/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2016-2023 CERN * Copyright (C) 2021-2023 KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski * @author Maciej Suminski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * https://www.gnu.org/licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "sim_plot_colors.h" #include "sim_plot_tab.h" #include "simulator_frame.h" #include "core/kicad_algo.h" #include #include static wxString formatFloat( double x, int nDigits ) { wxString rv, fmt; if( nDigits ) fmt.Printf( "%%.0%df", nDigits ); else fmt = wxT( "%.0f" ); rv.Printf( fmt, x ); return rv; } static void getSISuffix( double x, const wxString& unit, int& power, wxString& suffix ) { const int n_powers = 11; const struct { int exponent; char suffix; } powers[] = { { -18, 'a' }, { -15, 'f' }, { -12, 'p' }, { -9, 'n' }, { -6, 'u' }, { -3, 'm' }, { 0, 0 }, { 3, 'k' }, { 6, 'M' }, { 9, 'G' }, { 12, 'T' }, { 14, 'P' } }; power = 0; suffix = unit; if( x == 0.0 ) return; for( int i = 0; i < n_powers - 1; i++ ) { double r_cur = pow( 10, powers[i].exponent ); if( fabs( x ) >= r_cur && fabs( x ) < r_cur * 1000.0 ) { power = powers[i].exponent; if( powers[i].suffix ) suffix = wxString( powers[i].suffix ) + unit; else suffix = unit; return; } } } static int countDecimalDigits( double x, int maxDigits ) { if( std::isnan( x ) ) return 0; auto countSignificantDigits = [&]( int64_t k ) { while( k && ( k % 10LL ) == 0LL ) k /= 10LL; int n = 0; while( k != 0LL ) { n++; k /= 10LL; } return n; }; int64_t k = (int)( ( x - floor( x ) ) * pow( 10.0, (double) maxDigits ) ); int n = countSignificantDigits( k ); // check for trailing 9's n = std::min( n, countSignificantDigits( k + 1 ) ); return n; } template class LIN_SCALE : public T_PARENT { public: LIN_SCALE( const wxString& name, const wxString& unit, int flags ) : T_PARENT( name, flags, false ), m_unit( unit ) {}; wxString GetUnits() const { return m_unit; } private: void formatLabels() override { double maxVis = T_PARENT::AbsVisibleMaxValue(); wxString suffix; int power = 0; int digits = 0; int constexpr MAX_DIGITS = 3; int constexpr MAX_DISAMBIGUATION_DIGITS = 6; bool duplicateLabels = false; getSISuffix( maxVis, m_unit, power, suffix ); double sf = pow( 10.0, power ); for( mpScaleBase::TICK_LABEL& l : T_PARENT::m_tickLabels ) digits = std::max( digits, countDecimalDigits( l.pos / sf, MAX_DIGITS ) ); do { for( size_t ii = 0; ii < T_PARENT::m_tickLabels.size(); ++ii ) { mpScaleBase::TICK_LABEL& l = T_PARENT::m_tickLabels[ii]; l.label = formatFloat( l.pos / sf, digits ); l.visible = true; if( ii > 0 && l.label == T_PARENT::m_tickLabels[ii-1].label ) duplicateLabels = true; } } while( duplicateLabels && ++digits <= MAX_DISAMBIGUATION_DIGITS ); if( m_base_axis_label.IsEmpty() ) m_base_axis_label = T_PARENT::GetName(); T_PARENT::SetName( wxString::Format( "%s (%s)", m_base_axis_label, suffix ) ); } private: const wxString m_unit; wxString m_base_axis_label; }; class TIME_SCALE : public LIN_SCALE { public: TIME_SCALE( const wxString& name, const wxString& unit, int flags ) : LIN_SCALE( name, unit, flags ), m_startTime( 0.0 ), m_endTime( 1.0 ) {}; void ExtendDataRange( double minV, double maxV ) override { LIN_SCALE::ExtendDataRange( minV, maxV ); // Time is never longer than the simulation itself if( m_minV < m_startTime ) m_minV = m_startTime; if( m_maxV > m_endTime ) m_maxV = m_endTime; }; void SetStartAndEnd( double aStartTime, double aEndTime ) { m_startTime = aStartTime; m_endTime = aEndTime; ResetDataRange(); } void ResetDataRange() override { m_minV = m_startTime; m_maxV = m_endTime; m_rangeSet = true; } protected: double m_startTime; double m_endTime; }; template class LOG_SCALE : public T_PARENT { public: LOG_SCALE( const wxString& name, const wxString& unit, int flags ) : T_PARENT( name, flags, false ), m_unit( unit ) {}; wxString GetUnits() const { return m_unit; } private: void formatLabels() override { wxString suffix; int power; int constexpr MAX_DIGITS = 3; for( mpScaleBase::TICK_LABEL& l : T_PARENT::m_tickLabels ) { getSISuffix( l.pos, m_unit, power, suffix ); double sf = pow( 10.0, power ); int k = countDecimalDigits( l.pos / sf, MAX_DIGITS ); l.label = formatFloat( l.pos / sf, k ) + suffix; l.visible = true; } } private: const wxString m_unit; }; void CURSOR::SetCoordX( double aValue ) { wxRealPoint oldCoords = m_coords; doSetCoordX( aValue ); m_updateRequired = false; m_updateRef = true; if( m_window ) { wxRealPoint delta = m_coords - oldCoords; mpInfoLayer::Move( wxPoint( m_window->x2p( m_trace->x2s( delta.x ) ), m_window->y2p( m_trace->y2s( delta.y ) ) ) ); m_window->Refresh(); } } void CURSOR::doSetCoordX( double aValue ) { m_coords.x = aValue; const std::vector& dataX = m_trace->GetDataX(); const std::vector& dataY = m_trace->GetDataY(); if( dataX.size() <= 1 ) return; // Find the closest point coordinates auto maxXIt = std::upper_bound( dataX.begin(), dataX.end(), m_coords.x ); int maxIdx = maxXIt - dataX.begin(); int minIdx = maxIdx - 1; // Out of bounds checks if( minIdx < 0 || maxIdx >= (int) dataX.size() ) { // Simulation may not be complete yet, or we may have a cursor off the beginning or end // of the data. Either way, that's where the user put it. Don't second guess them; just // leave its y value undefined. m_coords.y = NAN; return; } const double leftX = dataX[minIdx]; const double rightX = dataX[maxIdx]; const double leftY = dataY[minIdx]; const double rightY = dataY[maxIdx]; // Linear interpolation m_coords.y = leftY + ( rightY - leftY ) / ( rightX - leftX ) * ( m_coords.x - leftX ); } wxString CURSOR::getID() { for( const auto& [ id, cursor ] : m_trace->GetCursors() ) { if( cursor == this ) return wxString::Format( _( "%d" ), id ); } return wxEmptyString; } void CURSOR::Plot( wxDC& aDC, mpWindow& aWindow ) { if( !m_window ) m_window = &aWindow; if( !m_visible || m_trace->GetDataX().size() <= 1 ) return; if( m_updateRequired ) { doSetCoordX( m_trace->s2x( aWindow.p2x( m_dim.x ) ) ); m_updateRequired = false; // Notify the parent window about the changes wxQueueEvent( aWindow.GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) ); } else { m_updateRef = true; } if( m_updateRef ) { UpdateReference(); m_updateRef = false; } // Line length in horizontal and vertical dimensions const wxPoint cursorPos( aWindow.x2p( m_trace->x2s( m_coords.x ) ), aWindow.y2p( m_trace->y2s( m_coords.y ) ) ); wxCoord leftPx = aWindow.GetMarginLeft(); wxCoord rightPx = aWindow.GetScrX() - aWindow.GetMarginRight(); wxCoord topPx = aWindow.GetMarginTop(); wxCoord bottomPx = aWindow.GetScrY() - aWindow.GetMarginBottom(); wxPen pen = GetPen(); wxColour fg = GetPen().GetColour(); pen.SetColour( COLOR4D( m_trace->GetTraceColour() ).Mix( fg, 0.6 ).ToColour() ); pen.SetStyle( m_continuous ? wxPENSTYLE_SOLID : wxPENSTYLE_LONG_DASH ); aDC.SetPen( pen ); if( topPx < cursorPos.y && cursorPos.y < bottomPx ) aDC.DrawLine( leftPx, cursorPos.y, rightPx, cursorPos.y ); if( leftPx < cursorPos.x && cursorPos.x < rightPx ) { aDC.DrawLine( cursorPos.x, topPx, cursorPos.x, bottomPx ); wxString id = getID(); wxSize size = aDC.GetTextExtent( wxS( "M" ) ); wxRect textRect( wxPoint( cursorPos.x + 1 - size.x / 2, topPx - 4 - size.y ), size ); wxBrush brush; wxPoint poly[3]; // Because a "1" looks off-center if it's actually centred. if( id == "1" ) textRect.x -= 1; // We want an equalateral triangle, so use size.y for both axes. size.y += 3; // Make sure it's an even number so the slopes of the sides will be identical. size.y = ( size.y / 2 ) * 2; poly[0] = { cursorPos.x - 1 - size.y / 2, topPx - size.y }; poly[1] = { cursorPos.x + 1 + size.y / 2, topPx - size.y }; poly[2] = { cursorPos.x, topPx }; brush.SetStyle( wxBRUSHSTYLE_SOLID ); brush.SetColour( m_trace->GetTraceColour() ); aDC.SetBrush( brush ); aDC.DrawPolygon( 3, poly ); aDC.SetTextForeground( fg ); aDC.DrawLabel( id, textRect, wxALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_VERTICAL ); } } bool CURSOR::Inside( const wxPoint& aPoint ) const { if( !m_window || !m_trace ) return false; return ( std::abs( (double) aPoint.x - m_window->x2p( m_trace->x2s( m_coords.x ) ) ) <= DRAG_MARGIN ) || ( std::abs( (double) aPoint.y - m_window->y2p( m_trace->y2s( m_coords.y ) ) ) <= DRAG_MARGIN ); } void CURSOR::UpdateReference() { if( !m_window ) return; m_reference.x = m_window->x2p( m_trace->x2s( m_coords.x ) ); m_reference.y = m_window->y2p( m_trace->y2s( m_coords.y ) ); } SIM_PLOT_TAB::SIM_PLOT_TAB( const wxString& aSimCommand, wxWindow* parent ) : SIM_TAB( aSimCommand, parent ), m_axis_x( nullptr ), m_axis_y1( nullptr ), m_axis_y2( nullptr ), m_axis_y3( nullptr ), m_dotted_cp( false ) { m_sizer = new wxBoxSizer( wxVERTICAL ); m_plotWin = new mpWindow( this, wxID_ANY ); m_plotWin->LimitView( true ); m_plotWin->SetMargins( 30, 70, 45, 70 ); UpdatePlotColors(); updateAxes(); // a mpInfoLegend displays le name of traces on the left top panel corner: m_legend = new mpInfoLegend( wxRect( 0, 0, 200, 40 ), wxTRANSPARENT_BRUSH ); m_legend->SetVisible( false ); m_plotWin->AddLayer( m_legend ); m_LastLegendPosition = m_legend->GetPosition(); m_plotWin->EnableDoubleBuffer( true ); m_plotWin->UpdateAll(); m_sizer->Add( m_plotWin, 1, wxALL | wxEXPAND, 1 ); SetSizer( m_sizer ); } SIM_PLOT_TAB::~SIM_PLOT_TAB() { // ~mpWindow destroys all the added layers, so