/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2022 Mark Roszko * Copyright (C) 2016 Cirilo Bernardo * Copyright (C) 2016-2024 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "step_pcb_model.h" #include "streamwrapper.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "KI_XCAFDoc_AssemblyGraph.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if OCC_VERSION_HEX >= 0x070700 #include #endif #include static constexpr double USER_PREC = 1e-4; static constexpr double USER_ANGLE_PREC = 1e-6; // nominal offset from the board static constexpr double BOARD_OFFSET = 0.05; // supported file types for 3D models enum MODEL3D_FORMAT_TYPE { FMT_NONE, FMT_STEP, FMT_STEPZ, FMT_IGES, FMT_EMN, FMT_IDF, FMT_WRL, FMT_WRZ }; MODEL3D_FORMAT_TYPE fileType( const char* aFileName ) { wxFileName lfile( wxString::FromUTF8Unchecked( aFileName ) ); if( !lfile.FileExists() ) { wxString msg; msg.Printf( wxT( " * fileType(): no such file: %s\n" ), wxString::FromUTF8Unchecked( aFileName ) ); ReportMessage( msg ); return FMT_NONE; } wxString ext = lfile.GetExt().Lower(); if( ext == wxT( "wrl" ) ) return FMT_WRL; if( ext == wxT( "wrz" ) ) return FMT_WRZ; if( ext == wxT( "idf" ) ) return FMT_IDF; // component outline if( ext == wxT( "emn" ) ) return FMT_EMN; // PCB assembly if( ext == wxT( "stpz" ) || ext == wxT( "gz" ) ) return FMT_STEPZ; OPEN_ISTREAM( ifile, aFileName ); if( ifile.fail() ) return FMT_NONE; char iline[82]; memset( iline, 0, 82 ); ifile.getline( iline, 82 ); CLOSE_STREAM( ifile ); iline[81] = 0; // ensure NULL termination when string is too long // check for STEP in Part 21 format // (this can give false positives since Part 21 is not exclusively STEP) if( !strncmp( iline, "ISO-10303-21;", 13 ) ) return FMT_STEP; std::string fstr = iline; // check for STEP in XML format // (this can give both false positive and false negatives) if( fstr.find( "urn:oid:1.0.10303." ) != std::string::npos ) return FMT_STEP; // Note: this is a very simple test which can yield false positives; the only // sure method for determining if a file *not* an IGES model is to attempt // to load it. if( iline[72] == 'S' && ( iline[80] == 0 || iline[80] == 13 || iline[80] == 10 ) ) return FMT_IGES; return FMT_NONE; } static VECTOR2D CircleCenterFrom3Points( const VECTOR2D& p1, const VECTOR2D& p2, const VECTOR2D& p3 ) { VECTOR2D center; // Move coordinate origin to p2, to simplify calculations VECTOR2D b = p1 - p2; VECTOR2D d = p3 - p2; double bc = ( b.x * b.x + b.y * b.y ) / 2.0; double cd = ( -d.x * d.x - d.y * d.y ) / 2.0; double det = -b.x * d.y + d.x * b.y; // We're fine with divisions by 0 det = 1.0 / det; center.x = ( -bc * d.y - cd * b.y ) * det; center.y = ( b.x * cd + d.x * bc ) * det; center += p2; return center; } #define APPROX_DBG( stmt ) //#define APPROX_DBG( stmt ) stmt static SHAPE_LINE_CHAIN approximateLineChainWithArcs( const SHAPE_LINE_CHAIN& aSrc ) { // An algo that takes 3 points, calculates a circle center, // then tries to find as many points fitting the circle. static const double c_radiusDeviation = 1000.0; static const double c_arcCenterDeviation = 1000.0; static const double c_relLengthDeviation = 0.8; static const int c_last_none = -1000; // Meaning the arc cannot be constructed // Allow larger angles for segments below this size static const double c_smallSize = pcbIUScale.mmToIU( 0.1 ); static const double c_circleCloseGap = pcbIUScale.mmToIU( 1.0 ); APPROX_DBG( std::cout << std::endl ); if( aSrc.PointCount() < 4 ) return aSrc; if( !aSrc.IsClosed() ) return aSrc; // non-closed polygons are not supported SHAPE_LINE_CHAIN dst; int jEndIdx = aSrc.PointCount() - 3; for( int i = 0; i < aSrc.PointCount(); i++ ) { int first = i - 3; int last = c_last_none; VECTOR2D p0 = aSrc.CPoint( i - 3 ); VECTOR2D p1 = aSrc.CPoint( i - 2 ); VECTOR2D p2 = aSrc.CPoint( i - 1 ); APPROX_DBG( std::cout << i << " " << aSrc.CPoint( i ) << " " << ( i - 3 ) << " " << VECTOR2I( p0 ) << " " << ( i - 2 ) << " " << VECTOR2I( p1 ) << " " << ( i - 1 ) << " " << VECTOR2I( p2 ) << std::endl ); VECTOR2D v01 = p1 - p0; VECTOR2D v12 = p2 - p1; bool defective = false; double d01 = v01.EuclideanNorm(); double d12 = v12.EuclideanNorm(); // Check distance differences between 3 first points defective |= std::abs( d01 - d12 ) > ( std::max( d01, d12 ) * c_relLengthDeviation ); if( !defective ) { // Check angles between 3 first points EDA_ANGLE a01( v01 ); EDA_ANGLE a12( v12 ); double a_diff = ( a01 - a12 ).Normalize180().AsDegrees(); defective |= std::abs( a_diff ) < 0.1; // Larger angles are allowed for smaller geometry double maxAngleDiff = std::max( d01, d12 ) < c_smallSize ? 46.0 : 30.0; defective |= std::abs( a_diff ) >= maxAngleDiff; } if( !defective ) { // Find last point lying on the circle created from 3 first points VECTOR2D center = CircleCenterFrom3Points( p0, p1, p2 ); double radius = ( p0 - center ).EuclideanNorm(); VECTOR2D p_prev = p2; EDA_ANGLE a_prev( v12 ); for( int j = i; j <= jEndIdx; j++ ) { VECTOR2D p_test = aSrc.CPoint( j ); EDA_ANGLE a_test( p_test - p_prev ); double rad_test = ( p_test - center ).EuclideanNorm(); double d_tl = ( p_test - p_prev ).EuclideanNorm(); double rad_dev = std::abs( radius - rad_test ); APPROX_DBG( std::cout << " " << j << " " << aSrc.CPoint( j ) << " rad " << int64_t( rad_test ) << " ref " << int64_t( radius ) << std::endl ); if( rad_dev > c_radiusDeviation ) { APPROX_DBG( std::cout << " " << j << " Radius deviation too large: " << int64_t( rad_dev ) << " > " << c_radiusDeviation << std::endl ); break; } // Larger angles are allowed for smaller geometry double maxAngleDiff = std::max( std::max( d01, d12 ), d_tl ) < c_smallSize ? 46.0 : 30.0; double a_diff_test = ( a_prev - a_test ).Normalize180().AsDegrees(); if( std::abs( a_diff_test ) >= maxAngleDiff ) { APPROX_DBG( std::cout << " " << j << " Angles differ too much " << a_diff_test << std::endl ); break; } if( std::abs( d_tl - d01 ) > ( std::max( d_tl, d01 ) * c_relLengthDeviation ) ) { APPROX_DBG( std::cout << " " << j << " Lengths differ too much " << d_tl << "; " << d01 << std::endl ); break; } last = j; p_prev = p_test; a_prev = a_test; } } if( last != c_last_none ) { // Try to add an arc, testing for self-interference SHAPE_ARC arc( aSrc.CPoint( first ), aSrc.CPoint( ( first + last ) / 2 ), aSrc.CPoint( last ), 0 ); if( last > aSrc.PointCount() - 3 && !dst.IsArcSegment( 0 ) ) { // If we've found an arc at the end, but already added segments at the start, remove them. int toRemove = last - ( aSrc.PointCount() - 3 ); while( toRemove ) { dst.RemoveShape( 0 ); toRemove--; } } SHAPE_LINE_CHAIN testChain = dst; testChain.Append( arc ); testChain.Append( aSrc.Slice( last, std::max( last, aSrc.PointCount() - 3 ) ) ); testChain.SetClosed( aSrc.IsClosed() ); if( !testChain.SelfIntersectingWithArcs() ) { // Add arc dst.Append( arc ); APPROX_DBG( std::cout << " Add arc start " << arc.GetP0() << " mid " << arc.GetArcMid() << " end " << arc.GetP1() << std::endl ); i = last + 3; } else { // Self-interference last = c_last_none; APPROX_DBG( std::cout << " Self-intersection check failed" << std::endl ); } } if( last == c_last_none ) { if( first < 0 ) jEndIdx = first + aSrc.PointCount(); // Add point dst.Append( p0 ); APPROX_DBG( std::cout << " Add pt " << VECTOR2I( p0 ) << std::endl ); } } dst.SetClosed( true ); // Try to merge arcs int iarc0 = dst.ArcIndex( 0 ); int iarc1 = dst.ArcIndex( dst.GetSegmentCount() - 1 ); if( iarc0 != -1 && iarc1 != -1 ) { APPROX_DBG( std::cout << "Final arcs " << iarc0 << " " << iarc1 << std::endl ); if( iarc0 == iarc1 ) { SHAPE_ARC arc = dst.Arc( iarc0 ); VECTOR2D p0 = arc.GetP0(); VECTOR2D p1 = arc.GetP1(); // If we have only one arc and the gap is small, make it a circle if( ( p1 - p0 ).EuclideanNorm() < c_circleCloseGap ) { dst.Clear(); dst.Append( SHAPE_ARC( arc.GetCenter(), arc.GetP0(), ANGLE_360 ) ); } } else { // Merge first and last arcs if they are similar SHAPE_ARC arc0 = dst.Arc( iarc0 ); SHAPE_ARC arc1 = dst.Arc( iarc1 ); VECTOR2D ac0 = arc0.GetCenter(); VECTOR2D ac1 = arc1.GetCenter(); double ar0 = arc0.GetRadius(); double ar1 = arc1.GetRadius(); if( std::abs( ar0 - ar1 ) <= c_radiusDeviation && ( ac0 - ac1 ).EuclideanNorm() <= c_arcCenterDeviation ) { dst.RemoveShape( 0 ); dst.RemoveShape( -1 ); SHAPE_ARC merged( arc1.GetP0(), arc1.GetArcMid(), arc0.GetP1(), 0 ); dst.Append( merged ); } } } return