/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 CERN * @author Alejandro GarcĂ­a Montoro * Copyright (C) 2019-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include /** * Predicate to check expected collision between two segments * @param aSegA the first #SEG * @param aSegB the second #SEG * @param aClearance the collision clearance * @param aExp expected collision * @return does the distance calculated agree? */ bool SegCollideCorrect( const SEG& aSegA, const SEG& aSegB, int aClearance, bool aExp ) { const bool AtoB = aSegA.Collide( aSegB, aClearance ); const bool BtoA = aSegB.Collide( aSegA, aClearance ); const bool ok = ( AtoB == aExp ) && ( BtoA == aExp ); if( AtoB != BtoA ) { std::stringstream ss; ss << "Segment collision is not the same in both directions: expected " << aExp << ", got " << AtoB << " & " << BtoA; BOOST_TEST_INFO( ss.str() ); } else if( !ok ) { std::stringstream ss; ss << "Collision incorrect: expected " << aExp << ", got " << AtoB; BOOST_TEST_INFO( ss.str() ); } return ok; } /** * Predicate to check expected distance between two segments * @param aSegA the first #SEG * @param aSegB the second #SEG * @param aExp expected distance * @return does the distance calculated agree? */ bool SegDistanceCorrect( const SEG& aSegA, const SEG& aSegB, int aExp ) { const int AtoB = aSegA.Distance( aSegB ); const int BtoA = aSegB.Distance( aSegA ); bool ok = ( AtoB == aExp ) && ( BtoA == aExp ); if( AtoB != BtoA ) { std::stringstream ss; ss << "Segment distance is not the same in both directions: expected " << aExp << ", got " << AtoB << " & " << BtoA; BOOST_TEST_INFO( ss.str() ); } else if( !ok ) { std::stringstream ss; ss << "Distance incorrect: expected " << aExp << ", got " << AtoB; BOOST_TEST_INFO( ss.str() ); } // Sanity check: the collision should be consistent with the distance ok = ok && SegCollideCorrect( aSegA, aSegB, 0, aExp == 0 ); return ok; } /** * Predicate to check expected distance between a segment and a point * @param aSegA the segment * @param aVec the vector (point) * @param aExp expected distance * @return does the distance calculated agree? */ bool SegVecDistanceCorrect( const SEG& aSeg, const VECTOR2I& aVec, int aExp ) { const int dist = aSeg.Distance( aVec ); bool ok = ( dist == aExp ); if( !ok ) { std::stringstream ss; ss << "Distance incorrect: expected " << aExp << ", got " << dist; BOOST_TEST_INFO( ss.str() ); } return ok; } /** * Predicate to check expected collision between two segments * @param aSegA the first #SEG * @param sSegB the second #SEG * @param aExp expected collinearity * @return does the collinearity calculated agree? */ bool SegCollinearCorrect( const SEG& aSegA, const SEG& aSegB, bool aExp ) { const bool AtoB = aSegA.Collinear( aSegB ); const bool BtoA = aSegB.Collinear( aSegA ); const bool ok = ( AtoB == aExp ) && ( BtoA == aExp ); if( AtoB != BtoA ) { std::stringstream ss; ss << "Segment collinearity is not the same in both directions: expected " << aExp << ", got " << AtoB << " & " << BtoA; BOOST_TEST_INFO( ss.str() ); } else if( !ok ) { std::stringstream ss; ss << "Collinearity incorrect: expected " << aExp << ", got " << AtoB; BOOST_TEST_INFO( ss.str() ); } return ok; } /** * Predicate to check expected parallelism