/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
 * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
 * Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com>
 * Copyright (C) 1992-2021 KiCad Developers, see AUTHORS.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

#include <bezier_curves.h>
#include <base_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <eda_draw_frame.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_circle.h>
#include <macros.h>
#include <math/util.h>      // for KiROUND
#include <eda_shape.h>
#include <plotters/plotter.h>


EDA_SHAPE::EDA_SHAPE( SHAPE_T aType, int aLineWidth, FILL_T aFill, bool eeWinding ) :
    m_endsSwapped( false ),
    m_shape( aType ),
    m_width( aLineWidth ),
    m_fill( aFill ),
    m_editState( 0 ),
    m_eeWinding( eeWinding )
{
}


EDA_SHAPE::~EDA_SHAPE()
{
}


wxString EDA_SHAPE::ShowShape() const
{
    switch( m_shape )
    {
    case SHAPE_T::SEGMENT: return _( "Line" );
    case SHAPE_T::RECT:    return _( "Rect" );
    case SHAPE_T::ARC:     return _( "Arc" );
    case SHAPE_T::CIRCLE:  return _( "Circle" );
    case SHAPE_T::BEZIER:  return _( "Bezier Curve" );
    case SHAPE_T::POLY:    return _( "Polygon" );
    default:               return wxT( "??" );
    }
}


wxString EDA_SHAPE::SHAPE_T_asString() const
{
    switch( m_shape )
    {
    case SHAPE_T::SEGMENT: return "S_SEGMENT";
    case SHAPE_T::RECT:    return "S_RECT";
    case SHAPE_T::ARC:     return "S_ARC";
    case SHAPE_T::CIRCLE:  return "S_CIRCLE";
    case SHAPE_T::POLY:    return "S_POLYGON";
    case SHAPE_T::BEZIER:  return "S_CURVE";
    case SHAPE_T::LAST:    return "!S_LAST!";  // Synthetic value, but if we come across it then
                                               // we're going to want to know.
    }

    return wxEmptyString;  // Just to quiet GCC.
}


void EDA_SHAPE::setPosition( const wxPoint& aPos )
{
    move( aPos - getPosition() );
}


wxPoint EDA_SHAPE::getPosition() const
{
    if( m_shape == SHAPE_T::ARC )
        return getCenter();
    else if( m_shape == SHAPE_T::POLY )
        return (wxPoint) m_poly.CVertex( 0 );
    else
        return m_start;
}


double EDA_SHAPE::GetLength() const
{
    double length = 0.0;

    switch( m_shape )
    {
    case SHAPE_T::BEZIER:
        for( size_t ii = 1; ii < m_bezierPoints.size(); ++ii )
            length += GetLineLength( m_bezierPoints[ ii - 1], m_bezierPoints[ii] );

        return length;

    case SHAPE_T::SEGMENT:
        return GetLineLength( GetStart(), GetEnd() );

    case SHAPE_T::POLY:
        for( int ii = 0; ii < m_poly.COutline( 0 ).SegmentCount(); ii++ )
            length += m_poly.COutline( 0 ).CSegment( ii ).Length();

        return length;

    case SHAPE_T::ARC:
        return 2 * M_PI * GetRadius() * ( GetArcAngle() / 3600.0 );

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return 0.0;
    }
}


void EDA_SHAPE::move( const wxPoint& aMoveVector )
{
    switch ( m_shape )
    {
    case SHAPE_T::ARC:
    case SHAPE_T::SEGMENT:
    case SHAPE_T::RECT:
    case SHAPE_T::CIRCLE:
        m_start += aMoveVector;
        m_end += aMoveVector;
        m_arcCenter += aMoveVector;
        break;

    case SHAPE_T::POLY:
        m_poly.Move( VECTOR2I( aMoveVector ) );
        break;

    case SHAPE_T::BEZIER:
        m_start += aMoveVector;
        m_end += aMoveVector;
        m_bezierC1 += aMoveVector;
        m_bezierC2 += aMoveVector;

        for( wxPoint& pt : m_bezierPoints)
            pt += aMoveVector;

        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


void EDA_SHAPE::scale( double aScale )
{
    auto scalePt = [&]( wxPoint& pt )
                   {
                       pt.x = KiROUND( pt.x * aScale );
                       pt.y = KiROUND( pt.y * aScale );
                   };

    switch( m_shape )
    {
    case SHAPE_T::ARC:
    case SHAPE_T::SEGMENT:
    case SHAPE_T::RECT:
        scalePt( m_start );
        scalePt( m_end );
        scalePt( m_arcCenter );
        break;

    case SHAPE_T::CIRCLE: //  ring or circle
        scalePt( m_start );
        m_end.x = m_start.x + KiROUND( GetRadius() * aScale );
        m_end.y = m_start.y;
        break;

    case SHAPE_T::POLY: // polygon
    {
        std::vector<wxPoint> pts;

        for( const VECTOR2I& pt : m_poly.Outline( 0 ).CPoints() )
        {
            pts.emplace_back( pt );
            scalePt( pts.back() );
        }

        SetPolyPoints( pts );
    }
        break;

    case SHAPE_T::BEZIER:
        scalePt( m_start );
        scalePt( m_end );
        scalePt( m_bezierC1 );
        scalePt( m_bezierC2 );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


void EDA_SHAPE::rotate( const wxPoint& aRotCentre, double aAngle )
{
    switch( m_shape )
    {
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
        RotatePoint( &m_start, aRotCentre, aAngle );
        RotatePoint( &m_end, aRotCentre, aAngle );
        break;

    case SHAPE_T::ARC:
        RotatePoint( &m_start, aRotCentre, aAngle );
        RotatePoint( &m_end, aRotCentre, aAngle );
        RotatePoint( &m_arcCenter, aRotCentre, aAngle );
        break;

    case SHAPE_T::RECT:
        if( KiROUND( aAngle ) % 900 == 0 )
        {
            RotatePoint( &m_start, aRotCentre, aAngle );
            RotatePoint( &m_end, aRotCentre, aAngle );
            break;
        }

