/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2019 KiCad Developers, see AUTHORS.txt for contributors. * Copyright (C) 2020 CERN * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef DRC_RTREE_H_ #define DRC_RTREE_H_ #include #include #include #include #include #include #include #include #include /** * DRC_RTREE - * Implements an R-tree for fast spatial and layer indexing of connectable items. * Non-owning. */ class DRC_RTREE { public: struct ITEM_WITH_SHAPE { ITEM_WITH_SHAPE( BOARD_ITEM *aParent, SHAPE* aShape, std::shared_ptr aParentShape = nullptr ) : parent ( aParent ), shape ( aShape ), parentShape( aParentShape ) {}; BOARD_ITEM* parent; SHAPE* shape; std::shared_ptr parentShape; }; private: using drc_rtree = RTree; public: DRC_RTREE() { for( int layer : LSET::AllLayersMask().Seq() ) m_tree[layer] = new drc_rtree(); m_count = 0; } ~DRC_RTREE() { for( auto tree : m_tree ) delete tree; } /** * Function Insert() * Inserts an item into the tree. Item's bounding box is taken via its GetBoundingBox() method. */ void insert( BOARD_ITEM* aItem ) { std::vector subshapes; for( int layer : aItem->GetLayerSet().Seq() ) { std::shared_ptr itemShape = aItem->GetEffectiveShape( (PCB_LAYER_ID) layer ); if( itemShape->HasIndexableSubshapes() ) { itemShape->GetIndexableSubshapes( subshapes ); } else { subshapes.push_back( itemShape.get() ); } for( auto subshape : subshapes ) { BOX2I bbox = subshape->BBox(); const int mmin[2] = { bbox.GetX(), bbox.GetY() }; const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() }; m_tree[layer]->Insert( mmin, mmax, new ITEM_WITH_SHAPE( aItem, subshape, itemShape ) ); m_count++; } } } #if 0 /** * Function Remove() * Removes an item from the tree. Removal is done by comparing pointers, attempting * to remove a copy of the item will fail. */ bool remove( BOARD_ITEM* aItem ) { // First, attempt to remove the item using its given BBox const EDA_RECT& bbox = aItem->GetBoundingBox(); const int mmin[2] = { bbox.GetX(), bbox.GetY() }; const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() }; bool removed = false; for( auto layer : aItem->GetLayerSet().Seq() ) { if( ZONE_CONTAINER* zone = dyn_cast( aItem ) ) { // Continue removing the zone elements from the tree until they cannot be found while( !m_tree[int( layer )]->Remove( mmin, mmax, aItem ) ) ; const int mmin2[2] = { INT_MIN, INT_MIN }; const int mmax2[2] = { INT_MAX, INT_MAX }; // If we are not successful ( true == not found ), then we expand // the search to the full tree while( !m_tree[int( layer )]->Remove( mmin2, mmax2, aItem ) ) ; // Loop to the next layer continue; } // The non-zone search expects only a single element in the tree with the same // pointer aItem if( m_tree[int( layer )]->Remove( mmin, mmax, aItem ) ) { // N.B. We must search the whole tree for the pointer to remove // because the item may have been moved before we have the chance to // delete it from the tree const int mmin2[2] = { INT_MIN, INT_MIN }; const int mmax2[2] = { INT_MAX, INT_MAX }; if( m_tree[int( layer )]->Remove( mmin2, mmax2, aItem ) ) continue; } removed = true; } m_count -= int( removed ); return removed; } #endif /** * Function RemoveAll() * Removes all items from the RTree */ void clear() { for( auto tree : m_tree ) tree->RemoveAll(); m_count = 0; } #if 0 /** * Determine if a given item exists in the tree. Note that this does not search the full tree * so if the item has been moved, this will return false when it should be true. * * @param aItem Item that may potentially exist in the tree * @param aRobust If true, search the whole tree, not