dst; } static TopoDS_Shape getOneShape( Handle( XCAFDoc_ShapeTool ) aShapeTool ) { TDF_LabelSequence theLabels; aShapeTool->GetFreeShapes( theLabels ); TopoDS_Shape aShape; if( theLabels.Length() == 1 ) return aShapeTool->GetShape( theLabels.Value( 1 ) ); TopoDS_Compound aCompound; BRep_Builder aBuilder; aBuilder.MakeCompound( aCompound ); for( TDF_LabelSequence::Iterator anIt( theLabels ); anIt.More(); anIt.Next() ) { TopoDS_Shape aFreeShape; if( !aShapeTool->GetShape( anIt.Value(), aFreeShape ) ) continue; aBuilder.Add( aCompound, aFreeShape ); } if( aCompound.NbChildren() > 0 ) aShape = aCompound; return aShape; } // Apply scaling to shapes within theLabel. // Based on XCAFDoc_Editor::RescaleGeometry static Standard_Boolean rescaleShapes( const TDF_Label& theLabel, const gp_XYZ& aScale ) { if( theLabel.IsNull() ) { Message::SendFail( "Null label." ); return Standard_False; } if( Abs( aScale.X() ) <= gp::Resolution() || Abs( aScale.Y() ) <= gp::Resolution() || Abs( aScale.Z() ) <= gp::Resolution() ) { Message::SendFail( "Scale factor is too small." ); return Standard_False; } Handle( XCAFDoc_ShapeTool ) aShapeTool = XCAFDoc_DocumentTool::ShapeTool( theLabel ); if( aShapeTool.IsNull() ) { Message::SendFail( "Couldn't find XCAFDoc_ShapeTool attribute." ); return Standard_False; } Handle( KI_XCAFDoc_AssemblyGraph ) aG = new KI_XCAFDoc_AssemblyGraph( theLabel ); if( aG.IsNull() ) { Message::SendFail( "Couldn't create assembly graph." ); return Standard_False; } Standard_Boolean anIsDone = Standard_True; // clang-format off gp_GTrsf aGTrsf; aGTrsf.SetVectorialPart( gp_Mat( aScale.X(), 0, 0, 0, aScale.Y(), 0, 0, 0, aScale.Z() ) ); // clang-format on BRepBuilderAPI_GTransform aBRepTrsf( aGTrsf ); for( Standard_Integer idx = 1; idx <= aG->NbNodes(); idx++ ) { const KI_XCAFDoc_AssemblyGraph::NodeType aNodeType = aG->GetNodeType( idx ); if( ( aNodeType != KI_XCAFDoc_AssemblyGraph::NodeType_Part ) && ( aNodeType != KI_XCAFDoc_AssemblyGraph::NodeType_Occurrence ) ) { continue; } const TDF_Label& aLabel = aG->GetNode( idx ); if( aNodeType == KI_XCAFDoc_AssemblyGraph::NodeType_Part ) { const TopoDS_Shape aShape = aShapeTool->GetShape( aLabel ); aBRepTrsf.Perform( aShape, Standard_True ); if( !aBRepTrsf.IsDone() ) { Standard_SStream aSS; TCollection_AsciiString anEntry; TDF_Tool::Entry( aLabel, anEntry ); aSS << "Shape " << anEntry << " is not scaled!"; Message::SendFail( aSS.str().c_str() ); anIsDone = Standard_False; return Standard_False; } TopoDS_Shape aScaledShape = aBRepTrsf.Shape(); aShapeTool->SetShape( aLabel, aScaledShape ); // Update sub-shapes TDF_LabelSequence aSubshapes; aShapeTool->GetSubShapes( aLabel, aSubshapes ); for( TDF_LabelSequence::Iterator anItSs( aSubshapes ); anItSs.More(); anItSs.Next() ) { const TDF_Label& aLSs = anItSs.Value(); const TopoDS_Shape aSs = aShapeTool->GetShape( aLSs ); const TopoDS_Shape aSs1 = aBRepTrsf.ModifiedShape( aSs ); aShapeTool->SetShape( aLSs, aSs1 ); } // These attributes will be recomputed eventually, but clear them just in case aLabel.ForgetAttribute( XCAFDoc_Area::GetID() ); aLabel.ForgetAttribute( XCAFDoc_Centroid::GetID() ); aLabel.ForgetAttribute( XCAFDoc_Volume::GetID() ); } else if( aNodeType == KI_XCAFDoc_AssemblyGraph::NodeType_Occurrence ) { TopLoc_Location aLoc = aShapeTool->GetLocation( aLabel ); gp_Trsf aTrsf = aLoc.Transformation(); aTrsf.SetTranslationPart( aTrsf.TranslationPart().Multiplied( aScale ) ); XCAFDoc_Location::Set( aLabel, aTrsf ); } } if( !anIsDone ) { return Standard_False; } aShapeTool->UpdateAssemblies(); return anIsDone; } // Sets names in assembly to (), or to static Standard_Boolean prefixNames( const TDF_Label& aLabel, const TCollection_ExtendedString& aPrefix ) { Handle( KI_XCAFDoc_AssemblyGraph ) aG = new KI_XCAFDoc_AssemblyGraph( aLabel ); if( aG.IsNull() ) { Message::SendFail( "Couldn't create assembly graph." ); return Standard_False; } Standard_Boolean anIsDone = Standard_True; for( Standard_Integer idx = 1; idx <= aG->NbNodes(); idx++ ) { const TDF_Label& lbl = aG->GetNode( idx ); Handle( TDataStd_Name ) nameHandle; if( lbl.FindAttribute( TDataStd_Name::GetID(), nameHandle ) ) { TCollection_ExtendedString name; name += aPrefix; name += " ("; name += nameHandle->Get(); name += ")"; TDataStd_Name::Set( lbl, name ); } else { TDataStd_Name::Set( lbl, aPrefix ); } } return anIsDone; } STEP_PCB_MODEL::STEP_PCB_MODEL( const wxString& aPcbName ) { m_app = XCAFApp_Application::GetApplication(); m_app->NewDocument( "MDTV-XCAF", m_doc ); m_assy = XCAFDoc_DocumentTool::ShapeTool( m_doc->Main() ); m_assy_label = m_assy->NewShape(); m_hasPCB = false; m_components = 0; m_precision = USER_PREC; m_angleprec = USER_ANGLE_PREC; m_mergeOCCMaxDist = OCC_MAX_DISTANCE_TO_MERGE_POINTS; m_minx = 1.0e10; // absurdly large number; any valid PCB X value will be smaller m_pcbName = aPcbName; m_maxError = pcbIUScale.mmToIU( ARC_TO_SEGMENT_MAX_ERROR_MM ); m_fuseShapes = false; // TODO: make configurable m_platingThickness = pcbIUScale.mmToIU( 0.025 ); } STEP_PCB_MODEL::~STEP_PCB_MODEL() { if( m_doc->CanClose() == CDM_CCS_OK ) m_doc->Close(); } bool STEP_PCB_MODEL::AddPadShape( const PAD* aPad, const VECTOR2D& aOrigin, bool aVia ) { bool success = true; for( PCB_LAYER_ID pcb_layer : aPad->GetLayerSet().Seq() ) { if( !IsCopperLayer( pcb_layer ) ) continue; if( !m_enabledLayers.Contains( pcb_layer ) ) continue; TopoDS_Shape curr_shape; double Zpos, thickness; getLayerZPlacement( pcb_layer, Zpos, thickness ); if( !aVia ) { // Pad surface as a separate face for FEM simulations. if( pcb_layer == F_Cu ) thickness += 0.01; else if( pcb_layer == B_Cu ) thickness -= 0.01; } TopoDS_Shape testShape; // Make a shape on copper layers std::shared_ptr effShapePtr = aPad->GetEffectiveShape( pcb_layer ); wxCHECK( effShapePtr->Type() == SHAPE_TYPE::SH_COMPOUND, false ); SHAPE_COMPOUND* compoundShape = static_cast( effShapePtr.get() ); std::vector topodsShapes; for( SHAPE* shape : compoundShape->Shapes() ) { if( shape->Type() == SHAPE_TYPE::SH_SEGMENT || shape->Type() == SHAPE_TYPE::SH_CIRCLE ) { VECTOR2I start, end; int width = 0; if( shape->Type() == SHAPE_TYPE::SH_SEGMENT ) { SHAPE_SEGMENT* sh_seg = static_cast( shape ); start = sh_seg->GetSeg().A; end = sh_seg->GetSeg().B; width = sh_seg->GetWidth(); } else if( shape->Type() == SHAPE_TYPE::SH_CIRCLE ) { SHAPE_CIRCLE* sh_circ = static_cast( shape ); start = end = sh_circ->GetCenter(); width = sh_circ->GetRadius() * 2; } TopoDS_Shape topods_shape; if( MakeShapeAsThickSegment( topods_shape, start, end, width, thickness, Zpos, aOrigin ) ) { topodsShapes.emplace_back( topods_shape ); if( testShape.IsNull() ) { MakeShapeAsThickSegment( testShape, start, end, width, 0.0, Zpos + thickness, aOrigin ); } } else { success = false; } } else { SHAPE_POLY_SET polySet; shape->TransformToPolygon( polySet, ARC_HIGH_DEF, ERROR_INSIDE ); success &= MakeShapes( topodsShapes, polySet, false, thickness, Zpos, aOrigin ); if( testShape.IsNull() ) { std::vector testShapes; MakeShapes( testShapes, polySet, false, 0.0, Zpos + thickness, aOrigin ); if( testShapes.size() > 0 ) testShape = testShapes.front(); } } } // Fuse shapes if( topodsShapes.size() == 1 ) { m_board_copper_pads.emplace_back( topodsShapes.front() ); } else { BRepAlgoAPI_Fuse mkFuse; TopTools_ListOfShape shapeArguments, shapeTools; for( TopoDS_Shape& sh : topodsShapes ) { if( sh.IsNull() ) continue; if( shapeArguments.IsEmpty() ) shapeArguments.Append( sh ); else shapeTools.Append( sh ); } mkFuse.SetRunParallel( true ); mkFuse.SetToFillHistory( false ); mkFuse.SetArguments( shapeArguments ); mkFuse.SetTools( shapeTools ); mkFuse.Build(); if( mkFuse.IsDone() ) { TopoDS_Shape fusedShape = mkFuse.Shape(); ShapeUpgrade_UnifySameDomain unify( fusedShape, true, true, false ); unify.History() = nullptr; unify.Build(); TopoDS_Shape unifiedShapes = unify.Shape(); if( !unifiedShapes.IsNull() ) { m_board_copper_pads.emplace_back( unifiedShapes ); } else { ReportMessage( _( "** ShapeUpgrade_UnifySameDomain produced a null shape **\n" ) ); m_board_copper_pads.emplace_back( fusedShape ); } } else { for( TopoDS_Shape& sh : topodsShapes ) m_board_copper_pads.emplace_back( sh ); } } if( !aVia && !testShape.IsNull() ) { if( pcb_layer == F_Cu || pcb_layer == B_Cu ) { wxString name; name << "Pad_"; if( pcb_layer == F_Cu ) name << 'F' << '_'; else if( pcb_layer == B_Cu ) name << 'B' << '_'; name << aPad->GetParentFootprint()->GetReferenceAsString() << '_' << aPad->GetNumber() << '_' << aPad->GetShortNetname(); gp_Pnt point( pcbIUScale.IUTomm( aPad->GetX() - aOrigin.x ), -pcbIUScale.IUTomm( aPad->GetY() - aOrigin.y ), Zpos + thickness ); m_pad_points[name] = { point, testShape }; } } } if( aPad->GetAttribute() == PAD_ATTRIB::PTH && aPad->IsOnLayer( F_Cu ) && aPad->IsOnLayer( B_Cu ) ) { double f_pos, f_thickness; double b_pos, b_thickness; getLayerZPlacement( F_Cu, f_pos, f_thickness ); getLayerZPlacement( B_Cu, b_pos, b_thickness ); double top = std::max( f_pos, f_pos + f_thickness ); double bottom = std::min( b_pos, b_pos + b_thickness ); TopoDS_Shape plating; std::shared_ptr seg_hole = aPad->GetEffectiveHoleShape(); double width = std::min( aPad->GetDrillSize().x, aPad->GetDrillSize().y ); if( MakeShapeAsThickSegment( plating, seg_hole->GetSeg().A, seg_hole->GetSeg().B, width, ( top - bottom ), bottom, aOrigin ) ) { m_board_copper_pads.push_back( plating ); } else { success = false; } } if( !success ) // Error ReportMessage( wxT( "OCC error adding pad/via polygon.