        // Convert non-cartesian-rotated rect to a diamond
        m_shape = SHAPE_T::POLY;
        m_poly.RemoveAllContours();
        m_poly.NewOutline();
        m_poly.Append( m_start );
        m_poly.Append( m_end.x, m_start.y );
        m_poly.Append( m_end );
        m_poly.Append( m_start.x, m_end.y );

        KI_FALLTHROUGH;

    case SHAPE_T::POLY:
        m_poly.Rotate( -DECIDEG2RAD( aAngle ), VECTOR2I( aRotCentre ) );
        break;

    case SHAPE_T::BEZIER:
        RotatePoint( &m_start, aRotCentre, aAngle);
        RotatePoint( &m_end, aRotCentre, aAngle);
        RotatePoint( &m_bezierC1, aRotCentre, aAngle);
        RotatePoint( &m_bezierC2, aRotCentre, aAngle);

        for( wxPoint& pt : m_bezierPoints )
            RotatePoint( &pt, aRotCentre, aAngle);

        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


void EDA_SHAPE::flip( const wxPoint& aCentre, bool aFlipLeftRight )
{
    switch ( m_shape )
    {
    case SHAPE_T::SEGMENT:
    case SHAPE_T::RECT:
        if( aFlipLeftRight )
        {
            m_start.x = aCentre.x - ( m_start.x - aCentre.x );
            m_end.x   = aCentre.x - ( m_end.x - aCentre.x );
        }
        else
        {
            m_start.y = aCentre.y - ( m_start.y - aCentre.y );
            m_end.y   = aCentre.y - ( m_end.y - aCentre.y );
        }

        std::swap( m_start, m_end );
        break;

    case SHAPE_T::CIRCLE:
        if( aFlipLeftRight )
        {
            m_start.x = aCentre.x - ( m_start.x - aCentre.x );
            m_end.x   = aCentre.x - ( m_end.x - aCentre.x );
        }
        else
        {
            m_start.y = aCentre.y - ( m_start.y - aCentre.y );
            m_end.y   = aCentre.y - ( m_end.y - aCentre.y );
        }
        break;

    case SHAPE_T::ARC:
        if( aFlipLeftRight )
        {
            m_start.x     = aCentre.x - ( m_start.x - aCentre.x );
            m_end.x       = aCentre.x - ( m_end.x - aCentre.x );
            m_arcCenter.x = aCentre.x - ( m_arcCenter.x - aCentre.x );
        }
        else
        {
            m_start.y     = aCentre.y - ( m_start.y - aCentre.y );
            m_end.y       = aCentre.y - ( m_end.y - aCentre.y );
            m_arcCenter.y = aCentre.y - ( m_arcCenter.y - aCentre.y );
        }

        std::swap( m_start, m_end );
        break;

    case SHAPE_T::POLY:
        m_poly.Mirror( aFlipLeftRight, !aFlipLeftRight, VECTOR2I( aCentre ) );
        break;

    case SHAPE_T::BEZIER:
        if( aFlipLeftRight )
        {
            m_start.x    = aCentre.x - ( m_start.x - aCentre.x );
            m_end.x      = aCentre.x - ( m_end.x - aCentre.x );
            m_bezierC1.x = aCentre.x - ( m_bezierC1.x - aCentre.x );
            m_bezierC2.x = aCentre.x - ( m_bezierC2.x - aCentre.x );
        }
        else
        {
            m_start.y    = aCentre.y - ( m_start.y - aCentre.y );
            m_end.y      = aCentre.y - ( m_end.y - aCentre.y );
            m_bezierC1.y = aCentre.y - ( m_bezierC1.y - aCentre.y );
            m_bezierC2.y = aCentre.y - ( m_bezierC2.y - aCentre.y );
        }

        // Rebuild the poly points shape
        {
            std::vector<wxPoint> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
            BEZIER_POLY converter( ctrlPoints );
            converter.GetPoly( m_bezierPoints, m_width );
        }
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


void EDA_SHAPE::RebuildBezierToSegmentsPointsList( int aMinSegLen )
{
    // Has meaning only for S_CURVE DRAW_SEGMENT shape
    if( m_shape != SHAPE_T::BEZIER )
    {
        m_bezierPoints.clear();
        return;
    }

    // Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
    m_bezierPoints = buildBezierToSegmentsPointsList( aMinSegLen );
}


const std::vector<wxPoint> EDA_SHAPE::buildBezierToSegmentsPointsList( int aMinSegLen  ) const
{
    std::vector<wxPoint> bezierPoints;

    // Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
    std::vector<wxPoint> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
    BEZIER_POLY converter( ctrlPoints );
    converter.GetPoly( bezierPoints, aMinSegLen );

    return bezierPoints;
}


wxPoint EDA_SHAPE::getCenter() const
{
    switch( m_shape )
    {
    case SHAPE_T::ARC:
        return m_arcCenter;

    case SHAPE_T::CIRCLE:
        return m_start;

    case SHAPE_T::SEGMENT:
        // Midpoint of the line
        return ( m_start + m_end ) / 2;

    case SHAPE_T::POLY:
    case SHAPE_T::RECT:
    case SHAPE_T::BEZIER:
        return getBoundingBox().Centre();

