/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2018 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file class_pad_custom_shape_functions.cpp * class D_PAD functions specific to custom shaped pads. */ #include #include #include #include #include #include #include #include #include #include void PAD_CS_PRIMITIVE::ExportTo( DRAWSEGMENT* aTarget ) { aTarget->SetShape( m_Shape ); aTarget->SetWidth( m_Thickness ); aTarget->SetStart( m_Start ); aTarget->SetEnd( m_End ); // in a DRAWSEGMENT the radius of a circle is calculated from the // center and one point on the circle outline (stored in m_End) if( m_Shape == S_CIRCLE ) { wxPoint end = m_Start; end.x += m_Radius; aTarget->SetEnd( end ); } aTarget->SetAngle( m_ArcAngle ); aTarget->SetPolyPoints( m_Poly ); } void PAD_CS_PRIMITIVE::ExportTo( EDGE_MODULE* aTarget ) { ExportTo( static_cast( aTarget ) ); // Initialize coordinates specific to the EDGE_MODULE (m_Start0 and m_End0) aTarget->SetLocalCoord(); } void PAD_CS_PRIMITIVE::Move( wxPoint aMoveVector ) { m_Start += aMoveVector; m_End += aMoveVector; for( auto& corner : m_Poly ) { corner += aMoveVector; } } /* * Has meaning only for free shape pads. * add a free shape to the shape list. * the shape is a polygon (can be with thick outline), segment, circle or arc */ void D_PAD::AddPrimitive( const SHAPE_POLY_SET& aPoly, int aThickness ) { std::vector points; // If aPoly has holes, convert it to a polygon with no holes. SHAPE_POLY_SET poly_no_hole; poly_no_hole.Append( aPoly ); poly_no_hole.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); for( auto iter = poly_no_hole.CIterate(); iter; iter++ ) points.push_back( wxPoint( iter->x, iter->y ) ); AddPrimitive( points, aThickness ); } void D_PAD::AddPrimitive( const std::vector& aPoly, int aThickness ) { PAD_CS_PRIMITIVE shape( S_POLYGON ); shape.m_Poly = aPoly; shape.m_Thickness = aThickness; m_basicShapes.push_back( shape ); MergePrimitivesAsPolygon(); } void D_PAD::AddPrimitive( wxPoint aStart, wxPoint aEnd, int aThickness ) { PAD_CS_PRIMITIVE shape( S_SEGMENT ); shape.m_Start = aStart; shape.m_End = aEnd; shape.m_Thickness = aThickness; m_basicShapes.push_back( shape ); MergePrimitivesAsPolygon(); } void D_PAD::AddPrimitive( wxPoint aCenter, wxPoint aStart, int aArcAngle, int aThickness ) { PAD_CS_PRIMITIVE shape( S_ARC ); shape.m_Start = aCenter; shape.m_End = aStart; shape.m_ArcAngle = aArcAngle; shape.m_Thickness = aThickness; m_basicShapes.push_back( shape ); MergePrimitivesAsPolygon(); } void D_PAD::AddPrimitive( wxPoint aCenter, int aRadius, int aThickness ) { PAD_CS_PRIMITIVE shape( S_CIRCLE ); shape.m_Start = aCenter; shape.m_Radius = aRadius; shape.m_Thickness = aThickness; m_basicShapes.push_back( shape ); MergePrimitivesAsPolygon(); } bool D_PAD::SetPrimitives( const std::vector& aPrimitivesList ) { // clear old list m_basicShapes.clear(); // Import to the basic shape list if( aPrimitivesList.size() ) m_basicShapes = aPrimitivesList; // Only one polygon is expected (pad area = only one copper area) return MergePrimitivesAsPolygon(); } bool D_PAD::AddPrimitives( const std::vector& aPrimitivesList ) { for( const auto& prim : aPrimitivesList ) m_basicShapes.push_back( prim ); return MergePrimitivesAsPolygon(); } // clear the basic shapes list and associated data void D_PAD::DeletePrimitivesList() { m_basicShapes.clear(); m_customShapeAsPolygon.RemoveAllContours(); } bool D_PAD::buildCustomPadPolygon( SHAPE_POLY_SET* aMergedPolygon, int aCircleToSegmentsCount ) { SHAPE_POLY_SET aux_polyset; for( unsigned cnt = 0; cnt < m_basicShapes.size(); ++cnt ) { const PAD_CS_PRIMITIVE& bshape = m_basicShapes[cnt]; switch( bshape.m_Shape ) { case S_SEGMENT: // usual segment : line with rounded ends { int numSegs = std::max( GetArcToSegmentCount( bshape.m_Thickness / 2, ARC_HIGH_DEF, 360.0 ), aCircleToSegmentsCount ); TransformRoundedEndsSegmentToPolygon( aux_polyset, bshape.m_Start, bshape.m_End, numSegs, bshape.m_Thickness ); break; } case S_ARC: // Arc with rounded ends { int numSegs = std::max( GetArcToSegmentCount( bshape.m_Radius, ARC_HIGH_DEF, 360.0 ), aCircleToSegmentsCount ); TransformArcToPolygon( aux_polyset, bshape.m_Start, bshape.m_End, bshape.m_ArcAngle, numSegs, bshape.m_Thickness ); break; } case S_CIRCLE: // ring or circle { int numSegs = std::max( GetArcToSegmentCount( bshape.m_Radius, ARC_HIGH_DEF, 