\n" ) ); return success; } bool STEP_PCB_MODEL::AddViaShape( const PCB_VIA* aVia, const VECTOR2D& aOrigin ) { // A via is very similar to a round pad. So, for now, used AddPadHole() to // create a via+hole shape PAD dummy( nullptr ); int hole = aVia->GetDrillValue(); dummy.SetDrillSize( VECTOR2I( hole, hole ) ); dummy.SetPosition( aVia->GetStart() ); dummy.SetSize( VECTOR2I( aVia->GetWidth(), aVia->GetWidth() ) ); if( AddPadHole( &dummy, aOrigin ) ) { if( !AddPadShape( &dummy, aOrigin, true ) ) return false; } return true; } bool STEP_PCB_MODEL::AddTrackSegment( const PCB_TRACK* aTrack, const VECTOR2D& aOrigin ) { PCB_LAYER_ID pcblayer = aTrack->GetLayer(); if( !m_enabledLayers.Contains( pcblayer ) ) return true; TopoDS_Shape shape; double zposition, thickness; getLayerZPlacement( pcblayer, zposition, thickness ); bool success = MakeShapeAsThickSegment( shape, aTrack->GetStart(), aTrack->GetEnd(), aTrack->GetWidth(), thickness, zposition, aOrigin ); if( success ) m_board_copper_tracks.push_back( shape ); return success; } void STEP_PCB_MODEL::getLayerZPlacement( const PCB_LAYER_ID aLayer, double& aZPos, double& aThickness ) { // Offsets above copper in mm static const double c_silkscreenAboveCopper = 0.04; static const double c_soldermaskAboveCopper = 0.015; if( IsCopperLayer( aLayer ) ) { getCopperLayerZPlacement( aLayer, aZPos, aThickness ); } else if( IsFrontLayer( aLayer ) ) { double f_pos, f_thickness; getCopperLayerZPlacement( F_Cu, f_pos, f_thickness ); double top = std::max( f_pos, f_pos + f_thickness ); if( aLayer == F_SilkS ) aZPos = top + c_silkscreenAboveCopper; else aZPos = top + c_soldermaskAboveCopper; aThickness = 0.0; // Normal points up } else if( IsBackLayer( aLayer ) ) { double b_pos, b_thickness; getCopperLayerZPlacement( B_Cu, b_pos, b_thickness ); double bottom = std::min( b_pos, b_pos + b_thickness ); if( aLayer == B_SilkS ) aZPos = bottom - c_silkscreenAboveCopper; else aZPos = bottom - c_soldermaskAboveCopper; aThickness = -0.0; // Normal points down } } void STEP_PCB_MODEL::getCopperLayerZPlacement( const PCB_LAYER_ID aLayer, double& aZPos, double& aThickness ) { int z = 0; int thickness = 0; bool wasPrepreg = false; const std::vector& materials = m_stackup.GetList(); // Iterate from bottom to top for( auto it = materials.rbegin(); it != materials.rend(); ++it ) { const BOARD_STACKUP_ITEM* item = *it; if( item->GetType() == BS_ITEM_TYPE_COPPER ) { if( aLayer == B_Cu ) { // This is the first encountered layer thickness = -item->GetThickness(); break; } // Inner copper position is usually inside prepreg if( wasPrepreg && item->GetBrdLayerId() != F_Cu ) thickness = -item->GetThickness(); else thickness = item->GetThickness(); if( item->GetBrdLayerId() == aLayer ) break; if( item->GetBrdLayerId() != B_Cu ) z += item->GetThickness(); } else if( item->GetType() == BS_ITEM_TYPE_DIELECTRIC ) { wasPrepreg = ( item->GetTypeName() == KEY_PREPREG ); // Dielectric can have sub-layers. Layer 0 is the main layer // Not frequent, but possible thickness = 0; for( int idx = 0; idx < item->GetSublayersCount(); idx++ ) thickness += item->GetThickness( idx ); z += thickness; } } aZPos = pcbIUScale.IUTomm( z ); aThickness = pcbIUScale.IUTomm( thickness ); } void STEP_PCB_MODEL::getBoardBodyZPlacement( double& aZPos, double& aThickness ) { double f_pos, f_thickness; double b_pos, b_thickness; getLayerZPlacement( F_Cu, f_pos, f_thickness ); getLayerZPlacement( B_Cu, b_pos, b_thickness ); double top = std::min( f_pos, f_pos + f_thickness ); double bottom = std::max( b_pos, b_pos + b_thickness ); aThickness = ( top - bottom ); aZPos = bottom; wxASSERT( aZPos == 0.0 ); } bool STEP_PCB_MODEL::AddCopperPolygonShapes( const SHAPE_POLY_SET* aPolyShapes, PCB_LAYER_ID aLayer, const VECTOR2D& aOrigin, bool aTrack ) { bool success = true; if( aPolyShapes->IsEmpty() ) return true; if( !m_enabledLayers.Contains( aLayer ) ) return true; double z_pos, thickness; getLayerZPlacement( aLayer, z_pos, thickness ); if( !MakeShapes( aTrack ? m_board_copper_tracks : m_board_copper_zones, *aPolyShapes, true, thickness, z_pos, aOrigin ) ) { ReportMessage( wxString::Format( wxT( "Could not add shape (%d points) to copper layer on %s.\n" ), aPolyShapes->FullPointCount(), LayerName( aLayer ) ) ); success = false; } return success; } bool STEP_PCB_MODEL::AddPadHole( const PAD* aPad, const VECTOR2D& aOrigin ) { if( aPad == nullptr || !aPad->GetDrillSize().x ) return false; const double margin = 0.01; // a small margin on the Z axix to be sure the hole // is bigger than the board with copper // must be > OCC_MAX_DISTANCE_TO_MERGE_POINTS double f_pos, f_thickness; double b_pos, b_thickness; getLayerZPlacement( F_Cu, f_pos, f_thickness ); getLayerZPlacement( B_Cu, b_pos, b_thickness ); double top = std::max( f_pos, f_pos + f_thickness ); double bottom = std::min( b_pos, b_pos + b_thickness ); double holeZsize = ( top - bottom ) + ( margin * 2 ); std::shared_ptr seg_hole = aPad->GetEffectiveHoleShape(); double boardDrill = std::min( aPad->GetDrillSize().x, aPad->GetDrillSize().y ); int platingThickness = aPad->GetAttribute() == PAD_ATTRIB::PTH ? m_platingThickness : 0; double copperDrill = boardDrill - platingThickness * 2; TopoDS_Shape copperHole, boardHole; if( MakeShapeAsThickSegment( copperHole, seg_hole->GetSeg().A, seg_hole->GetSeg().B, copperDrill, holeZsize, bottom - margin, aOrigin ) ) { m_copperCutouts.push_back( copperHole ); } else { return false; } if( MakeShapeAsThickSegment( boardHole, seg_hole->GetSeg().A, seg_hole->GetSeg().B, boardDrill, holeZsize, bottom - margin, aOrigin ) ) { m_boardCutouts.push_back( boardHole ); } else { return false; } return true; } bool STEP_PCB_MODEL::AddComponent( const std::string& aFileNameUTF8, const std::string& aRefDes, bool aBottom, VECTOR2D aPosition, double aRotation, VECTOR3D aOffset, VECTOR3D aOrientation, VECTOR3D aScale, bool aSubstituteModels ) { if( aFileNameUTF8.empty() ) { ReportMessage( wxString::Format( wxT( "No model defined for component %s.\n" ), aRefDes ) ); return false; } wxString fileName( wxString::FromUTF8( aFileNameUTF8.c_str() ) ); ReportMessage( wxString::Format( wxT( "Add component %s.\n" ), aRefDes ) ); // first retrieve a label TDF_Label lmodel; wxString errorMessage; if( !getModelLabel( aFileNameUTF8, aScale, lmodel, aSubstituteModels, &errorMessage ) ) { if( errorMessage.IsEmpty() ) ReportMessage( wxString::Format( wxT( "No model for filename '%s'.\n" ), fileName ) ); else ReportMessage( errorMessage ); return false; } // calculate the Location transform TopLoc_Location toploc; if( !getModelLocation( aBottom, aPosition, aRotation, aOffset, aOrientation, toploc ) ) { ReportMessage( wxString::Format( wxT( "No location data for filename '%s'.\n" ), fileName ) ); return false; } // add the located sub-assembly TDF_Label llabel = m_assy->AddComponent( m_assy_label, lmodel, toploc ); if( llabel.IsNull() ) { ReportMessage( wxString::Format( wxT( "Could not add component with filename '%s'.