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return wxPoint();
    }
}


void EDA_SHAPE::SetCenter( const wxPoint& aCenter )
{
    switch( m_shape )
    {
    case SHAPE_T::ARC:
        m_arcCenter = aCenter;
        break;

    case SHAPE_T::CIRCLE:
        m_start = aCenter;
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }
}


wxPoint EDA_SHAPE::GetArcMid() const
{
    wxPoint mid = m_start;
    RotatePoint( &mid, m_arcCenter, -GetArcAngle() / 2.0 );
    return mid;
}


void EDA_SHAPE::CalcArcAngles( double& aStartAngle, double& aEndAngle ) const
{
    VECTOR2D startRadial( GetStart() - getCenter() );
    VECTOR2D endRadial( GetEnd() - getCenter() );

    aStartAngle = 180.0 / M_PI * atan2( startRadial.y, startRadial.x );
    aEndAngle = 180.0 / M_PI * atan2( endRadial.y, endRadial.x );

    if( aEndAngle == aStartAngle )
        aEndAngle = aStartAngle + 360.0;   // ring, not null

    if( aStartAngle > aEndAngle )
    {
        if( aEndAngle < 0 )
            aEndAngle = NormalizeAngleDegrees( aEndAngle, 0.0, 360.0 );
        else
            aStartAngle = NormalizeAngleDegrees( aStartAngle, -360.0, 0.0 );
    }
}


int EDA_SHAPE::GetRadius() const
{
    double radius = 0.0;

    switch( m_shape )
    {
    case SHAPE_T::ARC:
        radius = GetLineLength( m_arcCenter, m_start );
        break;

    case SHAPE_T::CIRCLE:
        radius = GetLineLength( m_start, m_end );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }

    // don't allow degenerate circles/arcs
    return std::max( 1, KiROUND( radius ) );
}


void EDA_SHAPE::SetArcGeometry( const wxPoint& aStart, const wxPoint& aMid, const wxPoint& aEnd )
{
    m_start = aStart;
    m_end = aEnd;
    m_arcCenter = CalcArcCenter( aStart, aMid, aEnd );
    m_endsSwapped = false;
}


double EDA_SHAPE::GetArcAngle() const
{
    double startAngle;
    double endAngle;

    CalcArcAngles( startAngle, endAngle );

    return ( endAngle - startAngle ) * 10;
}


void EDA_SHAPE::SetArcAngleAndEnd( double aAngle, bool aCheckNegativeAngle )
{
    m_end = m_start;
    RotatePoint( &m_end, m_arcCenter, -NormalizeAngle360Max( aAngle ) );

    if( aCheckNegativeAngle && aAngle < 0 )
    {
        std::swap( m_start, m_end );
        m_endsSwapped = true;
    }
}


void EDA_SHAPE::ShapeGetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
    EDA_UNITS         units = aFrame->GetUserUnits();
    ORIGIN_TRANSFORMS originTransforms = aFrame->GetOriginTransforms();
    wxString          msg;

    wxString shape = _( "Shape" );

    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:
        aList.emplace_back( shape, _( "Circle" ) );

        msg = MessageTextFromValue( units, GetRadius() );
        aList.emplace_back( _( "Radius" ), msg );
        break;

    case SHAPE_T::ARC:
        aList.emplace_back( shape, _( "Arc" ) );

        msg.Printf( wxT( "%.1f" ), GetArcAngle() / 10.0 );
        aList.emplace_back( _( "Angle" ), msg );

        msg = MessageTextFromValue( units, GetRadius() );
        aList.emplace_back( _( "Radius" ), msg );
        break;

    case SHAPE_T::BEZIER:
        aList.emplace_back( shape, _( "Curve" ) );

        msg = MessageTextFromValue( units, GetLength() );
        aList.emplace_back( _( "Length" ), msg );
        break;

    case SHAPE_T::POLY:
        aList.emplace_back( shape, _( "Polygon" ) );

        msg.Printf( "%d", GetPolyShape().Outline(0).PointCount() );
        aList.emplace_back( _( "Points" ), msg );
        break;

    case SHAPE_T::RECT:
        aList.emplace_back( shape, _( "Rectangle" ) );

        msg = MessageTextFromValue( units, std::abs( GetEnd().x - GetStart().x ) );
        aList.emplace_back( _( "Width" ), msg );

        msg = MessageTextFromValue( units, std::abs( GetEnd().y - GetStart().y ) );
        aList.emplace_back( _( "Height" ), msg );
        break;

    case SHAPE_T::SEGMENT:
    {
        aList.emplace_back( shape, _( "Segment" ) );

        msg = MessageTextFromValue( units, GetLineLength( GetStart(), GetEnd() ) );
        aList.emplace_back( _( "Length" ), msg );

        // angle counter-clockwise from 3'o-clock
        const double deg = RAD2DEG( atan2( (double)( GetStart().y - GetEnd().y ),
                                           (double)( GetEnd().x - GetStart().x ) ) );
        aList.emplace_back( _( "Angle" ), wxString::Format( "%.1f", deg ) );
    }
        break;

    default:
        aList.emplace_back( shape, _( "Unrecognized" ) );
        break;
    }

    aList.emplace_back( _( "Line width" ), MessageTextFromValue( units, m_width ) );
}


const EDA_RECT EDA_SHAPE::getBoundingBox() const
{
    EDA_RECT bbox;

    switch( m_shape )
    {
    case SHAPE_T::RECT:
        for( wxPoint& pt : GetRectCorners() )
            bbox.Merge( pt );

        break;

    case SHAPE_T::SEGMENT:
        bbox.SetOrigin( GetStart() );
        bbox.SetEnd( GetEnd() );
        break;

    case SHAPE_T::CIRCLE:
        bbox.SetOrigin( GetStart() );
        bbox.Inflate( GetRadius() );
        break;

    case SHAPE_T::ARC:
        computeArcBBox( bbox );
        break;

    case SHAPE_T::POLY:
        if( m_poly.IsEmpty() )
            break;

        for( auto iter = m_poly.CIterate(); iter; iter++ )
        {
            wxPoint pt( iter->x, iter->y );