360.0 ), aCircleToSegmentsCount ); if( bshape.m_Thickness ) // ring TransformRingToPolygon( aux_polyset, bshape.m_Start, bshape.m_Radius, numSegs, bshape.m_Thickness ) ; else // Filled circle TransformCircleToPolygon( aux_polyset, bshape.m_Start, bshape.m_Radius, numSegs ) ; break; } case S_POLYGON: // polygon if( bshape.m_Poly.size() < 2 ) break; // Malformed polygon. { // Insert the polygon: const std::vector< wxPoint>& poly = bshape.m_Poly; aux_polyset.NewOutline(); if( bshape.m_Thickness ) { SHAPE_POLY_SET polyset; polyset.NewOutline(); for( unsigned ii = 0; ii < poly.size(); ii++ ) { polyset.Append( poly[ii].x, poly[ii].y ); } polyset.Inflate( bshape.m_Thickness/2, ARC_APPROX_SEGMENTS_COUNT_HIGH_DEF ); aux_polyset.Append( polyset ); } else for( unsigned ii = 0; ii < poly.size(); ii++ ) aux_polyset.Append( poly[ii].x, poly[ii].y ); } break; default: break; } } aux_polyset.Simplify( SHAPE_POLY_SET::PM_FAST ); // Merge all polygons with the initial pad anchor shape if( aux_polyset.OutlineCount() ) { aMergedPolygon->BooleanAdd( aux_polyset, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); aMergedPolygon->Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); } return aMergedPolygon->OutlineCount() <= 1; } /* Merge all basic shapes, converted to a polygon in one polygon, * return true if OK, false in there is more than one polygon * in aMergedPolygon */ bool D_PAD::MergePrimitivesAsPolygon( SHAPE_POLY_SET* aMergedPolygon, int aCircleToSegmentsCount ) { // if aMergedPolygon == NULL, use m_customShapeAsPolygon as target if( !aMergedPolygon ) aMergedPolygon = &m_customShapeAsPolygon; aMergedPolygon->RemoveAllContours(); // Add the anchor pad shape in aMergedPolygon, others in aux_polyset: // The anchor pad is always at 0,0 switch( GetAnchorPadShape() ) { default: case PAD_SHAPE_CIRCLE: TransformCircleToPolygon( *aMergedPolygon, wxPoint( 0,0 ), GetSize().x/2, aCircleToSegmentsCount ); break; case PAD_SHAPE_RECT: { SHAPE_RECT rect( -GetSize().x/2, -GetSize().y/2, GetSize().x, GetSize().y ); aMergedPolygon->AddOutline( rect.Outline() ); } break; } if ( !buildCustomPadPolygon( aMergedPolygon, aCircleToSegmentsCount ) ) return false; m_boundingRadius = -1; // The current bouding radius is no more valid. return aMergedPolygon->OutlineCount() <= 1; } void D_PAD::CustomShapeAsPolygonToBoardPosition( SHAPE_POLY_SET * aMergedPolygon, wxPoint aPosition, double aRotation ) const { if( aMergedPolygon->OutlineCount() == 0 ) return; // Move, rotate, ... coordinates in aMergedPolygon according to the // pad position and orientation for( int cnt = 0; cnt < aMergedPolygon->OutlineCount(); ++cnt ) { SHAPE_LINE_CHAIN& poly = aMergedPolygon->Outline( cnt ); for( int ii = 0; ii < poly.PointCount(); ++ii ) { wxPoint corner( poly.Point( ii ).x, poly.Point( ii ).y ); RotatePoint( &corner, aRotation ); corner += aPosition; poly.Point( ii ).x = corner.x; poly.Point( ii ).y = corner.y; } } } bool D_PAD::GetBestAnchorPosition( VECTOR2I& aPos ) { SHAPE_POLY_SET poly; if ( !buildCustomPadPolygon( &poly, ARC_APPROX_SEGMENTS_COUNT_LOW_DEF ) ) return false; const int minSteps = 10; const int maxSteps = 50; int stepsX, stepsY; auto bbox = poly.BBox(); if( bbox.GetWidth() < bbox.GetHeight() ) { stepsX = minSteps; stepsY = minSteps * (double) bbox.GetHeight() / (double )(bbox.GetWidth() + 1); } else { stepsY = minSteps; stepsX = minSteps * (double) bbox.GetWidth() / (double )(bbox.GetHeight() + 1); } stepsX = std::max(minSteps, std::min( maxSteps, stepsX ) ); stepsY = std::max(minSteps, std::min( maxSteps, stepsY ) ); auto center = bbox.Centre(); auto minDist = std::numeric_limits::max(); int64_t minDistEdge; if( GetAnchorPadShape() == PAD_SHAPE_CIRCLE ) { minDistEdge = GetSize().x; } else { minDistEdge = std::max( GetSize().x, GetSize().y ); } OPT bestAnchor( []()->OPT { return NULLOPT; }() ); for ( int y = 0; y < stepsY ; y++ ) { for ( int x = 0; x < stepsX; x++ ) { VECTOR2I p = bbox.GetPosition(); p.x += rescale( x, bbox.GetWidth(), (stepsX - 1) ); p.y += rescale( y, bbox.GetHeight(), (stepsY - 1) ); if ( poly.Contains(p) ) { auto dist = (center - p).EuclideanNorm(); auto distEdge = poly.COutline(0).Distance( p, true ); if ( distEdge >= minDistEdge ) { if ( dist < minDist ) { bestAnchor = p; minDist = dist; } } } } } if ( bestAnchor ) { aPos = *bestAnchor; return true; } return false; }