there is no need to destroy m_traces contents } void SIM_PLOT_TAB::SetY1Scale( bool aLock, double aMin, double aMax ) { wxCHECK( m_axis_y1, /* void */ ); m_axis_y1->SetAxisMinMax( aLock, aMin, aMax ); } void SIM_PLOT_TAB::SetY2Scale( bool aLock, double aMin, double aMax ) { wxCHECK( m_axis_y2, /* void */ ); m_axis_y2->SetAxisMinMax( aLock, aMin, aMax ); } void SIM_PLOT_TAB::SetY3Scale( bool aLock, double aMin, double aMax ) { wxCHECK( m_axis_y3, /* void */ ); m_axis_y3->SetAxisMinMax( aLock, aMin, aMax ); } wxString SIM_PLOT_TAB::GetUnitsX() const { LOG_SCALE* logScale = dynamic_cast*>( m_axis_x ); LIN_SCALE* linScale = dynamic_cast*>( m_axis_x ); if( logScale ) return logScale->GetUnits(); else if( linScale ) return linScale->GetUnits(); else return wxEmptyString; } wxString SIM_PLOT_TAB::GetUnitsY1() const { LIN_SCALE* linScale = dynamic_cast*>( m_axis_y1 ); if( linScale ) return linScale->GetUnits(); else return wxEmptyString; } wxString SIM_PLOT_TAB::GetUnitsY2() const { LIN_SCALE* linScale = dynamic_cast*>( m_axis_y2 ); if( linScale ) return linScale->GetUnits(); else return wxEmptyString; } wxString SIM_PLOT_TAB::GetUnitsY3() const { LIN_SCALE* linScale = dynamic_cast*>( m_axis_y3 ); if( linScale ) return linScale->GetUnits(); else return wxEmptyString; } void SIM_PLOT_TAB::updateAxes( int aNewTraceType ) { switch( GetSimType() ) { case ST_AC: if( !m_axis_x ) { m_axis_x = new LOG_SCALE( wxEmptyString, wxT( "Hz" ), mpALIGN_BOTTOM ); m_axis_x->SetNameAlign( mpALIGN_BOTTOM ); m_plotWin->AddLayer( m_axis_x ); m_axis_y1 = new LIN_SCALE( wxEmptyString, wxT( "dB" ), mpALIGN_LEFT ); m_axis_y1->SetNameAlign( mpALIGN_LEFT ); m_plotWin->AddLayer( m_axis_y1 ); m_axis_y2 = new LIN_SCALE( wxEmptyString, wxT( "°" ), mpALIGN_RIGHT ); m_axis_y2->SetNameAlign( mpALIGN_RIGHT ); m_axis_y2->SetMasterScale( m_axis_y1 ); m_plotWin->AddLayer( m_axis_y2 ); } m_axis_x->SetName( _( "Frequency" ) ); m_axis_y1->SetName( _( "Gain" ) ); m_axis_y2->SetName( _( "Phase" ) ); break; case ST_SP: if( !m_axis_x ) { m_axis_x = new LOG_SCALE( wxEmptyString, wxT( "Hz" ), mpALIGN_BOTTOM ); m_axis_x->SetNameAlign( mpALIGN_BOTTOM ); m_plotWin->AddLayer( m_axis_x ); m_axis_y1 = new LIN_SCALE( wxEmptyString, wxT( "" ), mpALIGN_LEFT ); m_axis_y1->SetNameAlign( mpALIGN_LEFT ); m_plotWin->AddLayer( m_axis_y1 ); m_axis_y2 = new LIN_SCALE( wxEmptyString, wxT( "°" ), mpALIGN_RIGHT ); m_axis_y2->SetNameAlign( mpALIGN_RIGHT ); m_axis_y2->SetMasterScale( m_axis_y1 ); m_plotWin->AddLayer( m_axis_y2 ); } m_axis_x->SetName( _( "Frequency" ) ); m_axis_y1->SetName( _( "Amplitude" ) ); m_axis_y2->SetName( _( "Phase" ) ); break; case ST_DC: prepareDCAxes( aNewTraceType ); break; case ST_NOISE: if( !m_axis_x ) { m_axis_x = new LOG_SCALE( wxEmptyString, wxT( "Hz" ), mpALIGN_BOTTOM ); m_axis_x->SetNameAlign( mpALIGN_BOTTOM ); m_plotWin->AddLayer( m_axis_x ); if( ( aNewTraceType & SPT_CURRENT ) == 0 ) { m_axis_y1 = new LIN_SCALE( wxEmptyString, wxT( "" ), mpALIGN_LEFT ); m_axis_y1->SetNameAlign( mpALIGN_LEFT ); m_plotWin->AddLayer( m_axis_y1 ); } else { m_axis_y2 = new LIN_SCALE( wxEmptyString, wxT( "" ), mpALIGN_RIGHT ); m_axis_y2->SetNameAlign( mpALIGN_RIGHT ); m_plotWin->AddLayer( m_axis_y2 ); } } m_axis_x->SetName( _( "Frequency" ) ); if( m_axis_y1 ) m_axis_y1->SetName( _( "Noise (V/√Hz)" ) ); if( m_axis_y2 ) m_axis_y2->SetName( _( "Noise (A/√Hz)" ) ); break; case ST_FFT: if( !m_axis_x ) { m_axis_x = new LOG_SCALE( wxEmptyString, wxT( "Hz" ), mpALIGN_BOTTOM ); m_axis_x->SetNameAlign( mpALIGN_BOTTOM ); m_plotWin->AddLayer( m_axis_x ); m_axis_y1 = new LIN_SCALE( wxEmptyString, wxT( "dB" ), mpALIGN_LEFT ); m_axis_y1->SetNameAlign( mpALIGN_LEFT ); m_plotWin->AddLayer( m_axis_y1 ); } m_axis_x->SetName( _( "Frequency" ) ); m_axis_y1->SetName( _( "Intensity" ) ); break; case ST_TRAN: if( !m_axis_x ) { m_axis_x = new TIME_SCALE( wxEmptyString, wxT( "s" ), mpALIGN_BOTTOM ); m_axis_x->SetNameAlign( mpALIGN_BOTTOM ); m_plotWin->AddLayer( m_axis_x ); m_axis_y1 = new LIN_SCALE(wxEmptyString, wxT( "V" ), mpALIGN_LEFT ); m_axis_y1->SetNameAlign( mpALIGN_LEFT ); m_plotWin->AddLayer( m_axis_y1 ); m_axis_y2 = new LIN_SCALE( wxEmptyString, wxT( "A" ), mpALIGN_RIGHT ); m_axis_y2->SetNameAlign( mpALIGN_RIGHT ); m_axis_y2->SetMasterScale( m_axis_y1 ); m_plotWin->AddLayer( m_axis_y2 ); } m_axis_x->SetName( _( "Time" ) ); m_axis_y1->SetName( _( "Voltage" ) ); m_axis_y2->SetName( _( "Current" ) ); if( ( aNewTraceType & SPT_POWER ) && !m_axis_y3 ) { m_plotWin->SetMargins( 30, 140, 45, 70 ); m_axis_y3 = new LIN_SCALE( wxEmptyString, wxT( "W" ), mpALIGN_FAR_RIGHT ); m_axis_y3->SetNameAlign( mpALIGN_FAR_RIGHT ); m_axis_y3->SetMasterScale( m_axis_y1 ); m_plotWin->AddLayer( m_axis_y3 ); } if( m_axis_y3 ) m_axis_y3->SetName( _( "Power" ) ); break; default: // suppress warnings break; } if( m_axis_x ) m_axis_x->SetFont( KIUI::GetStatusFont( m_plotWin ) ); if( m_axis_y1 ) m_axis_y1->SetFont( KIUI::GetStatusFont( m_plotWin ) ); if( m_axis_y2 ) m_axis_y2->SetFont( KIUI::GetStatusFont( m_plotWin ) ); if( m_axis_y3 ) m_axis_y3->SetFont( KIUI::GetStatusFont( m_plotWin ) ); } void SIM_PLOT_TAB::prepareDCAxes( int aNewTraceType ) { wxString sim_cmd = GetSimCommand().Lower(); wxString rem; if( sim_cmd.StartsWith( ".dc", &rem ) ) { wxChar ch = 0; rem.Trim( false ); try { ch = rem.GetChar( 0 ); } catch( ... ) { // Best efforts } switch( ch ) { // Make sure that we have a reliable default (even if incorrectly labeled) default: case 'v': if( !m_axis_x ) { m_axis_x = new LIN_SCALE( wxEmptyString, wxT( "V" ), mpALIGN_BOTTOM ); m_axis_x->SetNameAlign( mpALIGN_BOTTOM ); m_plotWin->AddLayer( m_axis_x ); } m_axis_x->SetName( _( "Voltage (swept)" ) ); break; case 'i': if( !m_axis_x ) { m_axis_x = new LIN_SCALE( wxEmptyString, wxT( "A" ), mpALIGN_BOTTOM ); m_axis_x->SetNameAlign( mpALIGN_BOTTOM ); m_plotWin->AddLayer( m_axis_x ); } m_axis_x->SetName( _( "Current (swept)" ) ); break; case 'r': if( !m_axis_x ) { m_axis_x = new LIN_SCALE( wxEmptyString, wxT( "Ω" ), mpALIGN_BOTTOM ); m_axis_x->SetNameAlign( mpALIGN_BOTTOM ); m_plotWin->AddLayer( m_axis_x ); } m_axis_x->SetName( _( "Resistance (swept)" ) ); break; case 't': if( !m_axis_x ) { m_axis_x = new LIN_SCALE( wxEmptyString, wxT( "°C" ), mpALIGN_BOTTOM ); m_axis_x->SetNameAlign( mpALIGN_BOTTOM ); m_plotWin->AddLayer( m_axis_x ); } m_axis_x->SetName( _( "Temperature (swept)" ) ); break; } if( !m_axis_y1 ) { m_axis_y1 = new LIN_SCALE( wxEmptyString, wxT( "V" ), mpALIGN_LEFT ); m_axis_y1->SetNameAlign( mpALIGN_LEFT ); m_plotWin->AddLayer( m_axis_y1 ); } if( !m_axis_y2 ) { m_axis_y2 = new LIN_SCALE( wxEmptyString, wxT( "A" ), mpALIGN_RIGHT ); m_axis_y2->SetNameAlign( mpALIGN_RIGHT ); m_plotWin->AddLayer( m_axis_y2 ); } m_axis_y1->SetName( _( "Voltage (measured)" ) ); m_axis_y2->SetName( _( "Current" ) ); if( ( aNewTraceType & SPT_POWER ) ) EnsureThirdYAxisExists(); if( m_axis_y3 ) m_axis_y3->SetName( _( "Power" ) ); } } void SIM_PLOT_TAB::EnsureThirdYAxisExists() { if( !m_axis_y3 ) { m_plotWin->SetMargins( 30, 140, 45, 70 ); m_axis_y3 = new LIN_SCALE( wxEmptyString, wxT( "W" ), mpALIGN_FAR_RIGHT ); m_axis_y3->SetNameAlign( mpALIGN_FAR_RIGHT ); m_axis_y3->SetMasterScale( m_axis_y1 ); m_plotWin->AddLayer( m_axis_y3 ); } } void SIM_PLOT_TAB::UpdatePlotColors() { // Update bg and fg colors: m_plotWin->SetColourTheme( m_colors.GetPlotColor( SIM_PLOT_COLORS::COLOR_SET::BACKGROUND ), m_colors.GetPlotColor( SIM_PLOT_COLORS::COLOR_SET::FOREGROUND ), m_colors.GetPlotColor( SIM_PLOT_COLORS::COLOR_SET::AXIS ) ); m_plotWin->UpdateAll(); } void SIM_PLOT_TAB::OnLanguageChanged() { updateAxes(); m_plotWin->UpdateAll(); } void SIM_PLOT_TAB::UpdateTraceStyle( TRACE* trace ) { int type = trace->GetType(); wxPenStyle penStyle; if( ( type & SPT_AC_GAIN ) > 0 ) penStyle = wxPENSTYLE_SOLID; else if( ( type & SPT_AC_PHASE ) > 0 ) penStyle = m_dotted_cp ? wxPENSTYLE_DOT : wxPENSTYLE_SOLID; else if( ( type & SPT_CURRENT ) > 0 ) penStyle = m_dotted_cp ? wxPENSTYLE_DOT : wxPENSTYLE_SOLID; else penStyle = wxPENSTYLE_SOLID; trace->SetPen( wxPen( trace->GetTraceColour(), 2, penStyle ) ); m_sessionTraceColors[ trace->GetName() ] = trace->GetTraceColour(); } TRACE* SIM_PLOT_TAB::GetOrAddTrace( const wxString& aVectorName, int aType ) { TRACE* trace = GetTrace( aVectorName, aType ); if( !trace ) { updateAxes( aType ); if( GetSimType() == ST_TRAN || GetSimType() == ST_DC ) { bool hasVoltageTraces = false; for( const auto& [ id, candidate ] : m_traces ) { if( candidate->GetType() & SPT_VOLTAGE ) { hasVoltageTraces = true; break; } } if( !hasVoltageTraces ) { if( m_axis_y2 ) m_axis_y2->SetMasterScale( nullptr ); if( m_axis_y3 ) m_axis_y3->SetMasterScale( nullptr ); } } trace = new TRACE( aVectorName, (SIM_TRACE_TYPE) aType ); if( m_sessionTraceColors.count( aVectorName ) ) trace->SetTraceColour( m_sessionTraceColors[ aVectorName ] ); else trace->SetTraceColour( m_colors.GenerateColor( m_sessionTraceColors ) ); UpdateTraceStyle( trace ); m_traces[ getTraceId( aVectorName, aType ) ] = trace; m_plotWin->AddLayer( (mpLayer*) trace ); } return trace; } void SIM_PLOT_TAB::SetTraceData( TRACE* trace, std::vector& aX, std::vector& aY, int aSweepCount, size_t aSweepSize ) { if( dynamic_cast*>( m_axis_x ) ) { // log( 0 ) is not valid. if( aX.size() > 0 && aX[0] == 0 ) { aX.erase( aX.begin() ); aY.erase( aY.begin() ); } } if( GetSimType() == ST_AC || GetSimType() == ST_FFT ) { if( trace->GetType() & SPT_AC_PHASE ) { for( double& pt : aY ) pt = pt * 180.0 / M_PI; // convert to degrees } else { for( double& pt : aY ) { // log( 0 ) is not valid. if( pt != 0 ) pt = 20 * log( pt ) / log( 10.0 ); // convert to dB } } } trace->SetData( aX, aY ); trace->SetSweepCount( aSweepCount ); trace->SetSweepSize( aSweepSize ); if( ( trace->GetType() & SPT_AC_PHASE ) || ( trace->GetType() & SPT_CURRENT ) ) trace->SetScale( m_axis_x, m_axis_y2 ); else if( trace->GetType() & SPT_POWER ) trace->SetScale( m_axis_x, m_axis_y3 ); else trace->SetScale( m_axis_x, m_axis_y1 ); for( auto& [ cursorId, cursor ] : trace->GetCursors() ) { if( cursor ) cursor->SetCoordX( cursor->GetCoords().x ); } } void SIM_PLOT_TAB::DeleteTrace( TRACE* aTrace ) { for( const auto& [ name, trace ] : m_traces ) { if( trace == aTrace ) { m_traces.erase( name ); break; } } for( const auto& [ id, cursor ] : aTrace->GetCursors() ) { if( cursor ) m_plotWin->DelLayer( cursor, true ); } m_plotWin->DelLayer( aTrace, true, true ); ResetScales( false ); } bool SIM_PLOT_TAB::DeleteTrace( const wxString& aVectorName, int aTraceType ) { if( TRACE* trace = GetTrace( aVectorName, aTraceType ) ) { DeleteTrace( trace ); return true; } return false; } void SIM_PLOT_TAB::EnableCursor( const wxString& aVectorName, int aType, int aCursorId, bool aEnable, const wxString& aSignalName ) { TRACE* t = GetTrace( aVectorName, aType ); if( t == nullptr || t->HasCursor( aCursorId ) == aEnable ) return; if( aEnable ) { CURSOR* cursor = new CURSOR( t, this ); mpWindow* win = GetPlotWin(); int width = win->GetXScreen() - win->GetMarginLeft() - win->GetMarginRight(); int center = win->GetMarginLeft() + KiROUND( width * ( aCursorId == 1 ? 0.4 : 0.6 ) ); cursor->SetName( aSignalName ); cursor->SetX( center ); t->SetCursor( aCursorId, cursor ); m_plotWin->AddLayer( cursor ); } else { CURSOR* cursor = t->GetCursor( aCursorId ); t->SetCursor( aCursorId, nullptr ); m_plotWin->DelLayer( cursor, true ); } // Notify the parent window about the changes wxQueueEvent( GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) ); } void SIM_PLOT_TAB::ResetScales( bool aIncludeX ) { if( m_axis_x && aIncludeX ) { m_axis_x->ResetDataRange(); if( GetSimType() == ST_TRAN ) { wxStringTokenizer tokenizer( GetSimCommand(), wxS( " \t\n\r" ), wxTOKEN_STRTOK ); wxString cmd = tokenizer.GetNextToken().Lower(); wxASSERT( cmd == wxS( ".tran" ) ); SPICE_VALUE step; SPICE_VALUE end( 1.0 ); SPICE_VALUE start( 0.0 ); if( tokenizer.HasMoreTokens() ) step = SPICE_VALUE( tokenizer.GetNextToken() ); if( tokenizer.HasMoreTokens() ) end = SPICE_VALUE( tokenizer.GetNextToken() ); if( tokenizer.HasMoreTokens() ) start = SPICE_VALUE( tokenizer.GetNextToken() ); static_cast( m_axis_x )->SetStartAndEnd( start.ToDouble(), end.ToDouble() ); } } if( m_axis_y1 ) m_axis_y1->ResetDataRange(); if( m_axis_y2 ) m_axis_y2->ResetDataRange(); if( m_axis_y3 ) m_axis_y3->ResetDataRange(); for( auto& [ name, trace ] : m_traces ) trace->UpdateScales(); } wxDEFINE_EVENT( EVT_SIM_CURSOR_UPDATE, wxCommandEvent );