::ApertureMask() { static LSET saved( 1, F_Paste ); return saved; } bool D_PAD::IsFlipped() const { if( GetParent() && GetParent()->GetLayer() == B_Cu ) return true; return false; } int D_PAD::calcBoundingRadius() const { int radius = 0; SHAPE_POLY_SET polygons; TransformShapeWithClearanceToPolygon( polygons, 0 ); for( int cnt = 0; cnt < polygons.OutlineCount(); ++cnt ) { const SHAPE_LINE_CHAIN& poly = polygons.COutline( cnt ); for( int ii = 0; ii < poly.PointCount(); ++ii ) { int dist = KiROUND( ( poly.CPoint( ii ) - m_Pos ).EuclideanNorm() ); radius = std::max( radius, dist ); } } return radius + 1; } int D_PAD::GetRoundRectCornerRadius() const { return KiROUND( std::min( m_Size.x, m_Size.y ) * m_roundedCornerScale ); } void D_PAD::SetRoundRectCornerRadius( double aRadius ) { int min_r = std::min( m_Size.x, m_Size.y ); if( min_r > 0 ) SetRoundRectRadiusRatio( aRadius / min_r ); } void D_PAD::SetRoundRectRadiusRatio( double aRadiusScale ) { m_roundedCornerScale = std::max( 0.0, std::min( aRadiusScale, 0.5 ) ); m_shapesDirty = true; } void D_PAD::SetChamferRectRatio( double aChamferScale ) { m_chamferScale = std::max( 0.0, std::min( aChamferScale, 0.5 ) ); m_shapesDirty = true; } const std::vector>& D_PAD::GetEffectiveShapes() const { if( m_shapesDirty ) BuildEffectiveShapes(); return m_effectiveShapes; } const std::shared_ptr& D_PAD::GetEffectiveHoleShape() const { if( m_shapesDirty ) BuildEffectiveShapes(); return m_effectiveHoleShape; } int D_PAD::GetBoundingRadius() const { if( m_shapesDirty ) BuildEffectiveShapes(); return m_effectiveBoundingRadius; } void D_PAD::BuildEffectiveShapes() const { m_effectiveShapes.clear(); m_effectiveHoleShape = nullptr; auto add = [this]( SHAPE* aShape ) { m_effectiveShapes.emplace_back( aShape ); }; wxPoint shapePos = ShapePos(); // Fetch only once; rotation involves trig PAD_SHAPE_T effectiveShape = GetShape(); if( GetShape() == PAD_SHAPE_CUSTOM ) effectiveShape = GetAnchorPadShape(); switch( effectiveShape ) { case PAD_SHAPE_CIRCLE: add( new SHAPE_CIRCLE( shapePos, m_Size.x / 2 ) ); break; case PAD_SHAPE_OVAL: { wxSize half_size = m_Size / 2; int half_width = std::min( half_size.x, half_size.y ); wxPoint half_len( half_size.x - half_width, half_size.y - half_width ); RotatePoint( &half_len, m_Orient ); add( new SHAPE_SEGMENT( shapePos - half_len, shapePos + half_len, half_width * 2 ) ); } break; case PAD_SHAPE_RECT: if( m_Orient == 0 || m_Orient == 1800 ) { add( new SHAPE_RECT( shapePos - m_Size / 2, m_Size.x, m_Size.y ) ); break; } else if( m_Orient == 900 || m_Orient == -900 ) { wxSize rot_size( m_Size.y, m_Size.x ); add( new SHAPE_RECT( shapePos - rot_size / 2, rot_size.x, rot_size.y ) ); break; } // Not at a cartesian angle; fall through to general case KI_FALLTHROUGH; case PAD_SHAPE_TRAPEZOID: case PAD_SHAPE_ROUNDRECT: { int r = GetRoundRectCornerRadius(); wxPoint half_size( m_Size.x / 2, m_Size.y / 2 ); wxSize trap_delta( 0, 0 ); if( effectiveShape == PAD_SHAPE_ROUNDRECT ) half_size -= wxPoint( r, r ); else if( effectiveShape == PAD_SHAPE_TRAPEZOID ) trap_delta = m_DeltaSize / 2; SHAPE_LINE_CHAIN corners; corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x ); corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x ); corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x ); corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x ); corners.Rotate( -DECIDEG2RAD( m_Orient ) ); corners.Move( shapePos ); add( new SHAPE_SIMPLE( corners ) ); if( effectiveShape == PAD_SHAPE_ROUNDRECT ) { add( new SHAPE_SEGMENT( corners.CPoint( 0 ), corners.CPoint( 1 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 1 ), corners.CPoint( 2 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 2 ), corners.CPoint( 3 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 3 ), corners.CPoint( 0 ), r * 2 ) ); } } break; case PAD_SHAPE_CHAMFERED_RECT: { SHAPE_POLY_SET outline; auto board = GetBoard(); int maxError = ARC_HIGH_DEF; if( board ) maxError = board->GetDesignSettings().m_MaxError; TransformRoundChamferedRectToPolygon( outline, shapePos, GetSize(), m_Orient, GetRoundRectCornerRadius(), GetChamferRectRatio(), GetChamferPositions(), maxError ); add( new SHAPE_SIMPLE( outline.COutline( 0 ) ) ); } break; default: wxFAIL_MSG( "D_PAD::buildEffectiveShapes: Unsupported pad shape: " + PAD_SHAPE_T_asString( effectiveShape ) ); break; } if( GetShape() == PAD_SHAPE_CUSTOM ) { for( const std::shared_ptr& primitive : m_editPrimitives ) { for( SHAPE* shape : primitive->MakeEffectiveShapes() ) { shape->Rotate( -DECIDEG2RAD( m_Orient ) ); shape->Move( shapePos ); add( shape ); } } } // Bounding box and radius // m_effectiveBoundingRadius = calcBoundingRadius(); // reset the bbox to uninitialized state to prepare for merging m_effectiveBoundingBox = EDA_RECT(); for( const std::shared_ptr& shape : m_effectiveShapes ) { BOX2I r = shape->BBox(); m_effectiveBoundingBox.Merge( EDA_RECT( (wxPoint) r.GetOrigin(), wxSize( r.GetWidth(), r.GetHeight() ) ) ); } // Hole shape // wxSize half_size = m_Drill / 2; int half_width = std::min( half_size.x, half_size.y ); wxPoint half_len( half_size.x - half_width, half_size.y - half_width ); RotatePoint( &half_len, m_Orient ); m_effectiveHoleShape = std::make_shared( m_Pos - half_len, m_Pos + half_len, half_width * 2 ); // All done // m_shapesDirty = false; } const EDA_RECT D_PAD::GetBoundingBox() const { if( m_shapesDirty ) BuildEffectiveShapes(); return m_effectiveBoundingBox; } void D_PAD::SetDrawCoord() { MODULE* module = (MODULE*) m_Parent; m_Pos = m_Pos0; if( module == NULL ) return; double angle = module->GetOrientation(); RotatePoint( &m_Pos.x, &m_Pos.y, angle ); m_Pos += module->GetPosition(); } void D_PAD::SetLocalCoord() { MODULE* module = (MODULE*) m_Parent; if( module == NULL ) { m_Pos0 = m_Pos; return; } m_Pos0 = m_Pos - module->GetPosition(); RotatePoint( &m_Pos0.x, &m_Pos0.y, -module->GetOrientation() ); } void D_PAD::SetAttribute( PAD_ATTR_T aAttribute ) { m_Attribute = aAttribute; if( aAttribute == PAD_ATTRIB_SMD ) m_Drill = wxSize( 0, 0 ); m_shapesDirty = true; } void D_PAD::SetProperty( PAD_PROP_T aProperty ) { m_Property = aProperty; m_shapesDirty = true; } void D_PAD::SetOrientation( double aAngle ) { NORMALIZE_ANGLE_POS( aAngle ); m_Orient = aAngle; m_shapesDirty = true; } void D_PAD::Flip( const wxPoint& aCentre, bool aFlipLeftRight ) { if( aFlipLeftRight ) { MIRROR( m_Pos.x, aCentre.x ); MIRROR( m_Pos0.x, 0 ); MIRROR( m_Offset.x, 0 ); MIRROR( m_DeltaSize.x, 0 ); } else { MIRROR( m_Pos.y, aCentre.y ); MIRROR( m_Pos0.y, 0 ); MIRROR( m_Offset.y, 0 ); MIRROR( m_DeltaSize.y, 0 ); } SetOrientation( -GetOrientation() ); // flip pads layers // PADS items are currently on all copper layers, or // currently, only on Front or Back layers. // So the copper layers count is not taken in account SetLayerSet( FlipLayerMask( m_layerMask ) ); // Flip the basic shapes, in custom pads FlipPrimitives(); m_shapesDirty = true; } // Flip the basic shapes, in custom pads void D_PAD::FlipPrimitives() { for( std::shared_ptr& primitive : m_editPrimitives ) primitive->Flip( wxPoint( 0, 0 ), false ); m_shapesDirty = true; } void D_PAD::MirrorXPrimitives( int aX ) { for( std::shared_ptr& primitive : m_editPrimitives ) primitive->Flip( wxPoint( aX, 0 ), true ); m_shapesDirty = true; } // Returns the position of the pad. wxPoint D_PAD::ShapePos() const { if( m_Offset.x == 0 && m_Offset.y == 0 ) return m_Pos; wxPoint loc_offset = m_Offset; RotatePoint( &loc_offset, m_Orient ); wxPoint shape_pos = m_Pos + loc_offset; return shape_pos; } int D_PAD::GetLocalClearanceOverrides( wxString* aSource ) const { // A pad can have specific clearance that overrides its NETCLASS clearance value if( GetLocalClearance() ) return GetLocalClearance( aSource ); // A footprint can have a specific clearance value if( GetParent() && GetParent()->GetLocalClearance() ) return GetParent()->GetLocalClearance( aSource ); return 0; } int D_PAD::GetLocalClearance( wxString* aSource ) const { if( aSource ) *aSource = wxString::Format( _( "pad %s" ), GetName() ); return m_LocalClearance; } // Mask margins handling: int D_PAD::GetSolderMaskMargin() const { // The pad inherits the margin only to calculate a default shape, // therefore only if it is also a copper layer // Pads defined only on mask layers (and perhaps on other tech layers) use the shape // defined by the pad settings only bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any(); if( !isOnCopperLayer ) return 0; int margin = m_LocalSolderMaskMargin; MODULE* module = GetParent(); if( module ) { if( margin == 0 ) { if( module->GetLocalSolderMaskMargin() ) margin = module->GetLocalSolderMaskMargin(); } if( margin == 0 ) { BOARD* brd = GetBoard(); if( brd ) margin = brd->GetDesignSettings().m_SolderMaskMargin; } } // ensure mask have a size always >= 0 if( margin < 0 ) { int minsize = -std::min( m_Size.x, m_Size.y ) / 2; if( margin < minsize ) margin = minsize; } return margin; } wxSize D_PAD::GetSolderPasteMargin() const { // The pad inherits the margin only to calculate a default shape, // therefore only if it is also a copper layer. // Pads defined only on mask layers (and perhaps on other tech layers) use the shape // defined by the pad settings only bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any(); if( !isOnCopperLayer ) return wxSize( 0, 0 ); int margin = m_LocalSolderPasteMargin; double mratio = m_LocalSolderPasteMarginRatio; MODULE* module = GetParent(); if( module ) { if( margin == 0 ) margin = module->GetLocalSolderPasteMargin(); auto brd = GetBoard(); if( margin == 0 && brd ) { margin = brd->GetDesignSettings().m_SolderPasteMargin; } if( mratio == 0.0 ) mratio = module->GetLocalSolderPasteMarginRatio(); if( mratio == 0.0 && brd ) { mratio = brd->GetDesignSettings().m_SolderPasteMarginRatio; } } wxSize pad_margin; pad_margin.x = margin + KiROUND( m_Size.x * mratio ); pad_margin.y = margin + KiROUND( m_Size.y * mratio ); // ensure mask have a size always >= 0 if( pad_margin.x < -m_Size.x / 2 ) pad_margin.x = -m_Size.x / 2; if( pad_margin.y < -m_Size.y / 2 ) pad_margin.y = -m_Size.y / 2; return pad_margin; } ZONE_CONNECTION D_PAD::GetEffectiveZoneConnection() const { MODULE* module = GetParent(); if( m_ZoneConnection == ZONE_CONNECTION::INHERITED && module ) return module->GetZoneConnection(); else return m_ZoneConnection; } int D_PAD::GetThermalWidth() const { MODULE* module = GetParent(); if( m_ThermalWidth == 0 && module ) return module->GetThermalWidth(); else return m_ThermalWidth; } int D_PAD::GetThermalGap() const { MODULE* module = GetParent(); if( m_ThermalGap == 0 && module ) return module->GetThermalGap(); else return m_ThermalGap; } void D_PAD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { EDA_UNITS units = aFrame->GetUserUnits(); wxString msg, msg2; BOARD* board = GetBoard(); BOARD_DESIGN_SETTINGS& bds = board->GetDesignSettings(); MODULE* module = (MODULE*) m_Parent; if( module ) aList.emplace_back( _( "Footprint" ), module->GetReference(), DARKCYAN ); aList.emplace_back( _( "Pad" ), m_name, BROWN ); if( !GetPinFunction().IsEmpty() ) aList.emplace_back( _( "Pin Name" ), GetPinFunction(), BROWN ); aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ), DARKCYAN ); // Display the netclass name (a pad having a netcode = 0 (no net) use the // default netclass for clearance): if( m_netinfo->GetNet() <= 0 ) msg = bds.GetDefault()->GetName(); else msg = GetNetClassName(); aList.emplace_back( _( "NetClass" ), msg, CYAN ); aList.emplace_back( _( "Layer" ), LayerMaskDescribe( board, m_layerMask ), DARKGREEN ); // Show the pad shape, attribute and property wxString props = ShowPadAttr(); if( GetProperty() != PAD_PROP_NONE ) props += ','; switch( GetProperty() ) { case PAD_PROP_NONE: break; case PAD_PROP_BGA: props += _("BGA" ); break; case PAD_PROP_FIDUCIAL_GLBL: props += _("Fiducial global" ); break; case PAD_PROP_FIDUCIAL_LOCAL: props += _("Fiducial local" ); break; case PAD_PROP_TESTPOINT: props += _("Test point" ); break; case PAD_PROP_HEATSINK: props += _("Heat sink" ); break; case PAD_PROP_CASTELLATED: props += _("Castellated" ); break; } aList.emplace_back( ShowPadShape(), props, DARKGREEN ); if( (GetShape() == PAD_SHAPE_CIRCLE || GetShape() == PAD_SHAPE_OVAL ) && m_Size.x == m_Size.y ) { msg = MessageTextFromValue( units, m_Size.x, true ); aList.emplace_back( _( "Diameter" ), msg, RED ); } else { msg = MessageTextFromValue( units, m_Size.x, true ); aList.emplace_back( _( "Width" ), msg, RED ); msg = MessageTextFromValue( units, m_Size.y, true ); aList.emplace_back( _( "Height" ), msg, RED ); } if( GetPadToDieLength() ) { msg = MessageTextFromValue(units, GetPadToDieLength(), true ); aList.emplace_back( _( "Length in Package" ), msg, CYAN ); } msg = MessageTextFromValue( units, m_Drill.x, true ); if( GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) { aList.emplace_back( _( "Drill" ), msg, RED ); } else { msg = MessageTextFromValue( units, m_Drill.x, true ) + wxT( "/" ) + MessageTextFromValue( units, m_Drill.y, true ); aList.emplace_back( _( "Drill X / Y" ), msg, RED ); } wxString source; int clearance = GetClearance( nullptr, &source ); msg.Printf( _( "Min Clearance: %s" ), MessageTextFromValue( units, clearance, true ) ); msg2.Printf( _( "(from %s)" ), source ); aList.emplace_back( msg, msg2, BLACK ); } void D_PAD::GetOblongGeometry( const wxSize& aDrillOrPadSize, wxPoint* aStartPoint, wxPoint* aEndPoint, int* aWidth ) const { // calculates the start point, end point and width // of an equivalent segment which have the same position and width as the pad or hole int delta_cx, delta_cy; wxSize halfsize = aDrillOrPadSize / 2; wxPoint offset; if( aDrillOrPadSize.x > aDrillOrPadSize.y ) // horizontal { delta_cx = halfsize.x - halfsize.y; delta_cy = 0; *aWidth = aDrillOrPadSize.y; } else // vertical { delta_cx = 0; delta_cy = halfsize.y - halfsize.x; *aWidth = aDrillOrPadSize.x; } RotatePoint( &delta_cx, &delta_cy, m_Orient ); aStartPoint->x = delta_cx + offset.x; aStartPoint->y = delta_cy + offset.y; aEndPoint->x = - delta_cx + offset.x; aEndPoint->y = - delta_cy + offset.y; } bool D_PAD::HitTest( const wxPoint& aPosition, int aAccuracy ) const { VECTOR2I delta = aPosition - GetPosition(); int boundingRadius = GetBoundingRadius() + aAccuracy; if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) ) return false; SHAPE_POLY_SET polySet; TransformShapeWithClearanceToPolygon( polySet, aAccuracy ); return polySet.Contains( aPosition ); } bool D_PAD::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { EDA_RECT arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); EDA_RECT bbox = GetBoundingBox(); if( !arect.Intersects( bbox ) ) return false; // This covers total containment for all test cases if( arect.Contains( bbox ) ) return true; SHAPE_POLY_SET selRect; selRect.NewOutline(); selRect.Append( arect.GetOrigin() ); selRect.Append( VECTOR2I( arect.GetRight(), arect.GetTop() ) ); selRect.Append( VECTOR2I( arect.GetRight(), arect.GetBottom() ) ); selRect.Append( VECTOR2I( arect.GetLeft(), arect.GetBottom() ) ); SHAPE_POLY_SET padPoly; TransformShapeWithClearanceToPolygon( padPoly, aAccuracy ); selRect.BooleanIntersection( padPoly, SHAPE_POLY_SET::PM_FAST ); double padArea = padPoly.Outline( 0 ).Area(); double intersection = selRect.Outline( 0 ).Area(); if( intersection > ( padArea * 0.99 ) ) return true; else return !aContained && intersection > 0; } int D_PAD::Compare( const D_PAD* padref, const D_PAD* padcmp ) { int diff; if( ( diff = padref->GetShape() - padcmp->GetShape() ) != 0 ) return diff; if( ( diff = padref->GetDrillShape() - padcmp->GetDrillShape() ) != 0) return diff; if( ( diff = padref->m_Drill.x - padcmp->m_Drill.x ) != 0 ) return diff; if( ( diff = padref->m_Drill.y - padcmp->m_Drill.y ) != 0 ) return diff; if( ( diff = padref->m_Size.x - padcmp->m_Size.x ) != 0 ) return diff; if( ( diff = padref->m_Size.y - padcmp->m_Size.y ) != 0 ) return diff; if( ( diff = padref->m_Offset.x - padcmp->m_Offset.x ) != 0 ) return diff; if( ( diff = padref->m_Offset.y - padcmp->m_Offset.y ) != 0 ) return diff; if( ( diff = padref->m_DeltaSize.x - padcmp->m_DeltaSize.x ) != 0 ) return diff; if( ( diff = padref->m_DeltaSize.y - padcmp->m_DeltaSize.y ) != 0 ) return diff; // TODO: test custom shapes // Dick: specctra_export needs this // Lorenzo: gencad also needs it to implement padstacks! #if __cplusplus >= 201103L long long d = padref->m_layerMask.to_ullong() - padcmp->m_layerMask.to_ullong(); if( d < 0 ) return -1; else if( d > 0 ) return 1; return 0; #else // these strings are not typically constructed, since we don't get here often. std::string s1 = padref->m_layerMask.to_string(); std::string s2 = padcmp->m_layerMask.to_string(); return s1.compare( s2 ); #endif } void