\n" ), fileName ) ); return false; } // attach the RefDes name TCollection_ExtendedString refdes( aRefDes.c_str() ); TDataStd_Name::Set( llabel, refdes ); return true; } void STEP_PCB_MODEL::SetEnabledLayers( const LSET& aLayers ) { m_enabledLayers = aLayers; } void STEP_PCB_MODEL::SetFuseShapes( bool aValue ) { m_fuseShapes = aValue; } void STEP_PCB_MODEL::SetStackup( const BOARD_STACKUP& aStackup ) { m_stackup = aStackup; } void STEP_PCB_MODEL::SetNetFilter( const wxString& aFilter ) { m_netFilter = aFilter; } void STEP_PCB_MODEL::SetBoardColor( double r, double g, double b ) { m_boardColor[0] = r; m_boardColor[1] = g; m_boardColor[2] = b; } void STEP_PCB_MODEL::SetCopperColor( double r, double g, double b ) { m_copperColor[0] = r; m_copperColor[1] = g; m_copperColor[2] = b; } void STEP_PCB_MODEL::OCCSetMergeMaxDistance( double aDistance ) { // Ensure a minimal value (in mm) m_mergeOCCMaxDist = aDistance; } bool STEP_PCB_MODEL::isBoardOutlineValid() { return m_pcb_labels.size() > 0; } // A helper function to know if a SHAPE_LINE_CHAIN is encoding a circle (now unused) #if 0 static bool IsChainCircle( const SHAPE_LINE_CHAIN& aChain ) { // If aChain is a circle it // - contains only one arc // - this arc has the same start and end point const std::vector& arcs = aChain.CArcs(); if( arcs.size() == 1 ) { const SHAPE_ARC& arc = arcs[0]; if( arc. GetP0() == arc.GetP1() ) return true; } return false; } #endif bool STEP_PCB_MODEL::MakeShapeAsCylinder( TopoDS_Shape& aShape, const SHAPE_LINE_CHAIN& aChain, double aThickness, double aZposition, const VECTOR2D& aOrigin ) { if( !aShape.IsNull() ) return false; // there is already data in the shape object if( !aChain.IsClosed() ) return false; // the loop is not closed const std::vector& arcs = aChain.CArcs(); const SHAPE_ARC& arc = arcs[0]; TopoDS_Shape base_shape; base_shape = BRepPrimAPI_MakeCylinder( pcbIUScale.IUTomm( arc.GetRadius() ), aThickness ).Shape(); gp_Trsf shift; shift.SetTranslation( gp_Vec( pcbIUScale.IUTomm( arc.GetCenter().x - aOrigin.x ), -pcbIUScale.IUTomm( arc.GetCenter().y - aOrigin.y ), aZposition ) ); BRepBuilderAPI_Transform round_shape( base_shape, shift ); aShape = round_shape; if( aShape.IsNull() ) { ReportMessage( wxT( "failed to create a cylinder vertical shape\n" ) ); return false; } return true; } bool STEP_PCB_MODEL::MakeShapeAsThickSegment( TopoDS_Shape& aShape, VECTOR2D aStartPoint, VECTOR2D aEndPoint, double aWidth, double aThickness, double aZposition, const VECTOR2D& aOrigin ) { // make a wide segment from 2 lines and 2 180 deg arcs // We need 6 points (3 per arcs) VECTOR2D coords[6]; // We build a horizontal segment, and after rotate it double len = ( aEndPoint - aStartPoint ).EuclideanNorm(); double h_width = aWidth/2.0; // First is end point of first arc, and also start point of first line coords[0] = VECTOR2D{ 0.0, h_width }; // end point of first line and start point of second arc coords[1] = VECTOR2D{ len, h_width }; // middle point of second arc coords[2] = VECTOR2D{ len + h_width, 0.0 }; // start point of second line and end point of second arc coords[3] = VECTOR2D{ len, -h_width }; // end point of second line and start point of first arc coords[4] = VECTOR2D{ 0, -h_width }; // middle point of first arc coords[5] = VECTOR2D{ -h_width, 0.0 }; // Rotate and move to segment position EDA_ANGLE seg_angle( aEndPoint - aStartPoint ); for( int ii = 0; ii < 6; ii++ ) { RotatePoint( coords[ii], VECTOR2D{ 0, 0 }, -seg_angle ), coords[ii] += aStartPoint; } // Convert to 3D points gp_Pnt coords3D[ 6 ]; for( int ii = 0; ii < 6; ii++ ) { coords3D[ii] = gp_Pnt( pcbIUScale.IUTomm( coords[ii].x - aOrigin.x ), -pcbIUScale.IUTomm( coords[ii].y - aOrigin.y ), aZposition ); } // Build OpenCascade shape outlines BRepBuilderAPI_MakeWire wire; bool success = true; // Short segments (distance between end points < m_mergeOCCMaxDist(in mm)) must be // skipped because OCC merge end points, and a null shape is created bool short_seg = pcbIUScale.IUTomm( len ) <= m_mergeOCCMaxDist; try { TopoDS_Edge edge; if( short_seg ) { Handle( Geom_Circle ) circle = GC_MakeCircle( coords3D[1], // arc1 start point coords3D[2], // arc1 mid point coords3D[5] // arc2 mid point ); edge = BRepBuilderAPI_MakeEdge( circle ); wire.Add( edge ); } else { edge = BRepBuilderAPI_MakeEdge( coords3D[0], coords3D[1] ); wire.Add( edge ); Handle( Geom_TrimmedCurve ) arcOfCircle = GC_MakeArcOfCircle( coords3D[1], // start point coords3D[2], // mid point coords3D[3] // end point ); edge = BRepBuilderAPI_MakeEdge( arcOfCircle ); wire.Add( edge ); edge = BRepBuilderAPI_MakeEdge( coords3D[3], coords3D[4] ); wire.Add( edge ); Handle( Geom_TrimmedCurve ) arcOfCircle2 = GC_MakeArcOfCircle( coords3D[4], // start point coords3D[5], // mid point coords3D[0] // end point ); edge = BRepBuilderAPI_MakeEdge( arcOfCircle2 ); wire.Add( edge ); } } catch( const Standard_Failure& e ) { ReportMessage( wxString::Format( wxT( "build shape segment: OCC exception: %s\n" ), e.GetMessageString() ) ); return false; } BRepBuilderAPI_MakeFace face; try { gp_Pln plane( coords3D[0], gp::DZ() ); face = BRepBuilderAPI_MakeFace( plane, wire ); } catch( const Standard_Failure& e ) { ReportMessage( wxString::Format( wxT( "MakeShapeThickSegment: OCC exception: %s\n" ), e.GetMessageString() ) ); return false; } if( aThickness != 0.0 ) { aShape = BRepPrimAPI_MakePrism( face, gp_Vec( 0, 0, aThickness ) ); if( aShape.IsNull() ) { ReportMessage( wxT( "failed to create a prismatic shape\n" ) ); return false; } } else { aShape = face; } return success; } static wxString formatBBox( const BOX2I& aBBox ) { wxString str; UNITS_PROVIDER up( pcbIUScale, EDA_UNITS::MILLIMETRES ); str << "x0: " << up.StringFromValue( aBBox.GetLeft(), false ) << "; "; str << "y0: " << up.StringFromValue( aBBox.GetTop(), false ) << "; "; str << "x1: " << up.StringFromValue( aBBox.GetRight(), false ) << "; "; str << "y1: " << up.StringFromValue( aBBox.GetBottom(), false ); return str; } bool STEP_PCB_MODEL::MakeShapes( std::vector& aShapes, const SHAPE_POLY_SET& aPolySet, bool aConvertToArcs, double aThickness, double aZposition, const VECTOR2D& aOrigin ) { SHAPE_POLY_SET simplified = aPolySet; simplified.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); auto toPoint = [&]( const VECTOR2D& aKiCoords ) -> gp_Pnt { return gp_Pnt( pcbIUScale.IUTomm( aKiCoords.x - aOrigin.x ), -pcbIUScale.IUTomm( aKiCoords.y - aOrigin.y ), aZposition ); }; for( const SHAPE_POLY_SET::POLYGON& polygon : simplified.CPolygons() ) { auto makeWireFromChain = [&]( BRepLib_MakeWire& aMkWire, const SHAPE_LINE_CHAIN& aChain ) -> bool { try { auto addSegment = [&]( const VECTOR2I& aPt0, const VECTOR2I& aPt1 ) -> bool { if( aPt0 == aPt1 ) return false; gp_Pnt start = toPoint( aPt0 ); gp_Pnt end = toPoint( aPt1 ); // Do not export too short segments: they create broken shape because OCC thinks // start point and end point are at the same place double seg_len = std::hypot( end.X() - start.X(), end.Y() - start.Y() ); if( seg_len <= m_mergeOCCMaxDist ) return false; BRepBuilderAPI_MakeEdge mkEdge( start, end ); if( !mkEdge.IsDone() || mkEdge.Edge().IsNull() ) { ReportMessage( wxString::Format( wxT( "failed to make segment edge at (%d " "%d) -> (%d %d), skipping\n" ), aPt0.x, aPt0.y, aPt1.x, aPt1.y ) ); } else { aMkWire.Add( mkEdge.Edge() ); if( aMkWire.Error() != BRepLib_WireDone ) { ReportMessage( wxString::Format( wxT( "failed to add segment edge " "at (%d %d) -> (%d %d)\n" ), aPt0.x, aPt0.y, aPt1.x, aPt1.y ) ); return false; } } return true; }; auto addArc = [&]( const VECTOR2I& aPt0, const SHAPE_ARC& aArc ) -> bool { // Do not export too short segments: they create broken shape because OCC thinks Handle( Geom_Curve ) curve; if( aArc.GetCentralAngle() == ANGLE_360 ) { gp_Ax2 axis = gp::XOY(); axis.SetLocation( toPoint( aArc.GetCenter() ) ); curve = GC_MakeCircle( axis, pcbIUScale.IUTomm( aArc.GetRadius() ) ) .Value(); } else { curve = GC_MakeArcOfCircle( toPoint( aPt0 ), toPoint( aArc.GetArcMid() ), toPoint( aArc.GetP1() ) ) .Value(); } if( curve.IsNull() ) return false; aMkWire.Add( BRepBuilderAPI_MakeEdge( curve ) ); if( !aMkWire.IsDone() ) { ReportMessage( wxString::Format( wxT( "failed to add arc curve from (%d %d), arc p0 " "(%d %d), mid (%d %d), p1 (%d %d)\n" ), aPt0.x, aPt0.y, aArc.GetP0().x, aArc.GetP0().y, aArc.GetArcMid().x, aArc.GetArcMid().y, aArc.GetP1().x, aArc.GetP1().y ) ); return false; } return true; }; VECTOR2I firstPt; VECTOR2I lastPt; bool isFirstShape = true; for( int i = 0; i <= aChain.PointCount() && i != -1; i = aChain.NextShape( i ) ) { if( i == 0 ) { if( aChain.IsArcSegment( 0 ) && aChain.IsArcSegment( aChain.PointCount() - 1 ) && aChain.ArcIndex( 0 ) == aChain.ArcIndex( aChain.PointCount() - 1 ) ) { // Skip first arc (we should encounter it later) int nextShape = aChain.NextShape( i ); // If nextShape points to the end, then we have a circle. if( nextShape != -1 ) i = nextShape; } } if( isFirstShape ) lastPt = aChain.CPoint( i ); bool isArc = aChain.IsArcSegment( i ); if( aChain.IsArcStart( i ) ) { const SHAPE_ARC& currentArc = aChain.Arc( aChain.ArcIndex( i ) ); if( isFirstShape ) { firstPt = currentArc.GetP0(); lastPt = firstPt; } if( addSegment( lastPt, currentArc.GetP0() ) ) lastPt = currentArc.GetP0(); if( addArc( lastPt, currentArc ) ) lastPt = currentArc.GetP1(); } else if( !isArc ) { const SEG& seg = aChain.CSegment( i ); if( isFirstShape ) { firstPt = seg.A; lastPt = firstPt; } if( addSegment( lastPt, seg.A ) ) lastPt = seg.A; if( addSegment( lastPt, seg.B ) ) lastPt = seg.B; } isFirstShape = false; } if( lastPt != firstPt ) addSegment( lastPt, firstPt ); } catch( const Standard_Failure& e ) { ReportMessage( wxString::Format( wxT( "makeWireFromChain: OCC exception: %s\n" ), e.GetMessageString() ) ); return false; } return true; }; auto tryMakeWire = [&makeWireFromChain, &aZposition]( const SHAPE_LINE_CHAIN& aContour ) -> TopoDS_Wire { TopoDS_Wire wire; BRepLib_MakeWire mkWire; makeWireFromChain( mkWire, aContour ); if( mkWire.IsDone() ) { wire = mkWire.Wire(); } else { ReportMessage( wxString::Format( _( "Wire not done (contour points %d): OCC error %d\n" ), static_cast( aContour.PointCount() ), static_cast( mkWire.Error() ) ) ); ReportMessage( wxString::Format( _( "z: %g; bounding box: %s\n" ), aZposition, formatBBox( aContour.BBox() ) ) ); } if( !wire.IsNull() ) { BRepAlgoAPI_Check check( wire, false, true ); check.Perform(); if( !check.IsValid() ) { ReportMessage( wxString::Format( _( "\nWire self-interference check " "failed\n" ) ) ); ReportMessage( wxString::Format( _( "z: %g; bounding box: %s\n" ), aZposition, formatBBox( aContour.BBox() ) ) ); wire.Nullify(); } } return wire; }; BRepBuilderAPI_MakeFace mkFace; for( size_t contId = 0; contId < polygon.size(); contId++ ) { try { TopoDS_Wire wire; // Try to approximate the polygon with arcs first if( aConvertToArcs ) wire = tryMakeWire( approximateLineChainWithArcs( polygon[contId] ) ); // Fall back to original shape if( wire.IsNull() ) { wire = tryMakeWire( polygon[contId] ); if( aConvertToArcs && !wire.IsNull() ) ReportMessage( wxString::Format( _( "Using non-simplified polygon.\n" ) ) ); } if( contId == 0 ) // Outline { if( !wire.IsNull() ) mkFace = BRepBuilderAPI_MakeFace( wire ); else { ReportMessage( wxString::Format( _( "\n** Outline skipped **\n" ) ) ); ReportMessage( wxString::Format( _( "z: %g; bounding box: %s\n" ), aZposition, formatBBox( polygon[contId].BBox() ) ) ); continue; } } else // Hole { if( !wire.IsNull() ) mkFace.Add( wire ); else { ReportMessage( wxString::Format( _( "\n** Hole skipped **\n" ) ) ); ReportMessage( wxString::Format( _( "z: %g; bounding box: %s\n" ), aZposition, formatBBox( polygon[contId].BBox() ) ) ); } } } catch( const Standard_Failure& e ) { ReportMessage( wxString::Format( wxT( "MakeShapes (contour %d): OCC exception: %s\n" ), static_cast( contId ), e.GetMessageString() ) ); return false; } } if( mkFace.IsDone() ) { if( aThickness != 0.0 ) { TopoDS_Shape prism = BRepPrimAPI_MakePrism( mkFace, gp_Vec( 0, 0, aThickness ) ); aShapes.push_back( prism ); if( prism.IsNull() ) { ReportMessage( wxT( "Failed to create a prismatic shape\n" ) ); return false; } } else { aShapes.push_back( mkFace ); } } else { wxASSERT( false ); } } return true; } bool STEP_PCB_MODEL::CreatePCB( SHAPE_POLY_SET& aOutline, VECTOR2D aOrigin, bool aPushBoardBody ) { if( m_hasPCB ) { if( !isBoardOutlineValid() ) return false; return true; } Handle( XCAFDoc_ColorTool ) colorTool = XCAFDoc_DocumentTool::ColorTool( m_doc->Main() ); m_hasPCB = true; // whether or not operations fail we note that CreatePCB has been invoked // Support for more than one main outline (more than one board) ReportMessage( wxString::Format( wxT( "Build board outlines (%d outlines) with %d points.\n" ), aOutline.OutlineCount(), aOutline.FullPointCount() ) ); double boardThickness; double boardZPos; getBoardBodyZPlacement( boardZPos, boardThickness ); #if 0 // This code should work, and it is working most of time // However there are issues if the main outline is a circle with holes: // holes from vias and pads are not working // see bug https://gitlab.com/kicad/code/kicad/-/issues/17446 // (Holes are missing from STEP export with circular PCB outline) // Hard to say if the bug is in our code or in OCC 7.7 if( !MakeShapes( m_board_outlines, aOutline, false, boardThickness, boardZPos, aOrigin ) ) { // Error ReportMessage( wxString::Format( wxT( "OCC error creating main outline.\n" ) ) ); } #else // Workaround for bug #17446 Holes are missing from STEP export with circular PCB outline for( const SHAPE_POLY_SET::POLYGON& polygon : aOutline.CPolygons() ) { for( size_t contId = 0; contId < polygon.size(); contId++ ) { const SHAPE_LINE_CHAIN& contour = polygon[contId]; SHAPE_POLY_SET polyset; polyset.Append( contour ); if( contId == 0 ) // main Outline { if( !MakeShapes( m_board_outlines, polyset, false, boardThickness, boardZPos, aOrigin ) ) { ReportMessage( wxT( "OCC error creating main outline.\n" ) ); } } else // Hole inside the main outline { if( !MakeShapes( m_boardCutouts, polyset, false, boardThickness, boardZPos, aOrigin ) ) { ReportMessage( wxT( "OCC error creating hole in main outline.\n" ) ); } } } } #endif // Even if we've disabled board body export, we still need the shapes for bounding box calculations. Bnd_Box brdBndBox; for( const TopoDS_Shape& brdShape : m_board_outlines ) BRepBndLib::Add( brdShape, brdBndBox ); // subtract cutouts (if any) ReportMessage( wxString::Format( wxT( "Build board cutouts and holes (%d hole(s)).\n" ), (int) ( m_boardCutouts.size() + m_copperCutouts.size() ) ) ); auto buildBSB = [&brdBndBox]( std::vector& input, Bnd_BoundSortBox& bsbHoles ) { // We need to encompass every location we'll need to test in the global bbox, // otherwise Bnd_BoundSortBox doesn't work near the boundaries. Bnd_Box brdWithHolesBndBox = brdBndBox; Handle( Bnd_HArray1OfBox ) holeBoxSet = new Bnd_HArray1OfBox( 0, input.size() - 1 ); for( size_t i = 0; i < input.size(); i++ ) { Bnd_Box bbox; BRepBndLib::Add( input[i], bbox ); brdWithHolesBndBox.Add( bbox ); ( *holeBoxSet )[i] = bbox; } bsbHoles.Initialize( brdWithHolesBndBox, holeBoxSet ); }; auto subtractShapes = []( const wxString& aWhat, std::vector& aShapesList, std::vector& aHolesList, Bnd_BoundSortBox& aBSBHoles ) { // Remove holes for each item (board body or bodies, one can have more than one board) int cnt = 0; for( TopoDS_Shape& shape : aShapesList ) { Bnd_Box shapeBbox; BRepBndLib::Add( shape, shapeBbox ); const TColStd_ListOfInteger& indices = aBSBHoles.Compare( shapeBbox ); TopTools_ListOfShape holelist; for( const Standard_Integer& index : indices ) holelist.Append( aHolesList[index] ); if( cnt == 0 ) ReportMessage( wxString::Format( _( "Build holes for %s\n" ), aWhat ) ); cnt++; if( cnt % 10 == 0 ) ReportMessage( wxString::Format( _( "Cutting %d/%d %s\n" ), cnt, (int) aShapesList.size(), aWhat ) ); if( holelist.IsEmpty() ) continue; TopTools_ListOfShape cutArgs; cutArgs.Append( shape ); BRepAlgoAPI_Cut cut; cut.SetRunParallel( true ); cut.SetToFillHistory( false ); cut.SetArguments( cutArgs ); cut.SetTools( holelist ); cut.Build(); if( cut.HasErrors() || cut.HasWarnings() ) { ReportMessage( wxString::Format( _( "\n** Got problems while cutting %s number %d **\n" ), aWhat, cnt ) ); shapeBbox.Dump(); if( cut.HasErrors() ) { ReportMessage( _( "Errors:\n" ) ); cut.DumpErrors( std::cout ); } if( cut.HasWarnings() ) { ReportMessage( _( "Warnings:\n" ) ); cut.DumpWarnings( std::cout ); } std::cout << "\n"; } shape = cut.Shape(); } }; if( m_boardCutouts.size() ) { Bnd_BoundSortBox bsbHoles; buildBSB( m_boardCutouts, bsbHoles ); subtractShapes( _( "shapes" ), m_board_outlines, m_boardCutouts, bsbHoles ); } if( m_copperCutouts.size() ) { Bnd_BoundSortBox bsbHoles; buildBSB( m_copperCutouts, bsbHoles ); subtractShapes( _( "pads" ), m_board_copper_pads, m_copperCutouts, bsbHoles ); subtractShapes( _( "tracks" ), m_board_copper_tracks, m_copperCutouts, bsbHoles ); subtractShapes( _( "zones" ), m_board_copper_zones, m_copperCutouts, bsbHoles ); } // push the board to the data structure ReportMessage( wxT( "\nGenerate board full shape.