just the bounding box * @return true if the item definitely exists, false if it does not exist within bbox */ bool contains( BOARD_ITEM* aItem, bool aRobust = false ) { const EDA_RECT& bbox = aItem->GetBoundingBox(); const int mmin[2] = { bbox.GetX(), bbox.GetY() }; const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() }; bool found = false; auto search = [&found, &aItem]( const ITEM_WITH_SHAPE* aSearchItem ) { if( aSearchItem->parent == aItem ) { found = true; return false; } return true; }; for( int layer : aItem->GetLayerSet().Seq() ) { m_tree[layer]->Search( mmin, mmax, search ); if( found ) break; } if( !found && aRobust ) { for( int layer : LSET::AllCuMask().Seq() ) { // N.B. We must search the whole tree for the pointer to remove // because the item may have been moved. We do not expand the item // layer search as this should not change. const int mmin2[2] = { INT_MIN, INT_MIN }; const int mmax2[2] = { INT_MAX, INT_MAX }; m_tree[layer]->Search( mmin2, mmax2, search ); if( found ) break; } } return found; } #endif bool CheckColliding( SHAPE* aRefShape, PCB_LAYER_ID aTargetLayer, int aClearance = 0, std::function aFilter = nullptr ) { BOX2I box = aRefShape->BBox(); box.Inflate( aClearance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; int count = 0; auto visit = [&] ( ITEM_WITH_SHAPE* aItem ) -> bool { if( !aFilter || aFilter( aItem->parent ) ) { int actual; if( aRefShape->Collide( aItem->shape, aClearance, &actual ) ) { count++; return false; } } return true; }; this->m_tree[aTargetLayer]->Search( min, max, visit ); return count > 0; } int QueryColliding( BOARD_ITEM* aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, std::function aFilter = nullptr, std::function aVisitor = nullptr, int aClearance = 0 ) { // keep track of BOARD_ITEMs that have been already found to collide (some items // might be build of COMPOUND/triangulated shapes and a single subshape collision // means we have a hit) std::unordered_set collidingCompounds; EDA_RECT box = aRefItem->GetBoundingBox(); box.Inflate( aClearance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; std::shared_ptr refShape = aRefItem->GetEffectiveShape( aRefLayer ); int count = 0; auto visit = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() ) return true; if( !aFilter || aFilter( aItem->parent ) ) { int actual; if( refShape->Collide( aItem->shape, aClearance, &actual ) ) { collidingCompounds.insert( aItem->parent ); count++; if( aVisitor ) return aVisitor( aItem->parent, actual ); } } return true; }; this->m_tree[aTargetLayer]->Search( min, max, visit ); return count; } typedef std::pair LAYER_PAIR; struct PAIR_INFO { PAIR_INFO( LAYER_PAIR aPair, ITEM_WITH_SHAPE* aRef, ITEM_WITH_SHAPE* aTest ) : layerPair( aPair ), refItem( aRef ), testItem( aTest ) { }; LAYER_PAIR layerPair; ITEM_WITH_SHAPE* refItem; ITEM_WITH_SHAPE* testItem; }; int QueryCollidingPairs( DRC_RTREE* aRefTree, std::vector aLayers, std::function aVisitor, int aMaxClearance, std::function aProgressReporter ) { std::vector< PAIR_INFO > pairsToVisit; for( LAYER_PAIR& refLayerIter : aLayers ) { const PCB_LAYER_ID refLayer = refLayerIter.first; const PCB_LAYER_ID targetLayer = refLayerIter.second; for( ITEM_WITH_SHAPE* refItem : aRefTree->OnLayer( refLayer ) ) { BOX2I box = refItem->shape->BBox(); box.Inflate( aMaxClearance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; auto visit = [&]( ITEM_WITH_SHAPE* aItemToTest ) -> bool { // don't collide items against themselves if( refLayer == targetLayer && aItemToTest->parent == refItem->parent ) return