            RotatePoint( &pt, getParentOrientation() );
            pt += getParentPosition();

            bbox.Merge( pt );
        }

        break;

    case SHAPE_T::BEZIER:
        bbox.SetOrigin( GetStart() );
        bbox.Merge( GetBezierC1() );
        bbox.Merge( GetBezierC2() );
        bbox.Merge( GetEnd() );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }

    bbox.Inflate( m_width / 2 );
    bbox.Normalize();

    return bbox;
}


bool EDA_SHAPE::hitTest( const wxPoint& aPosition, int aAccuracy ) const
{
    int maxdist = aAccuracy;

    if( m_width > 0 )
        maxdist += m_width / 2;

    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:
    {
        int radius = GetRadius();
        int dist   = KiROUND( EuclideanNorm( aPosition - getCenter() ) );

        if( IsFilled() )
            return dist <= radius + maxdist;          // Filled circle hit-test
        else
            return abs( radius - dist ) <= maxdist;   // Ring hit-test
    }

    case SHAPE_T::ARC:
    {
        if( EuclideanNorm( aPosition - m_start ) <= maxdist )
            return true;

        if( EuclideanNorm( aPosition - m_end ) <= maxdist )
            return true;

        wxPoint relPos = aPosition - getCenter();
        int     radius = GetRadius();
        int     dist   = KiROUND( EuclideanNorm( relPos ) );

        if( abs( radius - dist ) <= maxdist )
        {
            double startAngle;
            double endAngle;
            CalcArcAngles( startAngle, endAngle );

            if( m_eeWinding && NormalizeAngleDegrees( startAngle - endAngle, -180.0, 180.0 ) > 0 )
                std::swap( startAngle, endAngle );

            double relPosAngle = 180.0 / M_PI * atan2( relPos.y, relPos.x );

            startAngle = NormalizeAngleDegrees( startAngle, 0.0, 360.0 );
            endAngle = NormalizeAngleDegrees( endAngle, 0.0, 360.0 );
            relPosAngle = NormalizeAngleDegrees( relPosAngle, 0.0, 360.0 );

            if( endAngle > startAngle )
                return relPosAngle >= startAngle && relPosAngle <= endAngle;
            else
                return relPosAngle >= startAngle || relPosAngle <= endAngle;
        }

        return false;
    }

    case SHAPE_T::BEZIER:
        const_cast<EDA_SHAPE*>( this )->RebuildBezierToSegmentsPointsList( m_width );

        for( unsigned int i= 1; i < m_bezierPoints.size(); i++)
        {
            if( TestSegmentHit( aPosition, m_bezierPoints[ i - 1], m_bezierPoints[i], maxdist ) )
                return true;
        }

        return false;

    case SHAPE_T::SEGMENT:
        return TestSegmentHit( aPosition, GetStart(), GetEnd(), maxdist );

    case SHAPE_T::RECT:
        if( IsFilled() )            // Filled rect hit-test
        {
            SHAPE_POLY_SET poly;
            poly.NewOutline();

            for( const wxPoint& pt : GetRectCorners() )
                poly.Append( pt );

            return poly.Collide( VECTOR2I( aPosition ), maxdist );
        }
        else                        // Open rect hit-test
        {
            std::vector<wxPoint> pts = GetRectCorners();

            return TestSegmentHit( aPosition, pts[0], pts[1], maxdist )
                    || TestSegmentHit( aPosition, pts[1], pts[2], maxdist )
                    || TestSegmentHit( aPosition, pts[2], pts[3], maxdist )
                    || TestSegmentHit( aPosition, pts[3], pts[0], maxdist );
        }

    case SHAPE_T::POLY:
        if( IsFilled() )
        {
            return m_poly.Collide( VECTOR2I( aPosition ), maxdist );
        }
        else
        {
            SHAPE_POLY_SET::VERTEX_INDEX dummy;
            return m_poly.CollideEdge( VECTOR2I( aPosition ), dummy, maxdist );
        }

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return false;
    }
}


bool EDA_SHAPE::hitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
    EDA_RECT arect = aRect;
    arect.Normalize();
    arect.Inflate( aAccuracy );

    EDA_RECT arcRect;
    EDA_RECT bb = getBoundingBox();

    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:
        // Test if area intersects or contains the circle:
        if( aContained )
        {
            return arect.Contains( bb );
        }
        else
        {
            // If the rectangle does not intersect the bounding box, this is a much quicker test
            if( !aRect.Intersects( bb ) )
            {
                return false;
            }
            else
            {
                return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
            }
        }

    case SHAPE_T::ARC:
        // Test for full containment of this arc in the rect
        if( aContained )
        {
            return arect.Contains( bb );
        }
        // Test if the rect crosses the arc
        else
        {
            arcRect = bb.Common( arect );

            /* All following tests must pass:
             * 1. Rectangle must intersect arc BoundingBox
             * 2. Rectangle must cross the outside of the arc
             */
            return arcRect.Intersects( arect ) &&
                   arcRect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
        }

    case SHAPE_T::RECT:
        if( aContained )
        {
            return arect.Contains( bb );
        }
        else
        {
            std::vector<wxPoint> pts = GetRectCorners();

            // Account for the width of the lines
            arect.Inflate( GetWidth() / 2 );
            return ( arect.Intersects( pts[0], pts[1] )
                  || arect.Intersects( pts[1], pts[2] )
                  || arect.Intersects( pts[2], pts[3] )
                  || arect.Intersects( pts[3], pts[0] ) );
        }

    case SHAPE_T::SEGMENT:
        if( aContained )
        {
            return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() );
        }
        else
        {
            // Account for the width of the line
            arect.Inflate( GetWidth() / 2 );
            return arect.Intersects( GetStart(), GetEnd() );
        }

    case SHAPE_T::POLY:
        if( aContained )
        {
            return arect.Contains( bb );
        }
        else
        {
            // Fast test: if aRect is outside the polygon bounding box,
            // rectangles cannot intersect
            if( !arect.Intersects( bb ) )
                return false;