\n" ) ); auto pushToAssembly = [&]( std::vector& aShapesList, Quantity_Color aColor, const wxString& aShapeName ) { int i = 1; for( TopoDS_Shape& shape : aShapesList ) { Handle( TDataStd_TreeNode ) node; // Dont expand the component or else coloring it gets hard TDF_Label lbl = m_assy->AddComponent( m_assy_label, shape, false ); m_pcb_labels.push_back( lbl ); if( m_pcb_labels.back().IsNull() ) break; lbl.FindAttribute( XCAFDoc::ShapeRefGUID(), node ); TDF_Label shpLbl = node->Father()->Label(); if( !shpLbl.IsNull() ) { colorTool->SetColor( shpLbl, aColor, XCAFDoc_ColorSurf ); wxString shapeName; if( aShapesList.size() > 1 ) { shapeName = wxString::Format( wxT( "%s_%s_%d" ), m_pcbName, aShapeName, i ); } else { shapeName = wxString::Format( wxT( "%s_%s" ), m_pcbName, aShapeName ); } TCollection_ExtendedString partname( shapeName.ToUTF8().data() ); TDataStd_Name::Set( shpLbl, partname ); } i++; } }; // AddComponent adds a label that has a reference (not a parent/child relation) to the real // label. We need to extract that real label to name it for the STEP output cleanly // Why are we trying to name the bare board? Because CAD tools like SolidWorks do fun things // like "deduplicate" imported STEPs by swapping STEP assembly components with already // identically named assemblies. So we want to avoid having the PCB be generally defaulted // to "Component" or "Assembly". // Init colors for the board body and the copper items (if any) Quantity_Color board_color( m_boardColor[0], m_boardColor[1], m_boardColor[2], Quantity_TOC_RGB ); Quantity_Color copper_color( m_copperColor[0], m_copperColor[1], m_copperColor[2], Quantity_TOC_RGB ); if( m_fuseShapes ) { ReportMessage( wxT( "Fusing shapes\n" ) ); auto iterateCopperItems = [this]( std::function aFn ) { for( TopoDS_Shape& shape : m_board_copper_tracks ) aFn( shape ); for( TopoDS_Shape& shape : m_board_copper_zones ) aFn( shape ); for( TopoDS_Shape& shape : m_board_copper_pads ) aFn( shape ); }; BRepAlgoAPI_Fuse mkFuse; TopTools_ListOfShape shapeArguments, shapeTools; iterateCopperItems( [&]( TopoDS_Shape& sh ) { if( sh.IsNull() ) return; if( shapeArguments.IsEmpty() ) shapeArguments.Append( sh ); else shapeTools.Append( sh ); } ); mkFuse.SetRunParallel( true ); mkFuse.SetToFillHistory( false ); mkFuse.SetArguments( shapeArguments ); mkFuse.SetTools( shapeTools ); mkFuse.Build(); if( mkFuse.HasErrors() || mkFuse.HasWarnings() ) { ReportMessage( _( "** Got problems while fusing shapes **\n" ) ); if( mkFuse.HasErrors() ) { ReportMessage( _( "Errors:\n" ) ); mkFuse.DumpErrors( std::cout ); } if( mkFuse.HasWarnings() ) { ReportMessage( _( "Warnings:\n" ) ); mkFuse.DumpWarnings( std::cout ); } std::cout << "\n"; } if( mkFuse.IsDone() ) { ReportMessage( wxT( "Removing extra edges/faces\n" ) ); TopoDS_Shape fusedShape = mkFuse.Shape(); ShapeUpgrade_UnifySameDomain unify( fusedShape, true, true, false ); unify.History() = nullptr; unify.Build(); TopoDS_Shape unifiedShapes = unify.Shape(); if( !unifiedShapes.IsNull() ) { m_board_copper_fused.emplace_back( unifiedShapes ); } else { ReportMessage( _( "** ShapeUpgrade_UnifySameDomain produced a null shape **\n" ) ); m_board_copper_fused.emplace_back( fusedShape ); } m_board_copper_tracks.clear(); m_board_copper_zones.clear(); m_board_copper_pads.clear(); } } pushToAssembly( m_board_copper_tracks, copper_color, "track" ); pushToAssembly( m_board_copper_zones, copper_color, "zone" ); pushToAssembly( m_board_copper_pads, copper_color, "pad" ); pushToAssembly( m_board_copper_fused, copper_color, "copper" ); if( aPushBoardBody ) pushToAssembly( m_board_outlines, board_color, "PCB" ); #if( defined OCC_VERSION_HEX ) && ( OCC_VERSION_HEX > 0x070101 ) m_assy->UpdateAssemblies(); #endif return true; } #ifdef SUPPORTS_IGES // write the assembly model in IGES format bool STEP_PCB_MODEL::WriteIGES( const wxString& aFileName ) { if( !isBoardOutlineValid() ) { ReportMessage( wxString::Format( wxT( "No valid PCB assembly; cannot create output file " "'%s'.\n" ), aFileName ) ); return false; } wxFileName fn( aFileName ); IGESControl_Controller::Init(); IGESCAFControl_Writer writer; writer.SetColorMode( Standard_True ); writer.SetNameMode( Standard_True ); IGESData_GlobalSection header = writer.Model()->GlobalSection(); header.SetFileName( new TCollection_HAsciiString( fn.GetFullName().ToAscii() ) ); header.SetSendName( new TCollection_HAsciiString( "KiCad electronic assembly" ) ); header.SetAuthorName( new TCollection_HAsciiString( Interface_Static::CVal( "write.iges.header.author" ) ) ); header.SetCompanyName( new TCollection_HAsciiString( Interface_Static::CVal( "write.iges.header.company" ) ) ); writer.Model()->SetGlobalSection( header ); if( Standard_False == writer.Perform( m_doc, aFileName.c_str() ) ) return false; return true; } #endif bool STEP_PCB_MODEL::WriteSTEP( const wxString& aFileName, bool aOptimize ) { if( !isBoardOutlineValid() ) { ReportMessage( wxString::Format( wxT( "No valid PCB assembly; cannot create output file " "'%s'.\n" ), aFileName ) ); return false; } wxFileName fn( aFileName ); STEPCAFControl_Writer writer; writer.SetColorMode( Standard_True ); writer.SetNameMode( Standard_True ); // This must be set before we "transfer" the document. // Should default to kicad_pcb.general.title_block.title, // but in the meantime, defaulting to the basename of the output // target is still better than "open cascade step translter v..." // UTF8 should be ok from ISO 10303-21:2016, but... older stuff? use boring ascii if( !Interface_Static::SetCVal( "write.step.product.name", fn.GetName().ToAscii() ) ) ReportMessage( wxT( "Failed to set step product name, but will attempt to continue." ) ); // Setting write.surfacecurve.mode to 0 reduces file size and write/read times. // But there are reports that this mode might be less compatible in some cases. if( !Interface_Static::SetIVal( "write.surfacecurve.mode", aOptimize ? 0 : 1 ) ) ReportMessage( wxT( "Failed to set surface curve mode, but will attempt to continue." ) ); if( Standard_False == writer.Transfer( m_doc, STEPControl_AsIs ) ) return false; APIHeaderSection_MakeHeader hdr( writer.ChangeWriter().Model() ); // Note: use only Ascii7 chars, non Ascii7 chars (therefore UFT8 chars) // are creating issues in the step file hdr.SetName( new TCollection_HAsciiString( fn.GetFullName().ToAscii() ) ); // TODO: how to control and ensure consistency with IGES? hdr.SetAuthorValue( 1, new TCollection_HAsciiString( "Pcbnew" ) ); hdr.SetOrganizationValue( 1, new TCollection_HAsciiString( "Kicad" ) ); hdr.SetOriginatingSystem( new TCollection_HAsciiString( "KiCad to STEP converter" ) ); hdr.SetDescriptionValue( 1, new TCollection_HAsciiString( "KiCad electronic assembly" ) ); bool success = true; // Creates a temporary file with a ascii7 name, because writer does not know unicode filenames. wxString currCWD = wxGetCwd(); wxString workCWD = fn.GetPath(); if( !workCWD.IsEmpty() ) wxSetWorkingDirectory( workCWD ); char tmpfname[] = "$tempfile$.step"; if( Standard_False == writer.Write( tmpfname ) ) success = false; if( success ) { // Preserve the permissions of the current file KIPLATFORM::IO::DuplicatePermissions( fn.GetFullPath(), tmpfname ); if( !wxRenameFile( tmpfname, fn.GetFullName(), true ) ) { ReportMessage( wxString::Format( wxT( "Cannot rename temporary file '%s' to '%s'.\n" ), tmpfname, fn.GetFullName() ) ); success = false; } } wxSetWorkingDirectory( currCWD ); return success; } bool STEP_PCB_MODEL::WriteBREP( const wxString& aFileName ) { if( !isBoardOutlineValid() ) { ReportMessage( wxString::Format( wxT( "No valid PCB assembly; cannot create output file " "'%s'.