/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2009 Jean-Pierre Charras, jean-pierre.charras@gipsa-lab.inpg.fr
 * Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
 * Copyright (C) 1992-2011 KiCad Developers, see AUTHORS.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

/**
 * @file dcode.cpp
 * @brief D_CODE class implementation
 */

#include <fctsys.h>
#include <common.h>
#include <class_drawpanel.h>
#include <confirm.h>
#include <macros.h>
#include <trigo.h>
#include <gr_basic.h>
#include <base_units.h>

#include <gerbview.h>
#include <gerbview_frame.h>
#include <class_gerber_draw_item.h>
#include <class_GERBER.h>

#define DEFAULT_SIZE 100

/* Format Gerber: NOTES:
 * Tools and D_CODES
 *   tool number (identification of shapes)
 *   1 to 999
 *
 * D_CODES:
 *   D01 ... D9 = command codes:
 *      D01 = activating light (pen down) while moving
 *      D02 = light extinction (pen up) while moving
 *      D03 = Flash
 *      D04 to D09 = non used
 *   D10 ... D999 = Identification Tool (Shape id)
 *
 * For tools defining a shape):
 * DCode min = D10
 * DCode max = 999
 */


/***************/
/* Class DCODE */
/***************/


D_CODE::D_CODE( int num_dcode )
{
    m_Num_Dcode = num_dcode;
    Clear_D_CODE_Data();
}


D_CODE::~D_CODE()
{
}


void D_CODE::Clear_D_CODE_Data()
{
    m_Size.x     = DEFAULT_SIZE;
    m_Size.y     = DEFAULT_SIZE;
    m_Shape      = APT_CIRCLE;
    m_Drill.x    = m_Drill.y = 0;
    m_DrillShape = APT_DEF_NO_HOLE;
    m_InUse      = false;
    m_Defined    = false;
    m_Macro      = NULL;
    m_Rotation   = 0.0;
    m_EdgesCount = 0;
    m_PolyCorners.clear();
}


const wxChar* D_CODE::ShowApertureType( APERTURE_T aType )
{
    const wxChar* ret;

    switch( aType )
    {
    case APT_CIRCLE:
        ret = wxT( "Round" );   break;

    case APT_RECT:
        ret = wxT( "Rect" );    break;

    case APT_OVAL:
        ret = wxT( "Oval" );    break;

    case APT_POLYGON:
        ret = wxT( "Poly" );    break;

    case APT_MACRO:
        ret = wxT( "Macro" );   break;

    default:
        ret = wxT( "???" );     break;
    }

    return ret;
}

int D_CODE::GetShapeDim( GERBER_DRAW_ITEM* aParent )
{
    int dim = -1;
    switch( m_Shape )
    {
    case APT_CIRCLE:
        dim = m_Size.x;
        break;

    case APT_RECT:
    case APT_OVAL:
        dim = std::min( m_Size.x, m_Size.y );
        break;

    case APT_POLYGON:
        dim = std::min( m_Size.x, m_Size.y );
        break;

    case APT_MACRO:
        if( m_Macro )
            dim = m_Macro->GetShapeDim( aParent );
        break;

    default:
        break;
    }

    return dim;
}


void GERBVIEW_FRAME::CopyDCodesSizeToItems()
{
    static D_CODE dummy( 999 );   //Used if D_CODE not found in list

    GERBER_DRAW_ITEM* gerb_item = GetItemsList();
    for( ; gerb_item; gerb_item = gerb_item->Next() )
    {
        D_CODE*           dcode     = gerb_item->GetDcodeDescr();
        wxASSERT( dcode );
        if( dcode == NULL )
            dcode = &dummy;

        dcode->m_InUse = true;

        gerb_item->m_Size = dcode->m_Size;

        if(                                             // Line Item
            (gerb_item->m_Shape == GBR_SEGMENT )        /* rectilinear segment */
            || (gerb_item->m_Shape == GBR_ARC )         /* segment arc (rounded tips) */
            || (gerb_item->m_Shape == GBR_CIRCLE )      /* segment in a circle (ring) */
            )
        {
        }
        else        // Spots ( Flashed Items )
        {
            switch( dcode->m_Shape )
            {
            case APT_CIRCLE:        /* spot round */
                gerb_item->m_Shape = GBR_SPOT_CIRCLE;
                break;

            case APT_OVAL:          /* spot oval*/
                gerb_item->m_Shape = GBR_SPOT_OVAL;
                break;

            case APT_RECT:                /* spot rect*/
                gerb_item->m_Shape = GBR_SPOT_RECT;
                break;

            case APT_POLYGON:
                gerb_item->m_Shape = GBR_SPOT_POLY;
                break;

            case APT_MACRO:                /* spot defined by a macro */
                gerb_item->m_Shape = GBR_SPOT_MACRO;
                break;