D_PAD::Rotate( const wxPoint& aRotCentre, double aAngle ) { RotatePoint( &m_Pos, aRotCentre, aAngle ); m_Orient = NormalizeAngle360Min( m_Orient + aAngle ); SetLocalCoord(); m_shapesDirty = true; } wxString D_PAD::ShowPadShape() const { switch( GetShape() ) { case PAD_SHAPE_CIRCLE: return _( "Circle" ); case PAD_SHAPE_OVAL: return _( "Oval" ); case PAD_SHAPE_RECT: return _( "Rect" ); case PAD_SHAPE_TRAPEZOID: return _( "Trap" ); case PAD_SHAPE_ROUNDRECT: return _( "Roundrect" ); case PAD_SHAPE_CHAMFERED_RECT: return _( "Chamferedrect" ); case PAD_SHAPE_CUSTOM: return _( "CustomShape" ); default: return wxT( "???" ); } } wxString D_PAD::ShowPadAttr() const { switch( GetAttribute() ) { case PAD_ATTRIB_STANDARD: return _( "Std" ); case PAD_ATTRIB_SMD: return _( "SMD" ); case PAD_ATTRIB_CONN: return _( "Conn" ); case PAD_ATTRIB_HOLE_NOT_PLATED: return _( "Not Plated" ); default: return wxT( "???" ); } } wxString D_PAD::GetSelectMenuText( EDA_UNITS aUnits ) const { if( GetName().IsEmpty() ) { return wxString::Format( _( "Pad of %s on %s" ), GetParent()->GetReference(), LayerMaskDescribe( GetBoard(), m_layerMask ) ); } else { return wxString::Format( _( "Pad %s of %s on %s" ), GetName(), GetParent()->GetReference(), LayerMaskDescribe( GetBoard(), m_layerMask ) ); } } BITMAP_DEF D_PAD::GetMenuImage() const { return pad_xpm; } EDA_ITEM* D_PAD::Clone() const { return new D_PAD( *this ); } bool D_PAD::PadShouldBeNPTH() const { return( m_Attribute == PAD_ATTRIB_STANDARD && m_Drill.x >= m_Size.x && m_Drill.y >= m_Size.y ); } void D_PAD::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 0; // These 2 types of pads contain a hole if( m_Attribute == PAD_ATTRIB_STANDARD ) aLayers[aCount++] = LAYER_PADS_PLATEDHOLES; if( m_Attribute == PAD_ATTRIB_HOLE_NOT_PLATED ) aLayers[aCount++] = LAYER_NON_PLATEDHOLES; if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) ) { // Multi layer pad aLayers[aCount++] = LAYER_PADS_TH; aLayers[aCount++] = LAYER_PADS_NETNAMES; } else if( IsOnLayer( F_Cu ) ) { aLayers[aCount++] = LAYER_PAD_FR; // Is this a PTH pad that has only front copper? If so, we need to also display the // net name on the PTH netname layer so that it isn't blocked by the drill hole. if( m_Attribute == PAD_ATTRIB_STANDARD ) aLayers[aCount++] = LAYER_PADS_NETNAMES; else aLayers[aCount++] = LAYER_PAD_FR_NETNAMES; } else if( IsOnLayer( B_Cu ) ) { aLayers[aCount++] = LAYER_PAD_BK; // Is this a PTH pad that has only back copper? If so, we need to also display the // net name on the PTH netname layer so that it isn't blocked by the drill hole. if( m_Attribute == PAD_ATTRIB_STANDARD ) aLayers[aCount++] = LAYER_PADS_NETNAMES; else aLayers[aCount++] = LAYER_PAD_BK_NETNAMES; } else { // Internal layers only. (Not yet supported in GUI, but is being used by Python // footprint generators and will be needed anyway once pad stacks are supported.) for ( int internal = In1_Cu; internal < In30_Cu; ++internal ) { if( IsOnLayer( (PCB_LAYER_ID) internal ) ) aLayers[aCount++] = internal; } } // Check non-copper layers. This list should include all the layers that the // footprint editor allows a pad to be placed on. static const PCB_LAYER_ID layers_mech[] = { F_Mask, B_Mask, F_Paste, B_Paste, F_Adhes, B_Adhes, F_SilkS, B_SilkS, Dwgs_User, Eco1_User, Eco2_User }; for( PCB_LAYER_ID each_layer : layers_mech ) { if( IsOnLayer( each_layer ) ) aLayers[aCount++] = each_layer; } #ifdef __WXDEBUG__ if( aCount == 0 ) // Should not occur { wxString msg; msg.Printf( wxT( "footprint %s, pad %s: could not find valid layer for pad" ), GetParent() ? GetParent()->GetReference() : "", GetName().IsEmpty() ? "(unnamed)" : GetName() ); wxLogWarning( msg ); } #endif } unsigned int D_PAD::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { if( aView->GetPrintMode() > 0 ) // In printing mode the pad is always drawable return 0; const int HIDE = std::numeric_limits::max(); BOARD* board = GetBoard(); // Handle Render tab switches if( ( GetAttribute() == PAD_ATTRIB_STANDARD || GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED ) && !aView->IsLayerVisible( LAYER_PADS_TH ) ) return HIDE; if( !IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_FR ) ) return HIDE; if( IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_BK ) ) return HIDE; if( IsFrontLayer( ( PCB_LAYER_ID )aLayer ) && !aView->IsLayerVisible( LAYER_PAD_FR ) ) return HIDE; if( IsBackLayer( ( PCB_LAYER_ID )aLayer ) && !aView->IsLayerVisible( LAYER_PAD_BK ) ) return HIDE; // Only draw the pad if at least one of the layers it crosses is being displayed if( board && !( board->GetVisibleLayers() & GetLayerSet() ).any() ) return HIDE; // Netnames will be shown only if zoom is appropriate if( IsNetnameLayer( aLayer ) ) { int divisor = std::min( GetBoundingBox().GetWidth(), GetBoundingBox().GetHeight() ); // Pad sizes can be zero briefly when someone is typing a number like "0.5" // in the pad properties dialog if( divisor == 0 ) return HIDE; return ( Millimeter2iu( 5 ) / divisor ); } // Other layers are shown without any conditions return 0; } const BOX2I D_PAD::ViewBBox() const { // Bounding box includes soldermask too int solderMaskMargin = GetSolderMaskMargin(); VECTOR2I solderPasteMargin = VECTOR2D( GetSolderPasteMargin() ); EDA_RECT bbox = GetBoundingBox(); // Look for the biggest possible bounding box int xMargin = std::max( solderMaskMargin, solderPasteMargin.x ); int yMargin = std::max( solderMaskMargin, solderPasteMargin.y ); return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ), VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) ); } void D_PAD::ImportSettingsFrom( const D_PAD& aMasterPad ) { SetShape( aMasterPad.GetShape() ); SetLayerSet( aMasterPad.GetLayerSet() ); SetAttribute( aMasterPad.GetAttribute() ); SetProperty( aMasterPad.GetProperty() ); // The pad orientation, for historical reasons is the // pad rotation + parent rotation. // So we have to manage this parent rotation double pad_rot = aMasterPad.GetOrientation(); if( aMasterPad.GetParent() ) pad_rot -= aMasterPad.GetParent()->GetOrientation(); if( GetParent() ) pad_rot += GetParent()->GetOrientation(); SetOrientation( pad_rot ); SetSize( aMasterPad.GetSize() ); SetDelta( wxSize( 0, 0 ) ); SetOffset( aMasterPad.GetOffset() ); SetDrillSize( aMasterPad.GetDrillSize() ); SetDrillShape( aMasterPad.GetDrillShape() ); SetRoundRectRadiusRatio( aMasterPad.GetRoundRectRadiusRatio() ); SetChamferRectRatio( aMasterPad.GetChamferRectRatio() ); SetChamferPositions( aMasterPad.GetChamferPositions() ); switch( aMasterPad.GetShape() ) { case PAD_SHAPE_TRAPEZOID: SetDelta( aMasterPad.GetDelta() ); break; case PAD_SHAPE_CIRCLE: // ensure size.y == size.x SetSize( wxSize( GetSize().x, GetSize().x ) ); break; default: ; } switch( aMasterPad.GetAttribute() ) { case PAD_ATTRIB_SMD: case PAD_ATTRIB_CONN: // These pads do not have hole (they are expected to be only on one // external copper layer) SetDrillSize( wxSize( 0, 0 ) ); break; default: ; } // copy also local settings: SetLocalClearance( aMasterPad.GetLocalClearance() ); SetLocalSolderMaskMargin( aMasterPad.GetLocalSolderMaskMargin() ); SetLocalSolderPasteMargin( aMasterPad.GetLocalSolderPasteMargin() ); SetLocalSolderPasteMarginRatio( aMasterPad.GetLocalSolderPasteMarginRatio() ); SetZoneConnection( aMasterPad.GetEffectiveZoneConnection() ); SetThermalWidth( aMasterPad.GetThermalWidth() ); SetThermalGap( aMasterPad.GetThermalGap() ); // Add or remove custom pad shapes: SetPrimitives( aMasterPad.GetPrimitives() ); SetAnchorPadShape( aMasterPad.GetAnchorPadShape() ); m_shapesDirty = true; } void D_PAD::SwapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_PAD_T ); std::swap( *((MODULE*) this), *((MODULE*) aImage) ); } static struct PAD_DESC { PAD_DESC() { ENUM_MAP::Instance() .Map( PAD_SHAPE_CIRCLE, _( "Circle" ) ) .Map( PAD_SHAPE_RECT, _( "Rectangle" ) ) .Map( PAD_SHAPE_OVAL, _( "Oval" ) ) .Map( PAD_SHAPE_TRAPEZOID, _( "Trapezoid" ) ) .Map( PAD_SHAPE_ROUNDRECT, _( "Rounded Rectangle" ) ) .Map( PAD_SHAPE_CHAMFERED_RECT, _( "Chamfered Rectangle" ) ) .Map( PAD_SHAPE_CUSTOM, _( "Chamfered Rectangle" ) ); PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( D_PAD ); propMgr.InheritsAfter( TYPE_HASH( D_PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ) ); auto shape = new PROPERTY_ENUM( _( "Shape" ), &D_PAD::SetShape, &D_PAD::GetShape ); propMgr.AddProperty( shape ); propMgr.AddProperty( new PROPERTY( _( "Name" ), &D_PAD::SetName, &D_PAD::GetName ) ); propMgr.AddProperty( new PROPERTY( _( "Orientation" ), &D_PAD::SetOrientationDegrees, &D_PAD::GetOrientationDegrees, PROPERTY_DISPLAY::DEGREE ) ); propMgr.AddProperty( new PROPERTY( _( "Pad To Die Length" ), &D_PAD::SetPadToDieLength, &D_PAD::GetPadToDieLength, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _( "Local Soldermask Margin" ), &D_PAD::SetLocalSolderMaskMargin, &D_PAD::GetLocalSolderMaskMargin, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _( "Local Solderpaste Margin" ), &D_PAD::SetLocalSolderPasteMargin, &D_PAD::GetLocalSolderPasteMargin, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _( "Local Solderpaste Margin Ratio" ), &D_PAD::SetLocalSolderPasteMarginRatio, &D_PAD::GetLocalSolderPasteMarginRatio ) ); propMgr.AddProperty( new PROPERTY( _( "Thermal Width" ), &D_PAD::SetThermalWidth, &D_PAD::GetThermalWidth, PROPERTY_DISPLAY::DISTANCE ) ); propMgr.AddProperty( new PROPERTY( _( "Thermal Gap" ), &D_PAD::SetThermalGap, &D_PAD::GetThermalGap, PROPERTY_DISPLAY::DISTANCE ) ); auto roundRadiusRatio = new PROPERTY( _( "Round Radius Ratio" ), &D_PAD::SetRoundRectRadiusRatio, &D_PAD::GetRoundRectRadiusRatio ); roundRadiusRatio->SetAvailableFunc( [=](INSPECTABLE* aItem)->bool { return aItem->Get( shape ) == PAD_SHAPE_ROUNDRECT; } ); propMgr.AddProperty( roundRadiusRatio ); //propMgr.AddProperty( new PROPERTY( _( "Local Clearance" ), // &D_PAD::SetLocalClearance, &D_PAD::GetLocalClearance, PROPERTY_DISPLAY::DISTANCE ) ); // TODO delta, size, drill size, dirill shape offset, layerset, zone connection } } _PAD_DESC; ENUM_TO_WXANY( PAD_SHAPE_T );