/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014 Mario Luzeiro * Copyright (C) 2013 Tuomas Vaherkoski * Copyright (C) 2012 Jean-Pierre Charras, jp.charras@wanadoo.fr * Copyright (C) 2011 Wayne Stambaugh * Copyright (C) 1992-2014 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file vrml_v2_modelparser.cpp */ #include #include #include #include #include #include "3d_struct.h" #include "modelparsers.h" #include "vrml_aux.h" VRML2_MODEL_PARSER::VRML2_MODEL_PARSER( S3D_MASTER* aMaster ) : S3D_MODEL_PARSER( aMaster ) { m_model = NULL; } VRML2_MODEL_PARSER::~VRML2_MODEL_PARSER() { for( unsigned int idx = 0; idx < childs.size(); idx++ ) { delete childs[idx]; } } void VRML2_MODEL_PARSER::Load( const wxString& aFilename, double aVrmlunits_to_3Dunits ) { char text[128]; // DBG( printf( "Load %s\n", GetChars(aFilename) ) ); m_file = wxFopen( aFilename, wxT( "rt" ) ); if( m_file == NULL ) { return; } float vrmlunits_to_3Dunits = aVrmlunits_to_3Dunits; glScalef( vrmlunits_to_3Dunits, vrmlunits_to_3Dunits, vrmlunits_to_3Dunits ); glm::vec3 matScale( GetMaster()->m_MatScale.x, GetMaster()->m_MatScale.y, GetMaster()->m_MatScale.z ); glm::vec3 matRot( GetMaster()->m_MatRotation.x, GetMaster()->m_MatRotation.y, GetMaster()->m_MatRotation.z ); glm::vec3 matPos( GetMaster()->m_MatPosition.x, GetMaster()->m_MatPosition.y, GetMaster()->m_MatPosition.z ); #define SCALE_3D_CONV ( (IU_PER_MILS * 1000.0f) / UNITS3D_TO_UNITSPCB ) glTranslatef( matPos.x * SCALE_3D_CONV, matPos.y * SCALE_3D_CONV, matPos.z * SCALE_3D_CONV ); glRotatef( -matRot.z, 0.0f, 0.0f, 1.0f ); glRotatef( -matRot.y, 0.0f, 1.0f, 0.0f ); glRotatef( -matRot.x, 1.0f, 0.0f, 0.0f ); glScalef( matScale.x, matScale.y, matScale.z ); // Switch the locale to standard C (needed to print floating point numbers like 1.3) SetLocaleTo_C_standard(); childs.clear(); while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == '}' ) || ( *text == ']' ) ) { continue; } if( strcmp( text, "Transform" ) == 0 ) { m_model = new S3D_MESH(); childs.push_back( m_model ); read_Transform(); } else if( strcmp( text, "DEF" ) == 0 ) { m_model = new S3D_MESH(); childs.push_back( m_model ); read_DEF(); } } fclose( m_file ); SetLocaleTo_Default(); // revert to the current locale // DBG( printf( "chils size:%lu\n", childs.size() ) ); if( GetMaster()->IsOpenGlAllowed() ) { for( unsigned int idx = 0; idx < childs.size(); idx++ ) { childs[idx]->openGL_RenderAllChilds(); } } } int VRML2_MODEL_PARSER::read_Transform() { char text[128]; // DBG( printf( "Transform\n" ) ); while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == ']' ) ) { continue; } if( ( *text == '}' ) ) { // DBG( printf( " } Exit Transform\n" ) ); break; } if( strcmp( text, "translation" ) == 0 ) { parseVertex( m_file, m_model->m_translation ); } else if( strcmp( text, "rotation" ) == 0 ) { if( fscanf( m_file, "%f %f %f %f", &m_model->m_rotation[0], &m_model->m_rotation[1], &m_model->m_rotation[2], &m_model->m_rotation[3] ) != 4 ) { // !TODO: log errors m_model->m_rotation[0] = 0.0f; m_model->m_rotation[1] = 0.0f; m_model->m_rotation[2] = 0.0f; m_model->m_rotation[3] = 0.0f; } else { m_model->m_rotation[3] = m_model->m_rotation[3] * 180.0f / 3.14f; // !TODO: use constants or functions } } else if( strcmp( text, "scale" ) == 0 ) { parseVertex( m_file, m_model->m_scale ); } else if( strcmp( text, "scaleOrientation" ) == 0 ) { // this m_scaleOrientation is not implemented, but it will be parsed if( fscanf( m_file, "%f %f %f %f", &m_model->m_scaleOrientation[0], &m_model->m_scaleOrientation[1], &m_model->m_scaleOrientation[2], &m_model->m_scaleOrientation[3] ) != 