true; pairsToVisit.emplace_back( refLayerIter, refItem, aItemToTest ); return true; }; this->m_tree[targetLayer]->Search( min, max, visit ); }; } // keep track of BOARD_ITEMs pairs that have been already found to collide (some items // might be build of COMPOUND/triangulated shapes and a single subshape collision // means we have a hit) std::map< std::pair, int> collidingCompounds; int progress = 0; int count = pairsToVisit.size(); for( PAIR_INFO& pair : pairsToVisit ) { if( !aProgressReporter( progress++, count ) ) break; // don't report multiple collisions for compound or triangulated shapes if( collidingCompounds.count( { pair.refItem->parent, pair.testItem->parent } ) ) continue; bool collisionDetected = false; if( !aVisitor( pair.layerPair, pair.refItem, pair.testItem, &collisionDetected ) ) break; if( collisionDetected ) collidingCompounds[ { pair.refItem->parent, pair.testItem->parent } ] = 1; } return 0; } #if 0 std::vector> GetNearest( const wxPoint &aPoint, PCB_LAYER_ID aLayer, int aLimit ) { const int point[2] = { aPoint.x, aPoint.y }; auto result = m_tree[int( aLayer )]->NearestNeighbors( point, [aLimit]( std::size_t a_count, int a_maxDist ) -> bool { return a_count >= aLimit; }, []( BOARD_ITEM* aElement) -> bool { // Don't remove any elements from the list return false; }, [aLayer]( const int* a_point, BOARD_ITEM* a_data ) -> int { switch( a_data->Type() ) { case PCB_TRACE_T: { TRACK* track = static_cast( a_data ); SEG seg( track->GetStart(), track->GetEnd() ); return seg.Distance( VECTOR2I( a_point[0], a_point[1] ) ) - ( track->GetWidth() + 1 ) / 2; } case PCB_VIA_T: { VIA* via = static_cast( a_data ); return ( VECTOR2I( via->GetPosition() ) - VECTOR2I( a_point[0], a_point[1] ) ).EuclideanNorm() - ( via->GetWidth() + 1 ) / 2; } default: { VECTOR2I point( a_point[0], a_point[1] ); int dist = 0; auto shape = a_data->GetEffectiveShape( aLayer ); // Here we use a hack to get the distance by colliding with a large area // However, we can't use just MAX_INT because we will overflow the collision calculations shape->Collide( point, std::numeric_limits::max() / 2, &dist); return dist; } } return 0; }); return result; } #endif /** * Returns the number of items in the tree * @return number of elements in the tree; */ size_t size() { return m_count; } bool empty() { return m_count == 0; } using iterator = typename drc_rtree::Iterator; /** * The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree. Using * this struct, one can write lines like: * * for( auto item : rtree.OnLayer( In1_Cu ) ) * * and iterate over only the RTree items that are on In1 */ struct DRC_LAYER { DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree ) { m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } }; }; DRC_LAYER( drc_rtree* aTree, const EDA_RECT aRect ) : layer_tree( aTree ) { m_rect = { { aRect.GetX(), aRect.GetY() }, { aRect.GetRight(), aRect.GetBottom() } }; }; drc_rtree::Rect m_rect; drc_rtree* layer_tree; iterator begin() { return layer_tree->begin( m_rect ); } iterator end() { return layer_tree->end( m_rect ); } }; DRC_LAYER OnLayer( PCB_LAYER_ID aLayer ) { return DRC_LAYER( m_tree[int( aLayer )] ); } DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const wxPoint& aPoint, int aAccuracy = 0 ) { EDA_RECT rect( aPoint, wxSize( 0, 0 ) ); rect.Inflate( aAccuracy ); return DRC_LAYER( m_tree[int( aLayer )], rect ); } DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const EDA_RECT& aRect ) { return DRC_LAYER( m_tree[int( aLayer )], aRect ); } private: drc_rtree* m_tree[PCB_LAYER_ID_COUNT]; size_t m_count; }; #endif /* DRC_RTREE_H_ */