/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 CERN * Copyright (C) 2019-2024 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef __SHAPE_ARC_H #define __SHAPE_ARC_H #include #include #include // for VECTOR2I #include class SHAPE_LINE_CHAIN; class SHAPE_ARC : public SHAPE { public: SHAPE_ARC() : SHAPE( SH_ARC ), m_width( 0 ), m_radius( 0 ) {}; /** * Construct and arc using center, start, angle. * * Center and angle are used to calculate the mid and end points of the arc, and are not * stored. * * @param aArcCenter is the arc center. * @param aArcStartPoint is the arc start point. * @param aCenterAngle is the arc angle. * @param aWidth is the arc line thickness. */ SHAPE_ARC( const VECTOR2I& aArcCenter, const VECTOR2I& aArcStartPoint, const EDA_ANGLE& aCenterAngle, int aWidth = 0 ); /** * @param aArcStart is the arc start point. * @param aArcEnd is the arc end point. * @param aArcMid is the arc mid point. * @param aWidth is the arc line thickness. */ SHAPE_ARC( const VECTOR2I& aArcStart, const VECTOR2I& aArcMid, const VECTOR2I& aArcEnd, int aWidth ); /** * Build a SHAPE_ARC which is tangent to two segments and a given radius. * * @param aSegmentA is the first segment * @param aSegmentB is the second segment * @param aRadius is the arc radius * @param aWidth is the arc line thickness */ SHAPE_ARC( const SEG& aSegmentA, const SEG& aSegmentB, int aRadius, int aWidth = 0 ); SHAPE_ARC( const SHAPE_ARC& aOther ); virtual ~SHAPE_ARC() {} SHAPE* Clone() const override { return new SHAPE_ARC( *this ); } /** * Construct this arc from the given start, end and angle. * * @param aStart is the arc starting point * @param aEnd is the arc endpoint * @param aAngle is the arc included angle * @param aWidth is the arc line thickness * @return this arc. */ SHAPE_ARC& ConstructFromStartEndAngle( const VECTOR2I& aStart, const VECTOR2I& aEnd, const EDA_ANGLE& aAngle, double aWidth = 0 ); /** * Constructs this arc from the given start, end and center. * @param aStart is the arc starting point * @param aEnd is the arc endpoint * @param aCenter is the arc center * @param aClockwise determines which of the two solutions to construct * @param aWidth is the arc line thickness * @return *this */ SHAPE_ARC& ConstructFromStartEndCenter( const VECTOR2I& aStart, const VECTOR2I& aEnd, const VECTOR2I& aCenter, bool aClockwise = false, double aWidth = 0 ); const VECTOR2I& GetP0() const { return m_start; } const VECTOR2I& GetP1() const { return m_end; } const VECTOR2I& GetArcMid() const { return m_mid; } const VECTOR2I& GetCenter() const; const BOX2I BBox( int aClearance = 0 ) const override; VECTOR2I NearestPoint( const VECTOR2I& aP ) const; bool Collide( const SEG& aSeg, int aClearance = 0, int* aActual = nullptr, VECTOR2I* aLocation = nullptr ) const override; bool Collide( const VECTOR2I& aP, int aClearance = 0, int* aActual = nullptr, VECTOR2I* aLocation = nullptr ) const override; bool Collide( const SHAPE* aShape, int aClearance = 0, int* aActual = nullptr, VECTOR2I* aLocation = nullptr ) const override { return SHAPE::Collide( aShape, aClearance, aActual, aLocation ); } /** * Find intersection points between this arc and aSeg, treating aSeg as an infinite line. * Ignores arc width. * * @param aSeg Line to intersect against (treated as an infinite line) * @param aIpsBuffer Buffer to store the resulting intersection points (if any) * @return Number of intersection points found */ int IntersectLine( const SEG& aSeg, std::vector* aIpsBuffer ) const; /** * Find intersection points between this arc and aArc. Ignores arc width. * * @param aSeg * @param aIpsBuffer Buffer to store the resulting intersection points (if any) * @return Number of intersection points found */ int Intersect( const SHAPE_ARC& aArc, std::vector* aIpsBuffer ) const; void SetWidth( int aWidth ) { m_width = aWidth; } int GetWidth() const { return m_width; } bool IsSolid() const override { return true; } void Move( const VECTOR2I& aVector ) override; /** * Rotate the arc by a given angle about a point. * * @param aCenter is the rotation center. * @param aAngle rotation angle. */ void Rotate( const EDA_ANGLE& aAngle, const VECTOR2I& aCenter ) override; void Mirror( bool aX = true, bool aY = false, const VECTOR2I& aVector = { 0, 0 } ); void Mirror( const SEG& axis ); void Reverse(); SHAPE_ARC Reversed() const; double GetRadius() const; SEG GetChord() const { return SEG( m_start, m_end ); } /** * @return the central angle of the arc shape, normalized between 0..360 deg. */ EDA_ANGLE GetCentralAngle() const; /** * @return the start angle of the arc shape, normalized between 0..360 deg. */ EDA_ANGLE GetStartAngle() const; /** * @return the end angle of the arc shape, normalized between 0..360 deg. */ EDA_ANGLE GetEndAngle() const; /** * @return the length of the arc shape. */ double GetLength() const; /** * @note The default is #ARC_HIGH_DEF in Pcbnew units. This is to allow common geometry * collision functions. Other programs should call this using explicit accuracy * values. * * @todo Unify KiCad internal units. * * @return a default accuracy value for ConvertToPolyline() to build the polyline. */ static double DefaultAccuracyForPCB(){ return 0.005 * PCB_IU_PER_MM; } /** * Construct a SHAPE_LINE_CHAIN of segments from a given arc. * * @note The default is #ARC_HIGH_DEF in Pcbnew units. This is to allow common geometry * collision functions. Other programs should call this using explicit accuracy * values. * * @todo Unify KiCad internal units. * * @param aAccuracy maximum divergence from true arc given in internal units. * @param aEffectiveAccuracy is the actual divergence from true arc given. * the approximation error is between -aEffectiveAccuracy/2 and +aEffectiveAccuracy/2 * in internal units * @return a #SHAPE_LINE_CHAIN. */ const SHAPE_LINE_CHAIN ConvertToPolyline( double aAccuracy = DefaultAccuracyForPCB(), double* aEffectiveAccuracy = nullptr ) const; bool operator==( SHAPE_ARC const& aArc ) const { return ( aArc.m_start == m_start ) && ( aArc.m_end == m_end ) && ( aArc.m_mid == m_mid ) && ( aArc.m_width == m_width ); } void TransformToPolygon( SHAPE_POLY_SET& aBuffer, int aError, ERROR_LOC aErrorLoc ) const override; /** * @return true if the arc is counter-clockwise. */ bool IsCCW() const { VECTOR2L mid = m_mid; VECTOR2L v1 = m_end - mid; VECTOR2L v2 = m_start - mid; return v1.Cross( v2 ) > 0; } bool IsClockwise() const { return !IsCCW(); } private: void update_values(); bool sliceContainsPoint( const VECTOR2I& p ) const; private: VECTOR2I m_start; VECTOR2I m_mid; VECTOR2I m_end; int m_width; BOX2I m_bbox; // Calculated value VECTOR2I m_center; // Calculated value double m_radius; // Calculated value }; // Required for Boost Test BOOST_CHECK_EQUAL: std::ostream& operator<<( std::ostream& aStream, const SHAPE_ARC& aArc ); #endif