            default:
                wxMessageBox( wxT( "GERBVIEW_FRAME::CopyDCodesSizeToItems() error" ) );
                break;
            }
        }
    }
}


void D_CODE::DrawFlashedShape(  GERBER_DRAW_ITEM* aParent,
                                EDA_RECT* aClipBox, wxDC* aDC, EDA_COLOR_T aColor,
                                EDA_COLOR_T aAltColor,
                                wxPoint aShapePos, bool aFilledShape )
{
    int radius;

    switch( m_Shape )
    {
    case APT_MACRO:
        GetMacro()->DrawApertureMacroShape( aParent, aClipBox, aDC, aColor, aAltColor,
                                            aShapePos, aFilledShape);
        break;

    case APT_CIRCLE:
        radius = m_Size.x >> 1;
        if( !aFilledShape )
            GRCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos), radius, 0, aColor );
        else
            if( m_DrillShape == APT_DEF_NO_HOLE )
            {
                GRFilledCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos),
                                radius, aColor );
            }
            else if( APT_DEF_ROUND_HOLE == 1 )    // round hole in shape
            {
                int width = (m_Size.x - m_Drill.x ) / 2;
                GRCircle( aClipBox, aDC,  aParent->GetABPosition(aShapePos),
                          radius - (width / 2), width, aColor );
            }
            else                            // rectangular hole
            {
                if( m_PolyCorners.size() == 0 )
                    ConvertShapeToPolygon();

                DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos );
            }
        break;

    case APT_RECT:
    {
        wxPoint start;
        start.x = aShapePos.x - m_Size.x / 2;
        start.y = aShapePos.y - m_Size.y / 2;
        wxPoint end = start + m_Size;
        start = aParent->GetABPosition( start );
        end = aParent->GetABPosition( end );

        if( !aFilledShape )
        {
            GRRect( aClipBox, aDC, start.x, start.y, end.x, end.y, 0, aColor );
        }
        else if( m_DrillShape == APT_DEF_NO_HOLE )
        {
            GRFilledRect( aClipBox, aDC, start.x, start.y, end.x, end.y, 0, aColor, aColor );
        }
        else
        {
            if( m_PolyCorners.size() == 0 )
                ConvertShapeToPolygon();

            DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos );
        }
    }
    break;

    case APT_OVAL:
    {
        wxPoint start = aShapePos;
        wxPoint end   = aShapePos;

        if( m_Size.x > m_Size.y )   // horizontal oval
        {
            int delta = (m_Size.x - m_Size.y) / 2;
            start.x -= delta;
            end.x   += delta;
            radius   = m_Size.y;
        }
        else   // horizontal oval
        {
            int delta = (m_Size.y - m_Size.x) / 2;
            start.y -= delta;
            end.y   += delta;
            radius   = m_Size.x;
        }

        start = aParent->GetABPosition( start );
        end = aParent->GetABPosition( end );

        if( !aFilledShape )
        {
            GRCSegm( aClipBox, aDC, start.x, start.y, end.x, end.y, radius, aColor );
        }
        else if( m_DrillShape == APT_DEF_NO_HOLE )
        {
            GRFillCSegm( aClipBox, aDC, start.x, start.y, end.x, end.y, radius, aColor );
        }
        else
        {
            if( m_PolyCorners.size() == 0 )
                ConvertShapeToPolygon();

            DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos );
        }
    }
    break;

    case APT_POLYGON:
        if( m_PolyCorners.size() == 0 )
            ConvertShapeToPolygon();

        DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos );
        break;
    }
}


void D_CODE::DrawFlashedPolygon( GERBER_DRAW_ITEM* aParent,
                                 EDA_RECT* aClipBox, wxDC* aDC,
                                 EDA_COLOR_T aColor, bool aFilled,
                                 const wxPoint& aPosition )
{
    if( m_PolyCorners.size() == 0 )
        return;

    std::vector<wxPoint> points;
    points = m_PolyCorners;

    for( unsigned ii = 0; ii < points.size(); ii++ )
    {
        points[ii] += aPosition;
        points[ii] = aParent->GetABPosition( points[ii] );
    }

    GRClosedPoly( aClipBox, aDC, points.size(), &points[0], aFilled, aColor, aColor );
}