            // Account for the width of the line
            arect.Inflate( GetWidth() / 2 );

            // Polygons in footprints use coordinates relative to the footprint.
            // Therefore, instead of using m_poly, we make a copy which is translated
            // to the actual location in the board.
            double  orientation = 0.0;
            wxPoint offset = getParentPosition();

            if( getParentOrientation() )
                orientation = -DECIDEG2RAD( getParentOrientation() );

            SHAPE_LINE_CHAIN poly = m_poly.Outline( 0 );
            poly.Rotate( orientation );
            poly.Move( offset );

            int count = poly.GetPointCount();

            for( int ii = 0; ii < count; ii++ )
            {
                VECTOR2I vertex = poly.GetPoint( ii );

                // Test if the point is within aRect
                if( arect.Contains( ( wxPoint ) vertex ) )
                    return true;

                if( ii + 1 < count )
                {
                    VECTOR2I vertexNext = poly.GetPoint( ii + 1 );

                    // Test if this edge intersects aRect
                    if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) )
                        return true;
                }
                else if( poly.IsClosed() )
                {
                    VECTOR2I vertexNext = poly.GetPoint( 0 );

                    // Test if this edge intersects aRect
                    if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) )
                        return true;
                }
            }

            return false;
        }

    case SHAPE_T::BEZIER:
        if( aContained )
        {
            return arect.Contains( bb );
        }
        else
        {
            // Fast test: if aRect is outside the polygon bounding box,
            // rectangles cannot intersect
            if( !arect.Intersects( bb ) )
                return false;

            // Account for the width of the line
            arect.Inflate( GetWidth() / 2 );
            unsigned count = m_bezierPoints.size();

            for( unsigned ii = 1; ii < count; ii++ )
            {
                wxPoint vertex = m_bezierPoints[ ii - 1];
                wxPoint vertexNext = m_bezierPoints[ii];

                // Test if the point is within aRect
                if( arect.Contains( ( wxPoint ) vertex ) )
                    return true;

                // Test if this edge intersects aRect
                if( arect.Intersects( vertex, vertexNext ) )
                    return true;
            }

            return false;
        }

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return false;
    }
}


std::vector<wxPoint> EDA_SHAPE::GetRectCorners() const
{
    std::vector<wxPoint> pts;
    wxPoint              topLeft = GetStart();
    wxPoint              botRight = GetEnd();

    // Un-rotate rect topLeft and botRight
    if( KiROUND( getParentOrientation() ) % 900 != 0 )
    {
        topLeft -= getParentPosition();
        RotatePoint( &topLeft, -getParentOrientation() );

        botRight -= getParentPosition();
        RotatePoint( &botRight, -getParentOrientation() );
    }

    // Set up the un-rotated 4 corners
    pts.emplace_back( topLeft );
    pts.emplace_back( botRight.x, topLeft.y );
    pts.emplace_back( botRight );
    pts.emplace_back( topLeft.x, botRight.y );

    // Now re-rotate the 4 corners to get a diamond
    if( KiROUND( getParentOrientation() ) % 900 != 0 )
    {
        for( wxPoint& pt : pts )
        {
            RotatePoint( &pt, getParentOrientation() );
            pt += getParentPosition();
        }
    }

    return pts;
}


void EDA_SHAPE::computeArcBBox( EDA_RECT& aBBox ) const
{
    wxPoint start = m_start;
    wxPoint end = m_end;
    double  t1, t2;

    CalcArcAngles( t1, t2 );

    if( m_eeWinding && NormalizeAngleDegrees( t1 - t2, -180.0, 180.0 ) > 0 )
        std::swap( start, end );

    // Do not include the center, which is not necessarily inside the BB of an arc with a small
    // included angle
    aBBox.SetOrigin( start );
    aBBox.Merge( end );

    // Determine the starting quarter
    // 0 right-bottom
    // 1 left-bottom
    // 2 left-top
    // 3 right-top
    unsigned int quarter;

    if( start.x < m_arcCenter.x )
    {
        if( start.y <= m_arcCenter.y )
            quarter = 2;
        else
            quarter = 1;
    }
    else if( start.x == m_arcCenter.x )
    {
        if( start.y < m_arcCenter.y )
            quarter = 3;
        else
            quarter = 1;
    }
    else
    {
        if( start.y < m_arcCenter.y )
            quarter = 3;
        else
            quarter = 0;
    }

    int      radius = GetRadius();
    VECTOR2I startRadial = start - m_arcCenter;
    VECTOR2I endRadial = end - m_arcCenter;
    double   angleStart = ArcTangente( startRadial.y, startRadial.x );
    double   arcAngle = RAD2DECIDEG( endRadial.Angle() - startRadial.Angle() );
    int      angle = (int) NormalizeAnglePos( angleStart ) % 900 + NormalizeAnglePos( arcAngle );

    while( angle > 900 )
    {
        switch( quarter )
        {
        case 0: aBBox.Merge( wxPoint( m_arcCenter.x, m_arcCenter.y + radius ) ); break;  // down
        case 1: aBBox.Merge( wxPoint( m_arcCenter.x - radius, m_arcCenter.y ) ); break;  // left
        case 2: aBBox.Merge( wxPoint( m_arcCenter.x, m_arcCenter.y - radius ) ); break;  // up
        case 3: aBBox.Merge( wxPoint( m_arcCenter.x + radius, m_arcCenter.y ) ); break;  // right
        }

