/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include "pns_walkaround.h" #include "pns_optimizer.h" #include "pns_utils.h" #include "pns_router.h" using boost::optional; void PNS_WALKAROUND::start( const PNS_LINE& aInitialPath ) { m_iteration = 0; m_iterationLimit = 50; } PNS_NODE::OPT_OBSTACLE PNS_WALKAROUND::nearestObstacle( const PNS_LINE& aPath ) { return m_world->NearestObstacle( &aPath, m_itemMask ); } PNS_WALKAROUND::WALKAROUND_STATUS PNS_WALKAROUND::singleStep( PNS_LINE& aPath, bool aWindingDirection ) { optional& current_obs = aWindingDirection ? m_currentObstacle[0] : m_currentObstacle[1]; bool& prev_recursive = aWindingDirection ? m_recursiveCollision[0] : m_recursiveCollision[1]; if( !current_obs ) return DONE; SHAPE_LINE_CHAIN path_pre[2], path_walk[2], path_post[2]; VECTOR2I last = aPath.CPoint( -1 ); if( ( current_obs->m_hull ).PointInside( last ) || ( current_obs->m_hull ).PointOnEdge( last ) ) { m_recursiveBlockageCount++; if( m_recursiveBlockageCount < 3 ) aPath.Line().Append( current_obs->m_hull.NearestPoint( last ) ); else { aPath = aPath.ClipToNearestObstacle( m_world ); return DONE; } } aPath.Walkaround( current_obs->m_hull, path_pre[0], path_walk[0], path_post[0], aWindingDirection ); aPath.Walkaround( current_obs->m_hull, path_pre[1], path_walk[1], path_post[1], !aWindingDirection ); #ifdef DEBUG m_logger.NewGroup( aWindingDirection ? "walk-cw" : "walk-ccw", m_iteration ); m_logger.Log( &path_walk[0], 0, "path-walk" ); m_logger.Log( &path_pre[0], 1, "path-pre" ); m_logger.Log( &path_post[0], 4, "path-post" ); m_logger.Log( ¤t_obs->m_hull, 2, "hull" ); m_logger.Log( current_obs->m_item, 3, "item" ); #endif int len_pre = path_walk[0].Length(); int len_alt = path_walk[1].Length(); PNS_LINE walk_path( aPath, path_walk[1] ); bool alt_collides = m_world->CheckColliding( &walk_path, m_itemMask ); SHAPE_LINE_CHAIN pnew; if( !m_forceSingleDirection && len_alt < len_pre && !alt_collides && !prev_recursive ) { pnew = path_pre[1]; pnew.Append( path_walk[1] ); pnew.Append( path_post[1] ); if(!path_post[1].PointCount() || !path_walk[1].PointCount()) current_obs = nearestObstacle( PNS_LINE( aPath, path_pre[1] ) ); else current_obs = nearestObstacle( PNS_LINE( aPath, path_post[1] ) ); prev_recursive = false; } else { pnew = path_pre[0]; pnew.Append( path_walk[0] ); pnew.Append( path_post[0] ); if(!path_post[0].PointCount() || !path_walk[0].PointCount()) current_obs = nearestObstacle( PNS_LINE( aPath, path_pre[0] ) ); else current_obs = nearestObstacle( PNS_LINE( aPath, path_walk[0] ) ); if( !current_obs ) { prev_recursive = false; current_obs = nearestObstacle( PNS_LINE( aPath, path_post[0] ) ); } else prev_recursive = true; } pnew.Simplify(); aPath.SetShape( pnew ); return IN_PROGRESS; } PNS_WALKAROUND::WALKAROUND_STATUS PNS_WALKAROUND::Route( const PNS_LINE& aInitialPath, PNS_LINE& aWalkPath, bool aOptimize ) { PNS_LINE path_cw( aInitialPath ), path_ccw( aInitialPath ); WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS; SHAPE_LINE_CHAIN best_path; start( aInitialPath ); m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath ); m_recursiveBlockageCount = 0; aWalkPath = aInitialPath; while( m_iteration < m_iterationLimit ) { if( s_cw != STUCK ) s_cw = singleStep( path_cw, true ); if( s_ccw != STUCK ) s_ccw = singleStep( path_ccw, false ); if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = (len_cw > len_ccw ? path_cw : path_ccw); else aWalkPath = (len_cw < len_ccw ? path_cw : path_ccw); break; } else if( s_cw == DONE && !m_forceLongerPath ) { aWalkPath = path_cw; break; } else if( s_ccw == DONE && !m_forceLongerPath ) { aWalkPath = path_ccw; break; } m_iteration++; } if( m_iteration == m_iterationLimit ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw ); else aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw ); } if( m_cursorApproachMode ) { // int len_cw = path_cw.GetCLine().Length(); // int len_ccw = path_ccw.GetCLine().Length(); bool found = false; SHAPE_LINE_CHAIN l = aWalkPath.CLine(); for( int i = 0; i < l.SegmentCount(); i++ ) { const SEG s = l.Segment( i ); VECTOR2I nearest = s.NearestPoint( m_cursorPos ); VECTOR2I::extended_type dist_a = ( s.A - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_b = ( s.B - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_n = ( nearest - m_cursorPos ).SquaredEuclideanNorm(); if( dist_n <= dist_a && dist_n < dist_b ) { l.Remove( i + 1, -1 ); l.Append( nearest ); l.Simplify(); found = true; break; } } if( found ) { aWalkPath = aInitialPath; aWalkPath.SetShape( l ); } } aWalkPath.Line().Simplify(); if( aWalkPath.SegmentCount() < 1 ) return STUCK; if( aWalkPath.CPoint( -1 ) != aInitialPath.CPoint( -1 ) ) return STUCK; if( aWalkPath.CPoint( 0 ) != aInitialPath.CPoint( 0 ) ) return STUCK; WALKAROUND_STATUS st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK; if( aOptimize && st == DONE ) PNS_OPTIMIZER::Optimize( &aWalkPath, PNS_OPTIMIZER::MERGE_OBTUSE, m_world ); return st; }