\n" ), aFileName ) ); return false; } // s_assy = shape tool for the source Handle( XCAFDoc_ShapeTool ) s_assy = XCAFDoc_DocumentTool::ShapeTool( m_doc->Main() ); // retrieve assembly as a single shape TopoDS_Shape shape = getOneShape( s_assy ); wxFileName fn( aFileName ); wxFFileOutputStream ffStream( fn.GetFullPath() ); wxStdOutputStream stdStream( ffStream ); #if OCC_VERSION_HEX >= 0x070600 BRepTools::Write( shape, stdStream, false, false, TopTools_FormatVersion_VERSION_1 ); #else BRepTools::Write( shape, stdStream ); #endif return true; } bool STEP_PCB_MODEL::WriteXAO( const wxString& aFileName ) { wxFileName fn( aFileName ); wxFFileOutputStream ffStream( fn.GetFullPath() ); wxStdOutputStream file( ffStream ); if( !ffStream.IsOk() ) { ReportMessage( wxString::Format( "Could not open file '%s'", fn.GetFullPath() ) ); return false; } // s_assy = shape tool for the source Handle( XCAFDoc_ShapeTool ) s_assy = XCAFDoc_DocumentTool::ShapeTool( m_doc->Main() ); // retrieve assembly as a single shape const TopoDS_Shape shape = getOneShape( s_assy ); std::map> groups[4]; TopExp_Explorer exp; int faceIndex = 0; for( exp.Init( shape, TopAbs_FACE ); exp.More(); exp.Next() ) { TopoDS_Shape subShape = exp.Current(); Bnd_Box bbox; BRepBndLib::Add( subShape, bbox ); for( const auto& [padKey, pair] : m_pad_points ) { const auto& [point, padTestShape] = pair; if( bbox.IsOut( point ) ) continue; BRepAdaptor_Surface surface( TopoDS::Face( subShape ) ); if( surface.GetType() != GeomAbs_Plane ) continue; BRepExtrema_DistShapeShape dist( padTestShape, subShape ); dist.Perform(); if( !dist.IsDone() ) continue; if( dist.Value() < Precision::Approximation() ) { // Push as a face group groups[2][padKey].push_back( faceIndex ); } } faceIndex++; } // Based on Gmsh code file << "" << std::endl; file << "" << std::endl; file << " " << std::endl; file << " " << std::endl; file << " " << std::endl; TopTools_IndexedMapOfShape mainMap; TopExp::MapShapes( shape, mainMap ); std::set topo[4]; static const TopAbs_ShapeEnum c_dimShapeTypes[] = { TopAbs_VERTEX, TopAbs_EDGE, TopAbs_FACE, TopAbs_SOLID }; static const std::string c_dimLabel[] = { "vertex", "edge", "face", "solid" }; static const std::string c_dimLabels[] = { "vertices", "edges", "faces", "solids" }; for( int dim = 0; dim < 4; dim++ ) { for( exp.Init( shape, c_dimShapeTypes[dim] ); exp.More(); exp.Next() ) { TopoDS_Shape subShape = exp.Current(); int idx = mainMap.FindIndex( subShape ); if( idx && !topo[dim].count( idx ) ) topo[dim].insert( idx ); } } for( int dim = 0; dim <= 3; dim++ ) { std::string labels = c_dimLabels[dim]; std::string label = c_dimLabel[dim]; file << " <" << labels << " count=\"" << topo[dim].size() << "\">" << std::endl; int index = 0; for( auto p : topo[dim] ) { std::string name( "" ); file << " <" << label << " index=\"" << index << "\" " << "name=\"" << name << "\" " << "reference=\"" << p << "\"/>" << std::endl; index++; } file << " " << std::endl; } file << " " << std::endl; file << " " << std::endl; file << " " << std::endl; for( int dim = 0; dim <= 3; dim++ ) { std::string label = c_dimLabel[dim]; for( auto g : groups[dim] ) { //std::string name = model->getPhysicalName( dim, g.first ); wxString name = g.first; if( name.empty() ) { // create same unique name as for MED export std::ostringstream gs; gs << "G_" << dim << "D_" << g.first; name = gs.str(); } file << " " << std::endl; for( auto index : g.second ) { file << " " << std::endl; } file << " " << std::endl; } } file << " " << std::endl; file << " " << std::endl; file << "" << std::endl; return true; } bool STEP_PCB_MODEL::getModelLabel( const std::string& aFileNameUTF8, VECTOR3D aScale, TDF_Label& aLabel, bool aSubstituteModels, wxString* aErrorMessage ) { std::string model_key = aFileNameUTF8 + "_" + std::to_string( aScale.x ) + "_" + std::to_string( aScale.y ) + "_" + std::to_string( aScale.z ); MODEL_MAP::const_iterator mm = m_models.find( model_key ); if( mm != m_models.end() ) { aLabel = mm->second; return true; } aLabel.Nullify(); Handle( TDocStd_Document ) doc; m_app->NewDocument( "MDTV-XCAF", doc ); wxString fileName( wxString::FromUTF8( aFileNameUTF8.c_str() ) ); MODEL3D_FORMAT_TYPE modelFmt = fileType( aFileNameUTF8.c_str() ); switch( modelFmt ) { case FMT_IGES: if( !readIGES( doc, aFileNameUTF8.c_str() ) ) { ReportMessage( wxString::Format( wxT( "readIGES() failed on filename '%s'.\n" ), fileName ) ); return false; } break; case FMT_STEP: if( !readSTEP( doc, aFileNameUTF8.c_str() ) ) { ReportMessage( wxString::Format( wxT( "readSTEP() failed on filename '%s'.\n" ), fileName ) ); return false; } break; case FMT_STEPZ: { // To export a compressed step file (.stpz or .stp.gz file), the best way is to // decaompress it in a temporaty file and load this temporary file wxFFileInputStream ifile( fileName ); wxFileName outFile( fileName ); outFile.SetPath( wxStandardPaths::Get().GetTempDir() ); outFile.SetExt( wxT( "step" ) ); wxFileOffset size = ifile.GetLength(); if( size == wxInvalidOffset ) { ReportMessage( wxString::Format( wxT( "getModelLabel() failed on filename '%s'.\n" ), fileName ) ); return false; } { bool success = false; wxFFileOutputStream ofile( outFile.GetFullPath() ); if( !ofile.IsOk() ) return false; char* buffer = new char[size]; ifile.Read( buffer, size ); std::string expanded; try { expanded = gzip::decompress( buffer, size ); success = true; } catch( ... ) { ReportMessage( wxString::Format( wxT( "failed to decompress '%s'.\n" ), fileName ) ); } if( expanded.empty() ) { ifile.Reset(); ifile.SeekI( 0 ); wxZipInputStream izipfile( ifile ); std::unique_ptr zip_file( izipfile.GetNextEntry() ); if( zip_file && !zip_file->IsDir() && izipfile.CanRead() ) { izipfile.Read( ofile ); success = true; } } else { ofile.Write( expanded.data(), expanded.size() ); } delete[] buffer; ofile.Close(); if( success ) { std::string altFileNameUTF8 = TO_UTF8( outFile.GetFullPath() ); success = getModelLabel( altFileNameUTF8, VECTOR3D( 1.0, 1.0, 1.0 ), aLabel, false ); } return success; } break; } case FMT_WRL: case FMT_WRZ: /* WRL files are preferred for internal rendering, due to superior material properties, etc. * However they are not suitable for MCAD export. * * If a .wrl file is specified, attempt to locate a replacement file for it. * * If a valid replacement file is found, the label for THAT file will be associated with * the .wrl file */ if( aSubstituteModels ) { wxFileName wrlName( fileName ); wxString basePath = wrlName.GetPath(); wxString baseName = wrlName.GetName(); // List of alternate files to look for // Given in order of preference // (Break if match is found) wxArrayString alts; // Step files alts.Add( wxT( "stp" ) ); alts.Add( wxT( "step" ) ); alts.Add( wxT( "STP" ) ); alts.Add( wxT( "STEP" ) ); alts.Add( wxT( "Stp" ) ); alts.Add( wxT( "Step" ) ); alts.Add( wxT( "stpz" ) ); alts.Add( wxT( "stpZ" ) ); alts.Add( wxT( "STPZ" ) ); alts.Add( wxT( "step.gz" ) ); alts.Add( wxT( "stp.gz" ) ); // IGES files alts.Add( wxT( "iges" ) ); alts.Add( wxT( "IGES" ) ); alts.Add( wxT( "igs" ) ); alts.Add( wxT( "IGS" ) ); //TODO - Other alternative formats? for( const auto& alt : alts ) { wxFileName altFile( basePath, baseName + wxT( "." ) + alt ); if( altFile.IsOk() && altFile.FileExists() ) { std::string altFileNameUTF8 = TO_UTF8( altFile.GetFullPath() ); // When substituting a STEP/IGS file for VRML, do not apply the VRML scaling // to the new STEP model. This process of auto-substitution is janky as all // heck so let's not mix up un-displayed scale factors with potentially // mis-matched files. And hope that the user doesn't have multiples files // named "model.wrl" and "model.stp" referring to different parts. // TODO: Fix model handling in v7. Default models should only be STP. // Have option to override this in DISPLAY. if( getModelLabel( altFileNameUTF8, VECTOR3D( 1.0, 1.0, 1.0 ), aLabel, false ) ) { return true; } } } // VRML models only work when exporting to glTF // Also OCCT < 7.9.0 fail to load most VRML 2.0 models because of Switch nodes if( readVRML( doc, aFileNameUTF8.c_str() ) ) { Handle( XCAFDoc_ShapeTool ) shapeTool = XCAFDoc_DocumentTool::ShapeTool( doc->Main() ); prefixNames( shapeTool->Label(), TCollection_ExtendedString( baseName.c_str().AsChar() ) ); } else { ReportMessage( wxString::Format( wxT( "readVRML() failed on filename '%s'.\n" ), fileName ) ); return false; } } else // Substitution is not allowed { if( aErrorMessage ) aErrorMessage->Printf( wxT( "Cannot load any VRML model for this export.\n" ) ); return false; } break; // TODO: implement IDF and EMN converters default: return false; } aLabel = transferModel( doc, m_doc, aScale ); if( aLabel.IsNull() ) { ReportMessage( wxString::Format( wxT( "Could not transfer model data from file '%s'.