/* * The MIT License (MIT) * * Copyright (c) 2016 Marcel Steinbeck * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tinyspline.h" #include <stdlib.h> /* malloc, free */ #include <math.h> /* fabs, sqrt */ #include <string.h> /* memcpy, memmove, strcmp */ #include <setjmp.h> /* setjmp, longjmp */ /******************************************************** * * * Error handling * * * ********************************************************/ #define TRY( x, y ) y = (tsError) setjmp( x ); if( y == 0 ) { #define CATCH } \ else { #define ETRY } /******************************************************** * * * Internal functions * * * ********************************************************/ void ts_internal_deboornet_copy( const tsDeBoorNet* original, tsDeBoorNet* copy, jmp_buf buf ) { const size_t dim = original->dim; const size_t n_points = original->n_points; const size_t sof_f = sizeof(tsReal); const size_t sof_p = n_points * dim * sof_f; if( original == copy ) return; copy->u = original->u; copy->k = original->k; copy->s = original->s; copy->h = original->h; copy->dim = dim; copy->n_points = n_points; copy->points = (tsReal*) malloc( sof_p ); if( copy->points == NULL ) longjmp( buf, TS_MALLOC ); memcpy( copy->points, original->points, sof_p ); copy->result = copy->points + (n_points - 1) * dim; } void ts_internal_bspline_find_u( const tsBSpline* bspline, const tsReal u, size_t* k, size_t* s, jmp_buf buf ) { const size_t deg = bspline->deg; const size_t order = bspline->order; const size_t n_knots = bspline->n_knots; *k = *s = 0; for( ; *k < n_knots; (*k)++ ) { const tsReal uk = bspline->knots[*k]; if( ts_fequals( u, uk ) ) { (*s)++; } else if( u < uk ) { break; } } /* keep in mind that currently k is k+1 */ if( *s > order ) longjmp( buf, TS_MULTIPLICITY ); if( *k <= deg ) /* u < u_min */ longjmp( buf, TS_U_UNDEFINED ); if( *k == n_knots && *s == 0 ) /* u > u_last */ longjmp( buf, TS_U_UNDEFINED ); if( *k > n_knots - deg + *s - 1 ) /* u > u_max */ longjmp( buf, TS_U_UNDEFINED ); (*k)--; /* k+1 - 1 will never underflow */ } void ts_internal_bspline_copy( const tsBSpline* original, tsBSpline* copy, jmp_buf buf ) { const size_t dim = original->dim; const size_t sof_f = sizeof(tsReal); const size_t n_ctrlp = original->n_ctrlp; const size_t n_knots = original->n_knots; const size_t sof_ck = (n_ctrlp * dim + n_knots) * sof_f; /* Nothing to do here. */ if( original == copy ) return; copy->deg = original->deg; copy->order = original->order; copy->dim = original->dim; copy->n_ctrlp = original->n_ctrlp; copy->n_knots = original->n_knots; copy->ctrlp = (tsReal*) malloc( sof_ck ); if( copy->ctrlp == NULL ) longjmp( buf, TS_MALLOC ); memcpy( copy->ctrlp, original->ctrlp, sof_ck ); copy->knots = copy->ctrlp + n_ctrlp * dim; } void ts_internal_bspline_fill_knots( const tsBSpline* original, const tsBSplineType type, const tsReal min, const tsReal max, tsBSpline* result, jmp_buf buf ) { const size_t n_knots = original->n_knots; const size_t deg = original->deg; const size_t order = deg + 1; /* Using deg+1 instead of original->order * ensures order >= 1. */ tsReal fac; /* The factor used to calculate the knot values. */ size_t i; /* Used in for loops. */ /* order >= 1 implies 2*order >= 2 implies n_knots >= 2 */ if( n_knots < 2 * order ) longjmp( buf, TS_DEG_GE_NCTRLP ); if( type == TS_BEZIERS && n_knots % order != 0 ) longjmp( buf, TS_NUM_KNOTS ); if( min > max || ts_fequals( min, max ) ) longjmp( buf, TS_KNOTS_DECR ); /* copy spline even if type is TS_NONE */ ts_internal_bspline_copy( original, result, buf ); if( type == TS_OPENED ) { /* ensures that the first knot value is exactly \min */ result->knots[0] = min; /* n_knots >= 2 */ fac = (max - min) / (n_knots - 1); /* n_knots >= 2 */ for( i = 1; i < n_knots - 1; i++ ) result->knots[i] = min + i * fac; /* ensure that the last knot value is exactly \max */ result->knots[i] = max; } else if( type == TS_CLAMPED ) { /* n_knots >= 2*order == 2*(deg+1) == 2*deg + 2 > 2*deg - 1 */ fac = (max - min) / (n_knots - 2 * deg - 1); ts_arr_fill( result->knots, order, min ); for( i = order; i < n_knots - order; i++ ) result->knots[i] = min + (i - deg) * fac; ts_arr_fill( result->knots + i, order, max ); } else if( type == TS_BEZIERS ) { /* n_knots >= 2*order implies n_knots/order >= 2 */ fac = (max - min) / (n_knots / order - 1); ts_arr_fill( result->knots, order, min ); for( i = order; i < n_knots - order; i += order ) ts_arr_fill( result->knots + i, order, min + (i / order) * fac ); ts_arr_fill( result->knots + i, order, max ); } } void ts_internal_bspline_new( const size_t n_ctrlp, const size_t dim, const size_t deg, const tsBSplineType type, tsBSpline* bspline, jmp_buf buf ) { const size_t order = deg + 1; const size_t n_knots = n_ctrlp + order; const size_t sof_f = sizeof(tsReal); const size_t sof_ck = (n_ctrlp * dim + n_knots) * sof_f; tsError e; jmp_buf b; if( dim < 1 ) longjmp( buf, TS_DIM_ZERO ); if( deg >= n_ctrlp ) longjmp( buf, TS_DEG_GE_NCTRLP ); bspline->deg = deg; bspline->order = order; bspline->dim = dim; bspline->n_ctrlp = n_ctrlp; bspline->n_knots = n_knots; bspline->ctrlp = (tsReal*) malloc( sof_ck ); if( bspline->ctrlp == NULL ) longjmp( buf, TS_MALLOC ); bspline->knots = bspline->ctrlp + n_ctrlp * dim; TRY( b, e ) ts_internal_bspline_fill_knots( bspline, type, 0.f, 1.f, bspline, b ); CATCH free( bspline->ctrlp ); longjmp( buf, e ); ETRY } void ts_internal_bspline_resize( const tsBSpline* bspline, const int n, const int back, tsBSpline* resized, jmp_buf buf ) { const size_t deg = bspline->deg; const size_t dim = bspline->dim; const size_t sof_f = sizeof(tsReal); const size_t sof_c = dim * sof_f; const size_t n_ctrlp = bspline->n_ctrlp; const size_t n_knots = bspline->n_knots; const size_t nn_ctrlp = n_ctrlp + n; /* The new length of ctrlp. */ const size_t nn_knots = n_knots + n; /* The new length of knots. */ const size_t sof_ncnk = (nn_ctrlp * dim + nn_knots) * sof_f; const size_t min_n_ctrlp = n < 0 ? nn_ctrlp : n_ctrlp; /* The minimum of * the control points old and new size. */ const size_t min_n_knots = n < 0 ? nn_knots : n_knots; /* the minimum of * the knots old and new size. */ tsReal* from_ctrlp = bspline->ctrlp; tsReal* from_knots = bspline->knots; tsReal* to_ctrlp = NULL; tsReal* to_knots = NULL; /* If n is 0 the spline must not be resized. */ if( n == 0 ) { ts_internal_bspline_copy( bspline, resized, buf ); return; } if( bspline != resized ) { ts_internal_bspline_new( nn_ctrlp, dim, deg, TS_NONE, resized, buf ); to_ctrlp = resized->ctrlp; to_knots = resized->knots; } else { if( nn_ctrlp <= deg ) longjmp( buf, TS_DEG_GE_NCTRLP ); to_ctrlp = (tsReal*) malloc( sof_ncnk ); if( to_ctrlp == NULL ) longjmp( buf, TS_MALLOC ); to_knots = to_ctrlp + nn_ctrlp * dim; } /* Copy control points and knots. */ if( !back && n < 0 ) { memcpy( to_ctrlp, from_ctrlp - n * dim, min_n_ctrlp * sof_c ); memcpy( to_knots, from_knots - n, min_n_knots * sof_f ); } else if( !back && n > 0 ) { memcpy( to_ctrlp + n * dim, from_ctrlp, min_n_ctrlp * sof_c ); memcpy( to_knots + n, from_knots, min_n_knots * sof_f ); } else { /* n != 0 implies back == true */ memcpy( to_ctrlp, from_ctrlp, min_n_ctrlp * sof_c ); memcpy( to_knots, from_knots, min_n_knots * sof_f ); } /* Cleanup if necessary. */ if( bspline == resized ) { /* free old memory */ free( from_ctrlp ); /* assign new values */ resized->ctrlp = to_ctrlp; resized->knots = to_knots; resized->n_ctrlp = nn_ctrlp; resized->n_knots = nn_knots; } } void ts_internal_bspline_insert_knot( const tsBSpline* bspline, const tsDeBoorNet* deBoorNet, const size_t n, tsBSpline* result, jmp_buf buf ) { const size_t deg = bspline->deg; const size_t dim = bspline->dim; const size_t k = deBoorNet->k; const size_t sof_f = sizeof(tsReal); const size_t sof_c = dim * sof_f; size_t N; /* The number of affected control points. */ tsReal* from; /* The pointer to copy the values from. */ tsReal* to; /* The pointer to copy the values to. */ int stride; /* The stride of the next pointer to copy. Will be negative * later on, thus use int. */ size_t i; /* Used in for loops. */ if( deBoorNet->s + n > bspline->order ) { longjmp( buf, TS_MULTIPLICITY ); } /* Use ::ts_bspline_resize even if \n is 0 to copy * the spline if necessary. */ ts_internal_bspline_resize( bspline, (int) n, 1, result, buf ); if( n == 0 ) /* Nothing to insert. */ return; N = deBoorNet->h + 1; /* n > 0 implies s <= deg implies a regular evaluation * implies h+1 is valid. */ /* 1. Copy all necessary control points and knots from * the original B-Spline. * 2. Copy all necessary control points and knots from * the de Boor net. */ /* 1. * * a) Copy left hand side control points from original b-spline. * b) Copy right hand side control points from original b-spline. * c) Copy left hand side knots from original b-spline. * d) Copy right hand side knots form original b-spline. */ /* copy control points */ memmove( result->ctrlp, bspline->ctrlp, (k - deg) * sof_c ); /* a) */ from = bspline->ctrlp + dim * (k - deg + N); to = result->ctrlp + dim * (k - deg + N + n); /* n >= 0 implies to >= from */ memmove( to, from, ( result->n_ctrlp - n - (k - deg + N) ) * sof_c ); /* b) */ /* copy knots */ memmove( result->knots, bspline->knots, (k + 1) * sof_f ); /* c) */ from = bspline->knots + k + 1; to = result->knots + k + 1 + n; /* n >= 0 implies to >= from */ memmove( to, from, ( result->n_knots - n - (k + 1) ) * sof_f ); /* d) */ /* 2. * * a) Copy left hand side control points from de boor net. * b) Copy middle part control points from de boor net. * c) Copy right hand side control points from de boor net. * d) Insert knots with u_k. */ from = deBoorNet->points; to = result->ctrlp + (k - deg) * dim; stride = (int) (N * dim); /* copy control points */ for( i = 0; i < n; i++ ) /* a) */ { memcpy( to, from, sof_c ); from += stride; to += dim; stride -= (int) dim; } memcpy( to, from, (N - n) * sof_c ); /* b) */ from -= dim; to += (N - n) * dim; stride = -(int) (N - n + 1) * (int) dim; /* N = h+1 with h = deg-s * (ts_internal_bspline_evaluate) implies N = deg-s+1 = order-s. * n <= order-s implies N-n+1 >= order-s - order-s + 1 = 1. Thus, * -(int)(N-n+1) <= -1. */ for( i = 0; i < n; i++ ) /* c) */ { memcpy( to, from, sof_c ); from += stride; stride -= (int) dim; to += dim; } /* copy knots */ to = result->knots + k + 1; for( i = 0; i < n; i++ ) /* d) */ { *to = deBoorNet->u; to++; } } void ts_internal_bspline_evaluate( const tsBSpline* bspline, const tsReal u, tsDeBoorNet* deBoorNet, jmp_buf buf ) { const size_t deg = bspline->deg; const size_t order = bspline->order; const size_t dim = bspline->dim; const size_t sof_c = dim * sizeof(tsReal); /* The size of a single * control points.