#define SEGS_CNT 32     // number of segments to approximate a circle


// A helper function for D_CODE::ConvertShapeToPolygon().   Add a hole to a polygon
static void addHoleToPolygon( std::vector<wxPoint>& aBuffer,
                              APERTURE_DEF_HOLETYPE aHoleShape,
                              wxSize                aSize,
                              wxPoint               aAnchorPos );


void D_CODE::ConvertShapeToPolygon()
{
    wxPoint initialpos;
    wxPoint currpos;

    m_PolyCorners.clear();

    switch( m_Shape )
    {
    case APT_CIRCLE:        // creates only a circle with rectangular hole
        currpos.x  = m_Size.x >> 1;
        initialpos = currpos;

        for( unsigned ii = 0; ii <= SEGS_CNT; ii++ )
        {
            currpos = initialpos;
            RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT );
            m_PolyCorners.push_back( currpos );
        }

        addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos );
        break;

    case APT_RECT:
        currpos.x  = m_Size.x / 2;
        currpos.y  = m_Size.y / 2;
        initialpos = currpos;
        m_PolyCorners.push_back( currpos );
        currpos.x -= m_Size.x;
        m_PolyCorners.push_back( currpos );
        currpos.y -= m_Size.y;
        m_PolyCorners.push_back( currpos );
        currpos.x += m_Size.x;
        m_PolyCorners.push_back( currpos );
        currpos.y += m_Size.y;
        m_PolyCorners.push_back( currpos );    // close polygon

        addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos );
        break;

    case APT_OVAL:
    {
        int delta, radius;

        // we create an horizontal oval shape. then rotate if needed
        if( m_Size.x > m_Size.y )   // horizontal oval
        {
            delta  = (m_Size.x - m_Size.y) / 2;
            radius = m_Size.y / 2;
        }
        else   // vertical oval
        {
            delta  = (m_Size.y - m_Size.x) / 2;
            radius = m_Size.x / 2;
        }

        currpos.y  = radius;
        initialpos = currpos;
        m_PolyCorners.push_back( currpos );

        // build the right arc of the shape
        unsigned ii = 0;

        for( ; ii <= SEGS_CNT / 2; ii++ )
        {
            currpos = initialpos;
            RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT );
            currpos.x += delta;
            m_PolyCorners.push_back( currpos );
        }

        // build the left arc of the shape
        for( ii = SEGS_CNT / 2; ii <= SEGS_CNT; ii++ )
        {
            currpos = initialpos;
            RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT );
            currpos.x -= delta;
            m_PolyCorners.push_back( currpos );
        }

        m_PolyCorners.push_back( initialpos );      // close outline

        if( m_Size.y > m_Size.x )                   // vertical oval, rotate polygon.
        {
            for( unsigned jj = 0; jj < m_PolyCorners.size(); jj++ )
                RotatePoint( &m_PolyCorners[jj], 900 );
        }

        addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos );
    }
    break;

    case APT_POLYGON:
        currpos.x  = m_Size.x >> 1;     // first point is on X axis
        initialpos = currpos;

        // rs274x said: m_EdgesCount = 3 ... 12
        if( m_EdgesCount < 3 )
            m_EdgesCount = 3;

        if( m_EdgesCount > 12 )
            m_EdgesCount = 12;

        for( int ii = 0; ii <= m_EdgesCount; ii++ )
        {
            currpos = initialpos;
            RotatePoint( &currpos, ii * 3600.0 / m_EdgesCount );
            m_PolyCorners.push_back( currpos );
        }

        addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos );

        if( m_Rotation )                   // vertical oval, rotate polygon.
        {
            int angle = KiROUND( m_Rotation * 10 );

            for( unsigned jj = 0; jj < m_PolyCorners.size(); jj++ )
            {
                RotatePoint( &m_PolyCorners[jj], -angle );
            }
        }

        break;

    case APT_MACRO:

        // TODO
        break;
    }
}


// The helper function for D_CODE::ConvertShapeToPolygon().
// Add a hole to a polygon
static void addHoleToPolygon( std::vector<wxPoint>& aBuffer,
                              APERTURE_DEF_HOLETYPE aHoleShape,
                              wxSize                aSize,
                              wxPoint               aAnchorPos )
{
    wxPoint currpos;

    if( aHoleShape == APT_DEF_ROUND_HOLE )      // build a round hole
    {
        for( int ii = 0; ii <= SEGS_CNT; ii++ )
        {
            currpos.x = 0;
            currpos.y = aSize.x / 2;            // aSize.x / 2 is the radius of the hole
            RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT );
            aBuffer.push_back( currpos );
        }

        aBuffer.push_back( aAnchorPos );        // link to outline
    }

    if( aHoleShape == APT_DEF_RECT_HOLE )       // Create rectangular hole
    {
        currpos.x = aSize.x / 2;
        currpos.y = aSize.y / 2;
        aBuffer.push_back( currpos );           // link to hole and begin hole
        currpos.x -= aSize.x;
        aBuffer.push_back( currpos );
        currpos.y -= aSize.y;
        aBuffer.push_back( currpos );
        currpos.x += aSize.x;
        aBuffer.push_back( currpos );
        currpos.y += aSize.y;
        aBuffer.push_back( currpos );           // close hole
        aBuffer.push_back( aAnchorPos );        // link to outline
    }
}