        ++quarter %= 4;
        angle -= 900;
    }
}


void EDA_SHAPE::SetPolyPoints( const std::vector<wxPoint>& aPoints )
{
    m_poly.RemoveAllContours();
    m_poly.NewOutline();

    for ( const wxPoint& p : aPoints )
        m_poly.Append( p.x, p.y );
}


std::vector<SHAPE*> EDA_SHAPE::MakeEffectiveShapes() const
{
    std::vector<SHAPE*> effectiveShapes;

    switch( m_shape )
    {
    case SHAPE_T::ARC:
        effectiveShapes.emplace_back( new SHAPE_ARC( m_arcCenter, m_start, GetArcAngle() / 10.0,
                                                     m_width ) );
        break;

    case SHAPE_T::SEGMENT:
        effectiveShapes.emplace_back( new SHAPE_SEGMENT( m_start, m_end, m_width ) );
        break;

    case SHAPE_T::RECT:
    {
        std::vector<wxPoint> pts = GetRectCorners();

        if( IsFilled() )
            effectiveShapes.emplace_back( new SHAPE_SIMPLE( pts ) );

        if( m_width > 0 || !IsFilled() )
        {
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[0], pts[1], m_width ) );
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[1], pts[2], m_width ) );
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[2], pts[3], m_width ) );
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[3], pts[0], m_width ) );
        }
    }
        break;

    case SHAPE_T::CIRCLE:
    {
        if( IsFilled() )
            effectiveShapes.emplace_back( new SHAPE_CIRCLE( getCenter(), GetRadius() ) );

        if( m_width > 0 || !IsFilled() )
        {
            // SHAPE_CIRCLE has no ConvertToPolyline() method, so use a 360.0 SHAPE_ARC
            SHAPE_ARC        circle( getCenter(), GetEnd(), 360.0 );
            SHAPE_LINE_CHAIN l = circle.ConvertToPolyline();

            for( int i = 0; i < l.SegmentCount(); i++ )
            {
                effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( i ).A, l.Segment( i ).B,
                                                                 m_width ) );
            }
        }

        break;
    }

    case SHAPE_T::BEZIER:
    {
        auto bezierPoints = buildBezierToSegmentsPointsList( GetWidth() );
        wxPoint start_pt = bezierPoints[0];

        for( unsigned int jj = 1; jj < bezierPoints.size(); jj++ )
        {
            wxPoint end_pt = bezierPoints[jj];
            effectiveShapes.emplace_back( new SHAPE_SEGMENT( start_pt, end_pt, m_width ) );
            start_pt = end_pt;
        }

        break;
    }

    case SHAPE_T::POLY:
    {
        SHAPE_LINE_CHAIN l = GetPolyShape().COutline( 0 );

        l.Rotate( -DECIDEG2RAD( getParentOrientation() ) );
        l.Move( getParentPosition() );

        if( IsFilled() )
            effectiveShapes.emplace_back( new SHAPE_SIMPLE( l ) );

        if( m_width > 0 || !IsFilled() )
        {
            for( int i = 0; i < l.SegmentCount(); i++ )
                effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( i ), m_width ) );
        }
    }
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }

    return effectiveShapes;
}


void EDA_SHAPE::DupPolyPointsList( std::vector<wxPoint>& aBuffer ) const
{
    if( m_poly.OutlineCount() )
    {
        int pointCount = m_poly.COutline( 0 ).PointCount();

        if( pointCount )
        {
            aBuffer.reserve( pointCount );

            for ( auto iter = m_poly.CIterate(); iter; iter++ )
                aBuffer.emplace_back( iter->x, iter->y );
        }
    }
}


bool EDA_SHAPE::IsPolyShapeValid() const
{
    // return true if the polygonal shape is valid (has more than 2 points)
    if( GetPolyShape().OutlineCount() == 0 )
        return false;

    const SHAPE_LINE_CHAIN& outline = ( (SHAPE_POLY_SET&)GetPolyShape() ).Outline( 0 );

    return outline.PointCount() > 2;
}


int EDA_SHAPE::GetPointCount() const
{
    // return the number of corners of the polygonal shape
    // this shape is expected to be only one polygon without hole
    if( GetPolyShape().OutlineCount() )
        return GetPolyShape().VertexCount( 0 );

    return 0;
}


void EDA_SHAPE::beginEdit( const wxPoint& aPosition )
{
    switch( GetShape() )
    {
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
    case SHAPE_T::RECT:
        SetStart( aPosition );
        SetEnd( aPosition );
        break;

    case SHAPE_T::ARC:
        SetArcGeometry( aPosition, aPosition, aPosition );
        m_editState = 1;
        break;

    case SHAPE_T::POLY:
        m_poly.NewOutline();
        m_poly.Outline( 0 ).SetClosed( false );

        // Start and end of the first segment (co-located for now)
        m_poly.Outline( 0 ).Append( aPosition );
        m_poly.Outline( 0 ).Append( aPosition, true );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }
}


bool EDA_SHAPE::continueEdit( const wxPoint& aPosition )
{
    switch( GetShape() )
    {
    case SHAPE_T::ARC:
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
    case SHAPE_T::RECT:
        return false;

    case SHAPE_T::POLY:
    {
        SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );

        // do not add zero-length segments
        if( poly.CPoint( poly.GetPointCount() - 2 ) != poly.CLastPoint() )
            poly.Append( aPosition, true );
    }
        return true;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        return false;
    }
}


void EDA_SHAPE::calcEdit( const wxPoint& aPosition )
{
#define sq( x ) pow( x, 2 )

    switch( GetShape() )
    {
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
    case SHAPE_T::RECT:
        SetEnd( aPosition );
        break;

    case SHAPE_T::ARC:
    {
        int radius = GetRadius();