*/ size_t k; size_t s; tsReal uk; /* The actual used u. */ size_t from; /* An offset used to copy values. */ size_t fst; /* The first affected control point, inclusive. */ size_t lst; /* The last affected control point, inclusive. */ size_t N; /* The number of affected control points. */ /* the following indices are used to create the DeBoor net. */ size_t lidx; /* The current left index. */ size_t ridx; /* The current right index. */ size_t tidx; /* The current to index. */ size_t r, i, d; /* Used in for loop. */ tsReal ui; /* The knot value at index i. */ tsReal a, a_hat; /* The weighting factors of the control points. */ /* Setup the net with its default values. */ ts_deboornet_default( deBoorNet ); /* 1. Find index k such that u is in between [u_k, u_k+1). * 2. Setup already known values. * 3. Decide by multiplicity of u how to calculate point P(u). */ /* 1. */ ts_internal_bspline_find_u( bspline, u, &k, &s, buf ); deBoorNet->k = k; deBoorNet->s = s; /* 2. */ uk = bspline->knots[k]; /* Ensures that with any */ deBoorNet->u = ts_fequals( u, uk ) ? uk : u; /* tsReal precision the * knot vector stays valid. */ deBoorNet->h = deg < s ? 0 : deg - s; /* prevent underflow */ deBoorNet->dim = dim; /* 3. (by 1. s <= order) * * 3a) Check for s = order. * Take the two points k-s and k-s + 1. If one of * them doesn't exist, take only the other. * 3b) Use de boor algorithm to find point P(u). */ if( s == order ) { /* only one of the two control points exists */ if( k == deg /* only the first control point */ || k == bspline->n_knots - 1 ) /* only the last control point */ { deBoorNet->points = (tsReal*) malloc( sof_c ); if( deBoorNet->points == NULL ) longjmp( buf, TS_MALLOC ); deBoorNet->result = deBoorNet->points; deBoorNet->n_points = 1; from = k == deg ? 0 : (k - s) * dim; memcpy( deBoorNet->points, bspline->ctrlp + from, sof_c ); } else { deBoorNet->points = (tsReal*) malloc( 2 * sof_c ); if( deBoorNet->points == NULL ) longjmp( buf, TS_MALLOC ); deBoorNet->result = deBoorNet->points + dim; deBoorNet->n_points = 2; from = (k - s) * dim; memcpy( deBoorNet->points, bspline->ctrlp + from, 2 * sof_c ); } } else /* by 3a) s <= deg (order = deg+1) */ { fst = k - deg; /* by 1. k >= deg */ lst = k - s; /* s <= deg <= k */ N = lst - fst + 1; /* lst <= fst implies N >= 1 */ deBoorNet->n_points = (size_t) (N * (N + 1) * 0.5f); /* always fits */ deBoorNet->points = (tsReal*) malloc( deBoorNet->n_points * sof_c ); if( deBoorNet->points == NULL ) longjmp( buf, TS_MALLOC ); deBoorNet->result = deBoorNet->points + (deBoorNet->n_points - 1) * dim; /* copy initial values to output */ memcpy( deBoorNet->points, bspline->ctrlp + fst * dim, N * sof_c ); lidx = 0; ridx = dim; tidx = N * dim; /* N >= 1 implies tidx > 0 */ r = 1; for( ; r <= deBoorNet->h; r++ ) { i = fst + r; for( ; i <= lst; i++ ) { ui = bspline->knots[i]; a = (deBoorNet->u - ui) / (bspline->knots[i + deg - r + 1] - ui); a_hat = 1.f - a; for( d = 0; d < dim; d++ ) { deBoorNet->points[tidx++] = a_hat * deBoorNet->points[lidx++] + a * deBoorNet->points[ridx++]; } } lidx += dim; ridx += dim; } } } void ts_internal_bspline_split( const tsBSpline* bspline, const tsReal u, tsBSpline* split, size_t* k, jmp_buf buf ) { tsDeBoorNet net; tsError e; jmp_buf b; TRY( b, e ) ts_internal_bspline_evaluate( bspline, u, &net, b ); if( net.s == bspline->order ) { ts_internal_bspline_copy( bspline, split, b ); *k = net.k; } else { ts_internal_bspline_insert_knot( bspline, &net, net.h + 1, split, b ); *k = net.k + net.h + 1; } CATCH * k = 0; ETRY ts_deboornet_free(& net ); if( e < 0 ) longjmp( buf, e ); } void ts_internal_bspline_thomas_algorithm( const tsReal* points, const size_t n, const size_t dim, tsReal* output, jmp_buf buf ) { const size_t sof_f = sizeof(tsReal); /* The size of a tsReal. */ const size_t sof_c = dim * sof_f; /* The size of a single control point. */ size_t len_m; /* The length m. */ tsReal* m; /* The array of weights. */ size_t lst; /* The index of the last control point in \points. */ size_t i, d; /* Used in for loops. */ size_t j, k, l; /* Used as temporary indices. */ /* input validation */ if( dim == 0 ) longjmp( buf, TS_DIM_ZERO ); if( n == 0 ) longjmp( buf, TS_DEG_GE_NCTRLP ); if( n <= 2 ) { memcpy( output, points, n * sof_c ); return; } /* In the following n >= 3 applies... */ len_m = n - 2; /* ... len_m >= 1 */ lst = (n - 1) * dim; /* ... lst >= 2*dim */ /* m_0 = 1/4, m_{k+1} = 1/(4-m_k), for k = 0,...,n-2 */ m = (tsReal*) malloc( len_m * sof_f ); if( m == NULL ) longjmp( buf, TS_MALLOC ); m[0] = 0.25f; for( i = 1; i < len_m; i++ ) m[i] = 1.f / (4 - m[i - 1]); /* forward sweep */ ts_arr_fill( output, n * dim, 0.f ); memcpy( output, points, sof_c ); memcpy( output + lst, points + lst, sof_c ); for( d = 0; d < dim; d++ ) { k = dim + d; output[k] = 6 * points[k]; output[k] -= points[d]; } for( i = 2; i <= n - 2; i++ ) { for( d = 0; d < dim; d++ ) { j = (i - 1) * dim + d; k = i * dim + d; l = (i + 1) * dim + d; output[k] = 6 * points[k]; output[k] -= output[l]; output[k] -= m[i - 2] * output[j]; /* i >= 2 */ } } /* back substitution */ if( n > 3 ) ts_arr_fill( output + lst, dim, 0.f ); for( i = n - 2; i >= 1; i-- ) { for( d = 0; d < dim; d++ ) { k = i * dim + d; l = (i + 1) * dim + d; /* The following line is the reason why it's important to not fill * output with 0 if n = 3. On the other hand, if n > 3 subtracting * 0 is exactly what we want. */ output[k] -= output[l]; output[k] *= m[i - 1]; /* i >= 1 */ } } if( n > 3 ) memcpy( output + lst, points + lst, sof_c ); /* we are done */ free( m ); } void ts_internal_relaxed_uniform_cubic_bspline( const tsReal* points, const size_t n, const size_t dim, tsBSpline* bspline, jmp_buf buf ) { const size_t order = 4; /* The order of the spline to interpolate. */ const tsReal as = 1.f / 6.f; /* The value 'a sixth'. */ const tsReal at = 1.f / 3.f; /* The value 'a third'. */ const tsReal tt = 2.f / 3.f; /* The value 'two third'. */ size_t sof_c; /* The size of a single control point. */ const tsReal* b = points; /* The array of the b values. */ tsReal* s; /* The array of the s values. */ size_t i, d; /* Used in for loops */ size_t j, k, l; /* Uses as temporary indices. */ tsError e_; jmp_buf b_; /* input validation */ if( dim == 0 ) longjmp( buf, TS_DIM_ZERO ); if( n <= 1 ) longjmp( buf, TS_DEG_GE_NCTRLP ); /* in the following n >= 2 applies */ sof_c = dim * sizeof(tsReal); /* dim > 0 implies sof_c > 0 */ /* n >= 2 implies n-1 >= 1 implies (n-1)*4 >= 4 */ ts_internal_bspline_new( (n - 1) * 4, dim, order - 1, TS_BEZIERS, bspline, buf ); TRY( b_, e_ ) s = (tsReal*) malloc( n * sof_c ); if( s == NULL ) longjmp( b_, TS_MALLOC ); CATCH ts_bspline_free( bspline ); longjmp( buf, e_ ); ETRY /* set s_0 to b_0 and s_n = b_n */ memcpy( s, b, sof_c ); memcpy( s + (n - 1) * dim, b + (n - 1) * dim, sof_c ); /* set s_i = 1/6*b_i + 2/3*b_{i-1} + 1/6*b_{i+1}*/ for( i = 1; i < n - 1; i++ ) { for( d = 0; d < dim; d++ ) { j = (i - 1) * dim + d; k = i * dim + d; l = (i + 1) * dim + d; s[k] = as * b[j]; s[k] += tt * b[k]; s[k] += as * b[l]; } } /* create beziers from b and s */ for( i = 0; i < n - 1; i++ ) { for( d = 0; d < dim; d++ ) { j = i * dim + d; k = i * 4 * dim + d; l = (i + 1) * dim + d; bspline->ctrlp[k] = s[j]; bspline->ctrlp[k + dim] = tt * b[j] + at * b[l]; bspline->ctrlp[k + 2 * dim] = at * b[j] + tt * b[l]; bspline->ctrlp[k + 3 * dim] = s[l]; } } free( s ); } void ts_internal_bspline_interpolate_cubic( const tsReal* points, const size_t n, const size_t dim, tsBSpline* bspline, jmp_buf buf ) { tsError e; jmp_buf b; tsReal* thomas = (tsReal*) malloc( n * dim * sizeof(tsReal) ); if( thomas == NULL ) longjmp( buf, TS_MALLOC ); TRY( b, e ) ts_internal_bspline_thomas_algorithm( points, n, dim, thomas, b ); ts_internal_relaxed_uniform_cubic_bspline( thomas, n, dim, bspline, b ); ETRY free( thomas ); if( e < 0 ) longjmp( buf, e ); } void ts_internal_bspline_derive( const tsBSpline* original, tsBSpline* derivative, jmp_buf buf ) { const size_t sof_f = sizeof(tsReal); const size_t dim = original->dim; const size_t deg = original->deg; const size_t nc = original->n_ctrlp; const size_t nk = original->n_knots; tsReal* from_ctrlp = original->ctrlp; tsReal* from_knots = original->knots; tsReal* to_ctrlp = NULL; tsReal* to_knots = NULL; size_t i, j, k; if( deg < 1 || nc < 2 ) longjmp( buf, TS_UNDERIVABLE ); if( original != derivative ) { ts_internal_bspline_new( nc - 1, dim, deg - 1, TS_NONE, derivative, buf ); to_ctrlp = derivative->ctrlp; to_knots = derivative->knots; } else { to_ctrlp = (tsReal*) malloc( ( (nc - 1) * dim + (nk - 2) ) * sof_f ); if( to_ctrlp == NULL ) longjmp( buf, TS_MALLOC ); to_knots = to_ctrlp + (nc - 1) * dim; } for( i = 0; i < nc - 1; i++ ) { for( j = 0; j < dim; j++ ) { if( ts_fequals( from_knots[i + deg + 1], from_knots[i + 1] ) ) { free( to_ctrlp ); longjmp( buf, TS_UNDERIVABLE ); } else { k = i * dim + j; to_ctrlp[k] = from_ctrlp[(i + 1) * dim + j] - from_ctrlp[k]; to_ctrlp[k] *= deg; to_ctrlp[k] /= from_knots[i + deg + 1] - from_knots[i + 1]; } } } memcpy( to_knots, from_knots + 1, (nk - 2) * sof_f ); if( original == derivative ) { /* free old memory */ free( from_ctrlp ); /* assign new values */ derivative->deg = deg - 1; derivative->order = deg; derivative->n_ctrlp = nc - 1; derivative->n_knots = nk - 2; derivative->ctrlp = to_ctrlp; derivative->knots = to_knots; } } void ts_internal_bspline_buckle( const tsBSpline* bspline, const tsReal b, tsBSpline* buckled, jmp_buf buf ) { const tsReal b_hat = 1.f - b; /* The straightening factor. */ const size_t dim = bspline->dim; const size_t N = bspline->n_ctrlp; const tsReal* p0 = bspline->ctrlp; /* Pointer to first ctrlp. */ const tsReal* pn_1 = p0 + (N - 1) * dim; /* Pointer to the last ctrlp. */ size_t i, d; /* Used in for loops. */ ts_internal_bspline_copy( bspline, buckled, buf ); for( i = 0; i < N; i++ ) { for( d = 0; d < dim; d++ ) { buckled->ctrlp[i * dim + d] = b * buckled->ctrlp[i * dim + d] + b_hat * ( p0[d] + ( (tsReal) i / (N - 1) ) * (pn_1[d] - p0[d]) ); } } } void ts_internal_bspline_to_beziers( const tsBSpline* bspline, tsBSpline* beziers, jmp_buf buf ) { tsError e; jmp_buf b; const size_t deg = bspline->deg; const size_t order = bspline->order; tsBSpline tmp; int resize; /* The number of control points to add/remove. */ size_t k; /* The index of the splitted knot value. */ tsReal u_min; /* The minimum of the knot values. */ tsReal u_max; /* The maximum of the knot values. */ ts_internal_bspline_copy( bspline, &tmp, buf ); TRY( b, e ) /* fix first control point if necessary */ u_min = tmp.knots[deg]; if( !ts_fequals( tmp.knots[0], u_min ) ) { ts_internal_bspline_split( &tmp, u_min, &tmp, &k, b ); resize = (int) ( -1 * deg + (deg * 2 - k) ); ts_internal_bspline_resize( &tmp, resize, 0, &tmp, b ); } /* fix last control point if necessary */ u_max = tmp.knots[tmp.n_knots - order]; if( !ts_fequals( tmp.knots[tmp.n_knots - 1], u_max ) ) { ts_internal_bspline_split( &tmp, u_max, &tmp, &k, b ); resize = (int) ( -1 * deg + ( k - (tmp.n_knots - order) ) ); ts_internal_bspline_resize( &tmp, resize, 1, &tmp, b ); } k = order; while( k < tmp.n_knots - order ) { ts_internal_bspline_split( &tmp, tmp.knots[k], &tmp, &k, b ); k++; } if( bspline == beziers ) ts_bspline_free( beziers ); ts_bspline_move( &tmp, beziers ); ETRY ts_bspline_free(& tmp ); if( e < 0 ) longjmp( buf, e ); } void ts_internal_bspline_set_ctrlp( const tsBSpline* bspline, const tsReal* ctrlp, tsBSpline* result, jmp_buf buf ) { const size_t s = bspline->n_ctrlp * bspline->dim * sizeof(tsReal); ts_internal_bspline_copy( bspline, result, buf ); memmove( result->ctrlp, ctrlp, s ); } void ts_internal_bspline_set_knots( const tsBSpline* bspline, const tsReal* knots, tsBSpline* result, jmp_buf buf ) { const size_t s = bspline->n_knots * sizeof(tsReal); ts_internal_bspline_copy( bspline, result, buf ); memmove( result->knots, knots, s ); } /******************************************************** * * * Interface implementation * * * ********************************************************/ void ts_deboornet_default( tsDeBoorNet* deBoorNet ) { deBoorNet->u = 0.f; deBoorNet->k = 0; deBoorNet->s = 0; deBoorNet->h = 0; deBoorNet->dim = 0; deBoorNet->n_points = 0; deBoorNet->points = NULL; deBoorNet->result = NULL; } void ts_deboornet_move( tsDeBoorNet* from, tsDeBoorNet* to ) { if( from == to ) return; to->u = from->u; to->k = from->k; to->s = from->s; to->h = from->h; to->dim = from->dim; to->n_points = from->n_points; to->points = from->points; to->result = from->result; ts_deboornet_default( from ); } void ts_deboornet_free( tsDeBoorNet* deBoorNet ) { if( deBoorNet->points != NULL ) free( deBoorNet->points ); /* automatically frees the field result */ ts_deboornet_default( deBoorNet ); } void ts_bspline_default( tsBSpline* bspline ) { bspline->deg = 0; bspline->order = 0; bspline->dim = 0; bspline->n_ctrlp = 0; bspline->n_knots = 0; bspline->ctrlp = NULL; bspline->knots = NULL; } void ts_bspline_free( tsBSpline* bspline ) { if( bspline->ctrlp != NULL ) free( bspline->ctrlp ); ts_bspline_default( bspline ); } void ts_bspline_move( tsBSpline* from, tsBSpline* to ) { if( from == to ) return; to->deg = from->deg; to->order = from->order; to->dim = from->dim; to->n_ctrlp = from->n_ctrlp; to->n_knots = from->n_knots; to->ctrlp = from->ctrlp; to->knots = from->knots; ts_bspline_default( from ); } tsError ts_bspline_new( size_t n_ctrlp, size_t dim, size_t deg, tsBSplineType type, tsBSpline* bspline ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_new( n_ctrlp, dim, deg, type, bspline, buf ); CATCH ts_bspline_default( bspline ); ETRY return err; } tsError ts_bspline_interpolate_cubic( const tsReal* points, size_t n, size_t dim, tsBSpline* bspline ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_interpolate_cubic( points, n, dim, bspline, buf ); CATCH ts_bspline_default( bspline ); ETRY return err; } tsError ts_bspline_derive( const tsBSpline* original, tsBSpline* derivative ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_derive( original, derivative, buf ); CATCH if( original != derivative ) ts_bspline_default( derivative ); ETRY return err; } tsError ts_deboornet_copy( const tsDeBoorNet* original, tsDeBoorNet* copy ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_deboornet_copy( original, copy, buf ); CATCH if( original != copy ) ts_deboornet_default( copy ); ETRY return err; } tsError ts_bspline_copy( const tsBSpline* original, tsBSpline* copy ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_copy( original, copy, buf ); CATCH if( original != copy ) ts_bspline_default( copy ); ETRY return err; } tsError ts_bspline_set_ctrlp( const tsBSpline* bspline, const tsReal* ctrlp, tsBSpline* result ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_set_ctrlp( bspline, ctrlp, result, buf ); CATCH if( bspline != result ) ts_bspline_default( result ); ETRY return err; } tsError ts_bspline_set_knots( const tsBSpline* bspline, const tsReal* knots, tsBSpline* result ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_set_knots( bspline, knots, result, buf ); CATCH if( bspline != result ) ts_bspline_default( result ); ETRY return err; } tsError ts_bspline_fill_knots( const tsBSpline* original, tsBSplineType type, tsReal min, tsReal