/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2020-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*/
#ifndef VECTOR3_H_
#define VECTOR3_H_
/**
* Traits class for VECTOR2.
*/
template
struct VECTOR3_TRAITS
{
///< extended range/precision types used by operations involving multiple
///< multiplications to prevent overflow.
typedef T extended_type;
};
template <>
struct VECTOR3_TRAITS
{
typedef int64_t extended_type;
};
/**
* Define a general 3D-vector.
*
* This class uses templates to be universal. Several operators are provided to help
* easy implementing of linear algebra equations.
*
*/
template
class VECTOR3
{
public:
typedef typename VECTOR3_TRAITS::extended_type extended_type;
typedef T coord_type;
static constexpr extended_type ECOORD_MAX = std::numeric_limits::max();
static constexpr extended_type ECOORD_MIN = std::numeric_limits::min();
T x, y, z;
/// Construct a 3D-vector with x, y = 0
VECTOR3();
/// Construct a vector with given components x, y
VECTOR3( T x, T y, T z );
/// Initializes a vector from another specialization. Beware of rounding
/// issues.
template
VECTOR3( const VECTOR3& aVec )
{
x = (T) aVec.x;
y = (T) aVec.y;
z = (T) aVec.z;
}
/// Copy a vector
VECTOR3( const VECTOR3& aVec )
{
x = aVec.x;
y = aVec.y;
z = aVec.z;
}
/**
* Compute cross product of self with \a aVector
*/
VECTOR3 Cross( const VECTOR3& aVector ) const;
/**
* Compute the dot product of self with \a aVector
*/
VECTOR3::extended_type Dot( const VECTOR3& aVector ) const;
/**
* Compute the Euclidean norm of the vector, which is defined as sqrt(x ** 2 + y ** 2).
*
* It is used to calculate the length of the vector.
*
* @return Scalar, the euclidean norm
*/
T EuclideanNorm() const;
/**
* Compute the normalized vector.
*/
VECTOR3 Normalize();
///< Equality operator
bool operator==( const VECTOR3& aVector ) const;
///< Not equality operator
bool operator!=( const VECTOR3& aVector ) const;
};
template
VECTOR3::VECTOR3()
{
x = y = z = 0.0;
}
template
VECTOR3::VECTOR3( T aX, T aY, T aZ )
{
x = aX;
y = aY;
z = aZ;
}
template
VECTOR3 VECTOR3::Cross( const VECTOR3& aVector ) const
{
return VECTOR3( ( y * aVector.z ) - ( z * aVector.y ),
( z * aVector.x ) - ( x * aVector.z ),
( x * aVector.y ) - ( y * aVector.x )
);
}
template
typename VECTOR3::extended_type VECTOR3::Dot( const VECTOR3& aVector ) const
{
return extended_type{x} * extended_type{aVector.x}
+ extended_type{y} * extended_type{aVector.y}
+ extended_type{z} * extended_type{aVector.z};
}
template
T VECTOR3::EuclideanNorm() const
{
return sqrt( (extended_type) x * x + (extended_type) y * y + (extended_type) z * z );
}
template
VECTOR3 VECTOR3::Normalize()
{
T norm = EuclideanNorm();
x /= norm;
y /= norm;
z /= norm;
return *this;
}
template
bool VECTOR3::operator==( VECTOR3 const& aVector ) const
{
return ( aVector.x == x ) && ( aVector.y == y ) && ( aVector.z == z );
}
template
bool VECTOR3::operator!=( VECTOR3 const& aVector ) const
{
return ( aVector.x != x ) || ( aVector.y != y ) || ( aVector.z != z );
}
/* Default specializations */
typedef VECTOR3 VECTOR3D;
typedef VECTOR3 VECTOR3I;
typedef VECTOR3 VECTOR3U;
#endif // VECTOR3_H_