        // Edit state 0: drawing: place start
        // Edit state 1: drawing: place end (center calculated for 90-degree subtended angle)
        // Edit state 2: point edit: move start (center calculated for invariant subtended angle)
        // Edit state 3: point edit: move end (center calculated for invariant subtended angle)
        // Edit state 4: point edit: move center
        // Edit state 5: point edit: move arc-mid-point

        switch( m_editState )
        {
        case 0:
            SetArcGeometry( aPosition, aPosition, aPosition );
            return;

        case 1:
            m_end = aPosition;
            radius = KiROUND( sqrt( sq( GetLineLength( m_start, m_end ) ) / 2.0 ) );
            break;

        case 2:
        case 3:
        {
            wxPoint v = m_start - m_end;
            double chordBefore = sq( v.x ) + sq( v.y );

            if( m_editState == 2 )
                m_start = aPosition;
            else
                m_end = aPosition;

            v = m_start - m_end;
            double chordAfter = sq( v.x ) + sq( v.y );
            double ratio = chordAfter / chordBefore;

            if( ratio != 0 )
            {
                radius = std::max( int( sqrt( sq( radius ) * ratio ) ) + 1,
                                   int( sqrt( chordAfter ) / 2 ) + 1 );
            }
        }
            break;

        case 4:
        {
            double chordA = GetLineLength( m_start, aPosition );
            double chordB = GetLineLength( m_end, aPosition );
            radius = int( ( chordA + chordB ) / 2.0 ) + 1;
        }
            break;

        case 5:
            SetArcGeometry( GetStart(), aPosition, GetEnd() );
            return;
        }

        // Calculate center based on start, end, and radius
        //
        // Let 'l' be the length of the chord and 'm' the middle point of the chord
        double  l = GetLineLength( m_start, m_end );
        wxPoint m = ( m_start + m_end ) / 2;

        // Calculate 'd', the vector from the chord midpoint to the center
        wxPoint d;
        d.x = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_start.y - m_end.y ) / l );
        d.y = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_end.x - m_start.x ) / l );

        wxPoint c1 = m + d;
        wxPoint c2 = m - d;

        // Solution gives us 2 centers; we need to pick one:
        switch( m_editState )
        {
        case 1:
        {
            // Keep center clockwise from chord while drawing
            wxPoint chordVector = m_end - m_start;
            double  chordAngle = ArcTangente( chordVector.y, chordVector.x );
            NORMALIZE_ANGLE_POS( chordAngle );

            wxPoint c1Test = c1;
            RotatePoint( &c1Test, m_start, -chordAngle );

            m_arcCenter = c1Test.x > 0 ? c2 : c1;
        }
            break;

        case 2:
        case 3:
            // Pick the one closer to the old center
            m_arcCenter = GetLineLength( c1, m_arcCenter ) < GetLineLength( c2, m_arcCenter ) ? c1 : c2;
            break;

        case 4:
            // Pick the one closer to the mouse position
            m_arcCenter = GetLineLength( c1, aPosition ) < GetLineLength( c2, aPosition ) ? c1 : c2;
            break;
        }
    }
        break;

    case SHAPE_T::POLY:
        m_poly.Outline( 0 ).SetPoint( m_poly.Outline( 0 ).GetPointCount() - 1, aPosition );
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }
}


void EDA_SHAPE::endEdit()
{
    switch( GetShape() )
    {
    case SHAPE_T::ARC:
    case SHAPE_T::SEGMENT:
    case SHAPE_T::CIRCLE:
    case SHAPE_T::RECT:
        break;

    case SHAPE_T::POLY:
    {
        SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );

        // do not include last point twice
        if( poly.GetPointCount() > 2 )
        {
            if( poly.CPoint( poly.GetPointCount() - 2 ) == poly.CLastPoint() )
            {
                poly.SetClosed( true );
                poly.Remove( poly.GetPointCount() - 1 );
            }
        }
    }
        break;

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
    }
}


void EDA_SHAPE::SwapShape( EDA_SHAPE* aImage )
{
    EDA_SHAPE* image = dynamic_cast<EDA_SHAPE*>( aImage );
    assert( image );

    std::swap( m_width, image->m_width );
    std::swap( m_start, image->m_start );
    std::swap( m_end, image->m_end );
    std::swap( m_arcCenter, image->m_arcCenter );
    std::swap( m_shape, image->m_shape );
    std::swap( m_bezierC1, image->m_bezierC1 );
    std::swap( m_bezierC2, image->m_bezierC2 );
    std::swap( m_bezierPoints, image->m_bezierPoints );
    std::swap( m_poly, image->m_poly );
}


int EDA_SHAPE::Compare( const EDA_SHAPE* aOther ) const
{
#define TEST( a, b ) { if( a != b ) return a - b; }
#define TEST_PT( a, b ) { TEST( a.x, b.x ); TEST( a.y, b.y ); }

    TEST_PT( m_start, aOther->m_start );
    TEST_PT( m_end, aOther->m_end );

    TEST( (int) m_shape, (int) aOther->m_shape );

    if( m_shape == SHAPE_T::ARC )
    {
        TEST_PT( m_arcCenter, aOther->m_arcCenter );
    }
    else if( m_shape == SHAPE_T::BEZIER )
    {
        TEST_PT( m_bezierC1, aOther->m_bezierC1 );
        TEST_PT( m_bezierC2, aOther->m_bezierC2 );
    }
    else if( m_shape == SHAPE_T::POLY )
    {
        TEST( m_poly.TotalVertices(), aOther->m_poly.TotalVertices() );

        for( int ii = 0; ii < m_poly.TotalVertices(); ++ii )
            TEST_PT( m_poly.CVertex( ii ), aOther->m_poly.CVertex( ii ) );
    }