max, tsBSpline* result ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_fill_knots( original, type, min, max, result, buf ); CATCH if( original != result ) ts_bspline_default( result ); ETRY return err; } tsError ts_bspline_evaluate( const tsBSpline* bspline, tsReal u, tsDeBoorNet* deBoorNet ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_evaluate( bspline, u, deBoorNet, buf ); CATCH ts_deboornet_default( deBoorNet ); ETRY return err; } tsError ts_bspline_insert_knot( const tsBSpline* bspline, tsReal u, size_t n, tsBSpline* result, size_t* k ) { tsDeBoorNet net; tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_evaluate( bspline, u, &net, buf ); ts_internal_bspline_insert_knot( bspline, &net, n, result, buf ); *k = net.k + n; CATCH if( bspline != result ) ts_bspline_default( result ); *k = 0; ETRY ts_deboornet_free(& net ); return err; } tsError ts_bspline_resize( const tsBSpline* bspline, int n, int back, tsBSpline* resized ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_resize( bspline, n, back, resized, buf ); CATCH if( bspline != resized ) ts_bspline_default( resized ); ETRY return err; } tsError ts_bspline_split( const tsBSpline* bspline, tsReal u, tsBSpline* split, size_t* k ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_split( bspline, u, split, k, buf ); CATCH if( bspline != split ) ts_bspline_default( split ); ETRY return err; } tsError ts_bspline_buckle( const tsBSpline* bspline, tsReal b, tsBSpline* buckled ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_buckle( bspline, b, buckled, buf ); CATCH if( bspline != buckled ) ts_bspline_default( buckled ); ETRY return err; } tsError ts_bspline_to_beziers( const tsBSpline* bspline, tsBSpline* beziers ) { tsError err; jmp_buf buf; TRY( buf, err ) ts_internal_bspline_to_beziers( bspline, beziers, buf ); CATCH if( bspline != beziers ) ts_bspline_default( beziers ); ETRY return err; } int ts_fequals( tsReal x, tsReal y ) { if( fabs( x - y ) <= FLT_MAX_ABS_ERROR ) { return 1; } else { const tsReal r = (tsReal) fabs( x ) > (tsReal) fabs( y ) ? (tsReal) fabs( (x - y) / x ) : (tsReal) fabs( (x - y) / y ); return r <= FLT_MAX_REL_ERROR; } } const char* ts_enum_str( tsError err ) { if( err == TS_MALLOC ) return "malloc failed"; else if( err == TS_DIM_ZERO ) return "dim == 0"; else if( err == TS_DEG_GE_NCTRLP ) return "deg >= #ctrlp"; else if( err == TS_U_UNDEFINED ) return "spline is undefined at given u"; else if( err == TS_MULTIPLICITY ) return "s > order"; else if( err == TS_KNOTS_DECR ) return "decreasing knot vector"; else if( err == TS_NUM_KNOTS ) return "unexpected number of knots"; else if( err == TS_UNDERIVABLE ) return "spline is not derivable"; return "unknown error"; } tsError ts_str_enum( const char* str ) { if( !strcmp( str, ts_enum_str( TS_MALLOC ) ) ) return TS_MALLOC; else if( !strcmp( str, ts_enum_str( TS_DIM_ZERO ) ) ) return TS_DIM_ZERO; else if( !strcmp( str, ts_enum_str( TS_DEG_GE_NCTRLP ) ) ) return TS_DEG_GE_NCTRLP; else if( !strcmp( str, ts_enum_str( TS_U_UNDEFINED ) ) ) return TS_U_UNDEFINED; else if( !strcmp( str, ts_enum_str( TS_MULTIPLICITY ) ) ) return TS_MULTIPLICITY; else if( !strcmp( str, ts_enum_str( TS_KNOTS_DECR ) ) ) return TS_KNOTS_DECR; else if( !strcmp( str, ts_enum_str( TS_NUM_KNOTS ) ) ) return TS_NUM_KNOTS; else if( !strcmp( str, ts_enum_str( TS_UNDERIVABLE ) ) ) return TS_UNDERIVABLE; return TS_SUCCESS; } void ts_arr_fill( tsReal* arr, size_t num, tsReal val ) { size_t i; for( i = 0; i < num; i++ ) arr[i] = val; } tsReal ts_ctrlp_dist2( const tsReal* x, const tsReal* y, size_t dim ) { tsReal sum = 0; size_t i; for( i = 0; i < dim; i++ ) sum += (x[i] - y[i]) * (x[i] - y[i]); return (tsReal) sqrt( sum ); }