\n" ), fileName ) ); return false; } // attach the PART NAME ( base filename: note that in principle // different models may have the same base filename ) wxFileName afile( fileName ); std::string pname( afile.GetName().ToUTF8() ); TCollection_ExtendedString partname( pname.c_str() ); TDataStd_Name::Set( aLabel, partname ); m_models.insert( MODEL_DATUM( model_key, aLabel ) ); ++m_components; return true; } bool STEP_PCB_MODEL::getModelLocation( bool aBottom, VECTOR2D aPosition, double aRotation, VECTOR3D aOffset, VECTOR3D aOrientation, TopLoc_Location& aLocation ) { // Order of operations: // a. aOrientation is applied -Z*-Y*-X // b. aOffset is applied // Top ? add thickness to the Z offset // c. Bottom ? Rotate on X axis (in contrast to most ECAD which mirror on Y), // then rotate on +Z // Top ? rotate on -Z // d. aPosition is applied // // Note: Y axis is inverted in KiCad gp_Trsf lPos; lPos.SetTranslation( gp_Vec( aPosition.x, -aPosition.y, 0.0 ) ); // Offset board thickness aOffset.z += BOARD_OFFSET; double boardThickness; double boardZPos; getBoardBodyZPlacement( boardZPos, boardThickness ); double top = std::max( boardZPos, boardZPos + boardThickness ); double bottom = std::min( boardZPos, boardZPos + boardThickness ); gp_Trsf lRot; if( aBottom ) { aOffset.z -= bottom; lRot.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), aRotation ); lPos.Multiply( lRot ); lRot.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 1.0, 0.0, 0.0 ) ), M_PI ); lPos.Multiply( lRot ); } else { aOffset.z += top; lRot.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), aRotation ); lPos.Multiply( lRot ); } gp_Trsf lOff; lOff.SetTranslation( gp_Vec( aOffset.x, aOffset.y, aOffset.z ) ); lPos.Multiply( lOff ); gp_Trsf lOrient; lOrient.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), -aOrientation.z ); lPos.Multiply( lOrient ); lOrient.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 1.0, 0.0 ) ), -aOrientation.y ); lPos.Multiply( lOrient ); lOrient.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 1.0, 0.0, 0.0 ) ), -aOrientation.x ); lPos.Multiply( lOrient ); aLocation = TopLoc_Location( lPos ); return true; } bool STEP_PCB_MODEL::readIGES( Handle( TDocStd_Document )& doc, const char* fname ) { IGESControl_Controller::Init(); IGESCAFControl_Reader reader; IFSelect_ReturnStatus stat = reader.ReadFile( fname ); if( stat != IFSelect_RetDone ) return false; // Enable user-defined shape precision if( !Interface_Static::SetIVal( "read.precision.mode", 1 ) ) return false; // Set the shape conversion precision to USER_PREC (default 0.0001 has too many triangles) if( !Interface_Static::SetRVal( "read.precision.val", USER_PREC ) ) return false; // set other translation options reader.SetColorMode( true ); // use model colors reader.SetNameMode( false ); // don't use IGES label names reader.SetLayerMode( false ); // ignore LAYER data if( !reader.Transfer( doc ) ) { if( doc->CanClose() == CDM_CCS_OK ) doc->Close(); return false; } // are there any shapes to translate? if( reader.NbShapes() < 1 ) { if( doc->CanClose() == CDM_CCS_OK ) doc->Close(); return false; } return true; } bool STEP_PCB_MODEL::readSTEP( Handle( TDocStd_Document )& doc, const char* fname ) { STEPCAFControl_Reader reader; IFSelect_ReturnStatus stat = reader.ReadFile( fname ); if( stat != IFSelect_RetDone ) return false; // Enable user-defined shape precision if( !Interface_Static::SetIVal( "read.precision.mode", 1 ) ) return false; // Set the shape conversion precision to USER_PREC (default 0.0001 has too many triangles) if( !Interface_Static::SetRVal( "read.precision.val", USER_PREC ) ) return false; // set other translation options reader.SetColorMode( true ); // use model colors reader.SetNameMode( true ); // use label names reader.SetLayerMode( false ); // ignore LAYER data if( !reader.Transfer( doc ) ) { if( doc->CanClose() == CDM_CCS_OK ) doc->Close(); return false; } // are there any shapes to translate? if( reader.NbRootsForTransfer() < 1 ) { if( doc->CanClose() == CDM_CCS_OK ) doc->Close(); return false; } return true; } bool STEP_PCB_MODEL::readVRML( Handle( TDocStd_Document ) & doc, const char* fname ) { #if OCC_VERSION_HEX >= 0x070700 VrmlAPI_CafReader reader; RWMesh_CoordinateSystemConverter conv; conv.SetInputLengthUnit( 2.54 ); reader.SetCoordinateSystemConverter( conv ); reader.SetDocument( doc ); if( !reader.Perform( TCollection_AsciiString( fname ), Message_ProgressRange() ) ) return false; return true; #else return false; #endif } TDF_Label STEP_PCB_MODEL::transferModel( Handle( TDocStd_Document ) & source, Handle( TDocStd_Document ) & dest, VECTOR3D aScale ) { // transfer data from Source into a top level component of Dest // s_assy = shape tool for the source Handle( XCAFDoc_ShapeTool ) s_assy = XCAFDoc_DocumentTool::ShapeTool( source->Main() ); // retrieve all free shapes within the assembly TDF_LabelSequence frshapes; s_assy->GetFreeShapes( frshapes ); // d_assy = shape tool for the destination Handle( XCAFDoc_ShapeTool ) d_assy = XCAFDoc_DocumentTool::ShapeTool( dest->Main() ); // create a new shape within the destination and set the assembly tool to point to it TDF_Label d_targetLabel = d_assy->NewShape(); if( frshapes.Size() == 1 ) { TDocStd_XLinkTool link; link.Copy( d_targetLabel, frshapes.First() ); } else { // Rare case for( TDF_Label& s_shapeLabel : frshapes ) { TDF_Label d_component = d_assy->NewShape(); TDocStd_XLinkTool link; link.Copy( d_component, s_shapeLabel ); d_assy->AddComponent( d_targetLabel, d_component, TopLoc_Location() ); } } if( aScale.x != 1.0 || aScale.y != 1.0 || aScale.z != 1.0 ) rescaleShapes( d_targetLabel, gp_XYZ( aScale.x, aScale.y, aScale.z ) ); return d_targetLabel; } bool STEP_PCB_MODEL::WriteGLTF( const wxString& aFileName ) { if( !isBoardOutlineValid() ) { ReportMessage( wxString::Format( wxT( "No valid PCB assembly; cannot create output file " "'%s'.\n" ), aFileName ) ); return false; } TDF_LabelSequence freeShapes; m_assy->GetFreeShapes( freeShapes ); ReportMessage( wxT( "Meshing model\n" ) ); // GLTF is a mesh format, we have to trigger opencascade to mesh the shapes we composited into the asesmbly // To mesh models, lets just grab the free shape root and execute on them for( Standard_Integer i = 1; i <= freeShapes.Length(); ++i ) { TDF_Label label = freeShapes.Value( i ); TopoDS_Shape shape; m_assy->GetShape( label, shape ); // These deflection values basically affect the accuracy of the mesh generated, a tighter // deflection will result in larger meshes // We could make this a tunable parameter, but for now fix it const Standard_Real linearDeflection = 0.01; const Standard_Real angularDeflection = 0.5; BRepMesh_IncrementalMesh mesh( shape, linearDeflection, Standard_False, angularDeflection, Standard_True ); } wxFileName fn( aFileName ); const char* tmpGltfname = "$tempfile$.glb"; RWGltf_CafWriter cafWriter( tmpGltfname, true ); cafWriter.SetTransformationFormat( RWGltf_WriterTrsfFormat_Compact ); cafWriter.ChangeCoordinateSystemConverter().SetInputLengthUnit( 0.001 ); cafWriter.ChangeCoordinateSystemConverter().SetInputCoordinateSystem( RWMesh_CoordinateSystem_Zup ); #if OCC_VERSION_HEX >= 0x070700 cafWriter.SetParallel( true ); #endif TColStd_IndexedDataMapOfStringString metadata; metadata.Add( TCollection_AsciiString( "pcb_name" ), TCollection_ExtendedString( fn.GetName().wc_str() ) ); metadata.Add( TCollection_AsciiString( "source_pcb_file" ), TCollection_ExtendedString( fn.GetFullName().wc_str() ) ); metadata.Add( TCollection_AsciiString( "generator" ), TCollection_AsciiString( wxString::Format( wxS( "KiCad %s" ), GetSemanticVersion() ).ToAscii() ) ); metadata.Add( TCollection_AsciiString( "generated_at" ), TCollection_AsciiString( GetISO8601CurrentDateTime().ToAscii() ) ); bool success = true; // Creates a temporary file with a ascii7 name, because writer does not know unicode filenames. wxString currCWD = wxGetCwd(); wxString workCWD = fn.GetPath(); if( !workCWD.IsEmpty() ) wxSetWorkingDirectory( workCWD ); success = cafWriter.Perform( m_doc, metadata, Message_ProgressRange() ); if( success ) { // Preserve the permissions of the current file KIPLATFORM::IO::DuplicatePermissions( fn.GetFullPath(), tmpGltfname ); if( !wxRenameFile( tmpGltfname, fn.GetFullName(), true ) ) { ReportMessage( wxString::Format( wxT( "Cannot rename temporary file '%s' to '%s'.\n" ), tmpGltfname, fn.GetFullName() ) ); success = false; } } wxSetWorkingDirectory( currCWD ); return success; }