4 ) { // !TODO: log errors m_model->m_scaleOrientation[0] = 0.0f; m_model->m_scaleOrientation[1] = 0.0f; m_model->m_scaleOrientation[2] = 0.0f; m_model->m_scaleOrientation[3] = 0.0f; } } else if( strcmp( text, "center" ) == 0 ) { parseVertex( m_file, m_model->m_center ); } else if( strcmp( text, "children" ) == 0 ) { // skip } else if( strcmp( text, "Switch" ) == 0 ) { // skip } else if( strcmp( text, "whichChoice" ) == 0 ) { int dummy; if( fscanf( m_file, "%d", &dummy ) != 1 ) { // !TODO: log errors } } else if( strcmp( text, "choice" ) == 0 ) { // skip } else if( strcmp( text, "Group" ) == 0 ) { // skip } else if( strcmp( text, "Shape" ) == 0 ) { S3D_MESH* parent = m_model; S3D_MESH* new_mesh_model = new S3D_MESH(); m_model->childs.push_back( new_mesh_model ); m_model = new_mesh_model; read_Shape(); m_model = parent; } else if( strcmp( text, "DEF" ) == 0 ) { read_DEF(); } else { // DBG( printf( " %s NotImplemented\n", text ) ); read_NotImplemented( m_file, '}' ); } } return 0; } int VRML2_MODEL_PARSER::read_DEF() { char text[128]; GetNextTag( m_file, text ); // DBG( printf( "DEF %s ", text ) ); while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == ']' ) ) { // DBG( printf( " skiping %c\n", *text) ); continue; } if( ( *text == '}' ) ) { // DBG( printf( " } Exit DEF\n") ); return 0; } if( strcmp( text, "Transform" ) == 0 ) { return read_Transform(); } else if( strcmp( text, "children" ) == 0 ) { // skip } else if( strcmp( text, "Switch" ) == 0 ) { // skip } else if( strcmp( text, "whichChoice" ) == 0 ) { // skip } else if( strcmp( text, "choice" ) == 0 ) { // skip } else if( strcmp( text, "Shape" ) == 0 ) { S3D_MESH* parent = m_model; S3D_MESH* new_mesh_model = new S3D_MESH(); m_model->childs.push_back( new_mesh_model ); m_model = new_mesh_model; read_Shape(); m_model = parent; } } // DBG( printf( " DEF failed\n" ) ); return -1; } int VRML2_MODEL_PARSER::read_Shape() { char text[128]; // DBG( printf( " Shape\n") ); while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == ']' ) ) { continue; } if( ( *text == '}' ) ) { // DBG( printf( " } Exit Shape\n") ); return 0; } if( strcmp( text, "appearance" ) == 0 ) { // skip } else if( strcmp( text, "Appearance" ) == 0 ) { read_Appearance(); } else if( strcmp( text, "geometry" ) == 0 ) { // skip } else if( strcmp( text, "IndexedFaceSet" ) == 0 ) { read_IndexedFaceSet(); } else { // DBG( printf( " %s NotImplemented\n", text ) ); read_NotImplemented( m_file, '}' ); } } // DBG( printf( " Shape failed\n" ) ); return -1; } int VRML2_MODEL_PARSER::read_Appearance() { char text[128]; // DBG( printf( " Appearance\n") ); while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == ']' ) ) { continue; } if( ( *text == '}' ) ) { return 0; } if( strcmp( text, "material" ) == 0 ) { read_material(); } } // DBG( printf( " Appearance failed\n" ) ); return -1; } int VRML2_MODEL_PARSER::read_material() { S3D_MATERIAL* material = NULL; char text[128]; // DBG( printf( " material ") ); if( GetNextTag( m_file, text ) ) { if( strcmp( text, "Material" ) == 0 ) { wxString mat_name; material = new S3D_MATERIAL( GetMaster(), mat_name ); GetMaster()->Insert( material ); m_model->m_Materials = material; if( strcmp( text, "Material" ) == 0 ) { return read_Material(); } } else if( strcmp( text, "DEF" ) == 0 ) { // DBG( printf( "DEF") ); if( GetNextTag( m_file, text ) ) { // DBG( printf( "%s", text ) ); wxString mat_name; mat_name = FROM_UTF8( text ); material = new S3D_MATERIAL( GetMaster(), mat_name ); GetMaster()->Insert( material ); m_model->m_Materials = material; if( GetNextTag( m_file, text ) ) { if( strcmp( text, "Material" ) == 0 ) { return read_Material(); } } } } else if( strcmp( text, "USE" ) == 0 ) { // DBG( printf( "USE") ); if( GetNextTag( m_file, text ) ) { // DBG( printf( "%s\n", text ) ); wxString mat_name; mat_name = FROM_UTF8( text ); for( material = GetMaster()->m_Materials; material; material = material->Next() ) { if( material->m_Name == mat_name ) { m_model->m_Materials = material; return 0; } } DBG( printf( " read_material error: material not found\n" ) ); } } } // DBG( printf( " failed material\n" ) ); return -1; } int VRML2_MODEL_PARSER::read_Material() { char text[128]; glm::vec3 vertex; // DBG( printf( " Material\n") ); while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == ']' ) ) { continue; } if( ( *text == '}' ) ) { return 0; } if( strcmp( text, "diffuseColor" ) == 0 ) { // DBG( printf( " diffuseColor") ); parseVertex( m_file, vertex ); // DBG( printf( "\n") ); m_model->m_Materials->m_DiffuseColor.push_back( vertex ); } else if( strcmp( text, "emissiveColor" ) == 0 ) { // DBG( printf( " emissiveColor") ); parseVertex( m_file, vertex ); // DBG( printf( "\n") ); if( GetMaster()->m_use_modelfile_emissiveColor == true ) { m_model->m_Materials->m_EmissiveColor.push_back( vertex ); } } else if( strcmp( text, "specularColor" ) == 0 ) { // DBG( printf( " specularColor") ); parseVertex( m_file, vertex ); // DBG( printf( "\n") ); if( GetMaster()->m_use_modelfile_specularColor == true ) { m_model->m_Materials->m_SpecularColor.push_back( vertex ); } } else if( strcmp( text, "ambientIntensity" ) == 0 ) { float ambientIntensity; parseFloat( m_file, &ambientIntensity ); // DBG( printf( " ambientIntensity %f\n", ambientIntensity) ); if( GetMaster()->m_use_modelfile_ambientIntensity == true ) { m_model->m_Materials->m_AmbientColor.push_back( glm::vec3( ambientIntensity, ambientIntensity, ambientIntensity ) ); } } else if( strcmp( text, "transparency" ) == 0 ) { float transparency; parseFloat( m_file, &transparency ); // DBG( printf( " transparency %f\n", transparency) ); if( GetMaster()->m_use_modelfile_transparency == true ) { m_model->m_Materials->m_Transparency.push_back( transparency ); } } else if( strcmp( text, "shininess" ) == 0 ) { float shininess; parseFloat( m_file, &shininess ); // DBG( printf( " shininess %f\n", shininess) ); // VRML value is normalized and openGL expects a value 0 - 128 if( GetMaster()->m_use_modelfile_shininess == true ) { shininess = shininess * 128.0f; m_model->m_Materials->m_Shininess.push_back( shininess ); } } } // DBG( printf( " Material failed\n" ) ); return -1; } int VRML2_MODEL_PARSER::read_IndexedFaceSet() { char text[128]; // DBG( printf( " IndexedFaceSet\n") ); m_normalPerVertex = false; colorPerVertex = false; while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == ']' ) ) { continue; } if( ( *text == '}' ) ) { // DBG( printf( " } Exit IndexedFaceSet\n") ); return 0; } if( strcmp( text, "normalPerVertex" ) == 0 ) { if( GetNextTag( m_file, text ) ) { if( strcmp( text, "TRUE" ) == 0 ) { // DBG( printf( " m_normalPerVertex TRUE\n") ); m_normalPerVertex = true; } } } else if( strcmp( text, "colorPerVertex" ) == 0 ) { GetNextTag( m_file, text ); if( strcmp( text, "TRUE" ) ) { // DBG( printf( " colorPerVertex = true\n") ); colorPerVertex = true; } else { colorPerVertex = false; } } else if( strcmp( text, "Coordinate" ) == 0 ) { read_Coordinate(); } else if( strcmp( text, "Normal" ) == 0 ) { read_Normal(); } else if( strcmp( text, "normalIndex" ) == 0 ) { read_NormalIndex(); } else if( strcmp( text, "Color" ) == 0 ) { read_Color(); } else if( strcmp( text, "coordIndex" ) == 0 ) { read_coordIndex(); } else if( strcmp( text, "colorIndex" ) == 0 ) { read_colorIndex(); } } // DBG( printf( " IndexedFaceSet failed %s\n", text ) ); return -1; } int VRML2_MODEL_PARSER::read_colorIndex() { // DBG( printf( " read_colorIndex\n" ) ); m_model->m_MaterialIndex.clear(); if( colorPerVertex == true ) { int index; int first_index; while( fscanf( m_file, "%d, ", &index ) ) { if( index == -1 ) { // it only implemented color per face, so it will store as the first in the list m_model->m_MaterialIndex.push_back( first_index ); } else { first_index = index; } } } else { int index; while( fscanf( m_file, "%d,", &index ) ) { m_model->m_MaterialIndex.push_back( index ); } } // DBG( printf( " m_MaterialIndex.size: %ld\n", m_model->m_MaterialIndex.size() ) ); return 0; } int VRML2_MODEL_PARSER::read_NormalIndex() { // DBG( printf( " read_NormalIndex\n" ) ); m_model->m_NormalIndex.clear(); glm::ivec3 coord; int dummy; // should be -1 std::vector coord_list; coord_list.clear(); while( fscanf( m_file, "%d, ", &dummy ) == 1 ) { if( dummy == -1 ) { m_model->m_NormalIndex.push_back( coord_list ); // DBG( printf( " size: %lu ", coord_list.size()) ); coord_list.clear(); } else { coord_list.push_back( dummy ); // DBG( printf( "%d ", dummy) ); } } // DBG( printf( " m_NormalIndex.size: %ld\n", m_model->m_NormalIndex.size() ) ); return 0; } int VRML2_MODEL_PARSER::read_coordIndex() { // DBG( printf( " read_coordIndex\n" ) ); m_model->m_CoordIndex.clear(); glm::ivec3 coord; int dummy; // should be -1 std::vector coord_list; coord_list.clear(); while( fscanf( m_file, "%d, ", &dummy ) == 1 ) { if( dummy == -1 ) { m_model->m_CoordIndex.push_back( coord_list ); // DBG( printf( " size: %lu ", coord_list.size()) ); coord_list.clear(); } else { coord_list.push_back( dummy ); // DBG( printf( "%d ", dummy) ); } } // DBG( printf( " m_CoordIndex.size: %ld\n", m_model->m_CoordIndex.size() ) ); return 0; } int VRML2_MODEL_PARSER::read_Color() { char text[128]; // DBG( printf( " read_Color\n") ); while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == ']' ) ) { continue; } if( ( *text == '}' ) ) { // DBG( printf( " m_DiffuseColor.size: %ld\n", m_model->m_Materials->m_DiffuseColor.size() ) ); return 0; } if( strcmp( text, "color" ) == 0 ) { parseVertexList( m_file, m_model->m_Materials->m_DiffuseColor ); } } // DBG( printf( " read_Color failed\n") ); return -1; } int VRML2_MODEL_PARSER::read_Normal() { char text[128]; // DBG( printf( " Normal\n") ); while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == ']' ) ) { continue; } if( ( *text == '}' ) ) { // DBG( printf( " m_PerFaceNormalsNormalized.size: %lu\n", m_model->m_PerFaceNormalsNormalized.size() ) ); return 0; } if( strcmp( text, "vector" ) == 0 ) { if( m_normalPerVertex == false ) { parseVertexList( m_file, m_model->m_PerFaceNormalsNormalized ); } else { parseVertexList( m_file, m_model->m_PerVertexNormalsNormalized ); // DBG( printf( " m_PerVertexNormalsNormalized.size: %lu\n", m_model->m_PerVertexNormalsNormalized.size() ) ); } } } return -1; } int VRML2_MODEL_PARSER::read_Coordinate() { char text[128]; // DBG( printf( " Coordinate\n") ); while( GetNextTag( m_file, text ) ) { if( ( text == NULL ) || ( *text == ']' ) ) { continue; } if( ( *text == '}' ) ) { // DBG( printf( " m_Point.size: %lu\n", m_model->m_Point.size() ) ); return 0; } if( strcmp( text, "point" ) == 0 ) { parseVertexList( m_file, m_model->m_Point ); } } return -1; }