    TEST( m_width, aOther->m_width );
    TEST( (int) m_fill, (int) aOther->m_fill );

    return 0;
}


void EDA_SHAPE::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer,
                                                      int aClearanceValue,
                                                      int aError, ERROR_LOC aErrorLoc,
                                                      bool ignoreLineWidth ) const
{
    int width = ignoreLineWidth ? 0 : m_width;

    width += 2 * aClearanceValue;

    switch( m_shape )
    {
    case SHAPE_T::CIRCLE:
        if( IsFilled() )
        {
            TransformCircleToPolygon( aCornerBuffer, getCenter(), GetRadius() + width / 2, aError,
                                      aErrorLoc );
        }
        else
        {
            TransformRingToPolygon( aCornerBuffer, getCenter(), GetRadius(), width, aError,
                                    aErrorLoc );
        }

        break;

    case SHAPE_T::RECT:
    {
        std::vector<wxPoint> pts = GetRectCorners();

        if( IsFilled() )
        {
            aCornerBuffer.NewOutline();

            for( const wxPoint& pt : pts )
                aCornerBuffer.Append( pt );
        }

        if( width > 0 || !IsFilled() )
        {
            // Add in segments
            TransformOvalToPolygon( aCornerBuffer, pts[0], pts[1], width, aError, aErrorLoc );
            TransformOvalToPolygon( aCornerBuffer, pts[1], pts[2], width, aError, aErrorLoc );
            TransformOvalToPolygon( aCornerBuffer, pts[2], pts[3], width, aError, aErrorLoc );
            TransformOvalToPolygon( aCornerBuffer, pts[3], pts[0], width, aError, aErrorLoc );
        }

        break;
    }

    case SHAPE_T::ARC:
        TransformArcToPolygon( aCornerBuffer, GetStart(), GetArcMid(), GetEnd(), width, aError,
                               aErrorLoc );
        break;

    case SHAPE_T::SEGMENT:
        TransformOvalToPolygon( aCornerBuffer, GetStart(), GetEnd(), width, aError, aErrorLoc );
        break;

    case SHAPE_T::POLY:
    {
        if( !IsPolyShapeValid() )
            break;

        // The polygon is expected to be a simple polygon; not self intersecting, no hole.
        double  orientation = getParentOrientation();
        wxPoint offset = getParentPosition();

        // Build the polygon with the actual position and orientation:
        std::vector<wxPoint> poly;
        DupPolyPointsList( poly );

        for( wxPoint& point : poly )
        {
            RotatePoint( &point, orientation );
            point += offset;
        }

        if( IsFilled() )
        {
            aCornerBuffer.NewOutline();

            for( const wxPoint& point : poly )
                aCornerBuffer.Append( point.x, point.y );
        }

        if( width > 0 || !IsFilled() )
        {
            wxPoint pt1( poly[ poly.size() - 1] );

            for( const wxPoint& pt2 : poly )
            {
                if( pt2 != pt1 )
                    TransformOvalToPolygon( aCornerBuffer, pt1, pt2, width, aError, aErrorLoc );

                pt1 = pt2;
            }
        }

        break;
    }

    case SHAPE_T::BEZIER:
    {
        std::vector<wxPoint> ctrlPts = { GetStart(), GetBezierC1(), GetBezierC2(), GetEnd() };
        BEZIER_POLY converter( ctrlPts );
        std::vector< wxPoint> poly;
        converter.GetPoly( poly, m_width );

        for( unsigned ii = 1; ii < poly.size(); ii++ )
        {
            TransformOvalToPolygon( aCornerBuffer, poly[ii - 1], poly[ii], width, aError,
                                    aErrorLoc );
        }

        break;
    }

    default:
        UNIMPLEMENTED_FOR( SHAPE_T_asString() );
        break;
    }
}


static struct EDA_SHAPE_DESC
{
    EDA_SHAPE_DESC()
    {
        ENUM_MAP<SHAPE_T>::Instance()
                    .Map( SHAPE_T::SEGMENT, _HKI( "Segment" ) )
                    .Map( SHAPE_T::RECT,    _HKI( "Rectangle" ) )
                    .Map( SHAPE_T::ARC,     _HKI( "Arc" ) )
                    .Map( SHAPE_T::CIRCLE,  _HKI( "Circle" ) )
                    .Map( SHAPE_T::POLY,    _HKI( "Polygon" ) )
                    .Map( SHAPE_T::BEZIER,  _HKI( "Bezier" ) );
        ENUM_MAP<PLOT_DASH_TYPE>::Instance()
                    .Map( PLOT_DASH_TYPE::DEFAULT,    _HKI( "Default" ) )
                    .Map( PLOT_DASH_TYPE::SOLID,      _HKI( "Solid" ) )
                    .Map( PLOT_DASH_TYPE::DASH,       _HKI( "Dashed" ) )
                    .Map( PLOT_DASH_TYPE::DOT,        _HKI( "Dotted" ) )
                    .Map( PLOT_DASH_TYPE::DASHDOT,    _HKI( "Dash-Dot" ) );

        PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
        REGISTER_TYPE( EDA_SHAPE );
        propMgr.AddProperty( new PROPERTY_ENUM<EDA_SHAPE, SHAPE_T>( _HKI( "Shape" ),
                    &EDA_SHAPE::SetShape, &EDA_SHAPE::GetShape ) );
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start X" ),
                    &EDA_SHAPE::SetStartX, &EDA_SHAPE::GetStartX ) );
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start Y" ),
                    &EDA_SHAPE::SetStartY, &EDA_SHAPE::GetStartY ) );
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End X" ),
                    &EDA_SHAPE::SetEndX, &EDA_SHAPE::GetEndX ) );
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End Y" ),
                    &EDA_SHAPE::SetEndY, &EDA_SHAPE::GetEndY ) );
        // TODO: m_arcCenter, m_bezierC1, m_bezierC2, m_poly
        propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Line Width" ),
                    &EDA_SHAPE::SetWidth, &EDA_SHAPE::GetWidth ) );
    }
} _EDA_SHAPE_DESC;

ENUM_TO_WXANY( SHAPE_T )
ENUM_TO_WXANY( PLOT_DASH_TYPE )