between two segments * @param aSegA the first #SEG * @param sSegB the second #SEG * @param aExp expected parallelism: true = segments are parallel * false = segments are not parallel * @return does the parallelism calculated agree? */ bool SegParallelCorrect( const SEG& aSegA, const SEG& aSegB, bool aExp ) { const bool AtoB = aSegA.ApproxParallel( aSegB ); const bool BtoA = aSegB.ApproxParallel( aSegA ); const bool ok = ( AtoB == aExp ) && ( BtoA == aExp ); if( AtoB != BtoA ) { std::stringstream ss; ss << "Segment parallelism is not the same in both directions: expected " << aExp << ", got AtoB: " << AtoB << " BtoA:" << BtoA; BOOST_TEST_INFO( ss.str() ); } else if( !ok ) { std::stringstream ss; ss << "Parallelism incorrect: expected " << aExp << ", got " << AtoB; BOOST_TEST_INFO( ss.str() ); } return ok; } /** * Predicate to check expected perpendicularity between two segments * @param aSegA the first #SEG * @param sSegB the second #SEG * @param aExp expected perpendicularity: true = segments are perpendicular * false = segments are not perpendicular * @return does the perpendicularity calculated agree? */ bool SegPerpendicularCorrect( const SEG& aSegA, const SEG& aSegB, bool aExp ) { const bool AtoB = aSegA.ApproxPerpendicular( aSegB ); const bool BtoA = aSegB.ApproxPerpendicular( aSegA ); const bool ok = ( AtoB == aExp ) && ( BtoA == aExp ); if( AtoB != BtoA ) { std::stringstream ss; ss << "Segment perpendicularity is not the same in both directions: expected " << aExp << ", got AtoB: " << AtoB << " BtoA:" << BtoA; BOOST_TEST_INFO( ss.str() ); } else if( !ok ) { std::stringstream ss; ss << "Perpendicularity incorrect: expected " << aExp << ", got " << AtoB; BOOST_TEST_INFO( ss.str() ); } return ok; } BOOST_AUTO_TEST_SUITE( Segment ) /** * Checks whether the construction of a segment referencing external points works * and that the endpoints can be modified as normal points. */ BOOST_AUTO_TEST_CASE( EndpointCtorMod ) { const VECTOR2I pointA{ 10, 20 }; const VECTOR2I pointB{ 100, 200 }; // Build a segment referencing the previous points SEG segment( pointA, pointB ); BOOST_CHECK_EQUAL( pointA, VECTOR2I( 10, 20 ) ); BOOST_CHECK_EQUAL( pointB, VECTOR2I( 100, 200 ) ); // Modify the ends of the segments segment.A += VECTOR2I( 10, 10 ); segment.B += VECTOR2I( 100, 100 ); // Check that the ends in segment are modified BOOST_CHECK_EQUAL( segment.A, VECTOR2I( 20, 30 ) ); BOOST_CHECK_EQUAL( segment.B, VECTOR2I( 200, 300 ) ); } struct SEG_SEG_DISTANCE_CASE { std::string m_case_name; SEG m_seg_a; SEG m_seg_b; int m_exp_dist; }; // clang-format off static const std::vector seg_seg_dist_cases = { { "Parallel, 10 apart", { { 0, 0 }, { 10, 0 } }, { { 0, 10 }, { 10, 10 } }, 10, }, { "Non-parallel, 10 apart", { { 0, -5 }, { 10, 0 } }, { { 0, 10 }, { 10, 10 } }, 10, }, { "Co-incident", { { 0, 0 }, { 30, 0 } }, { { 10, 0 }, { 20, 0 } }, 0, }, { "Crossing", { { 0, -10 }, { 0, 10 } }, { { -20, 0 }, { 20, 0 } }, 0, }, { "T-junction", { { 0, -10 }, { 0, 10 } }, { { -20, 0 }, { 0, 0 } }, 0, }, { "T-junction (no touch)", { { 0, -10 }, { 0, 10 } }, { { -20, 0 }, { -2, 0 } }, 2, }, }; // clang-format on BOOST_AUTO_TEST_CASE( SegSegDistance ) { for( const auto& c : seg_seg_dist_cases ) { BOOST_TEST_CONTEXT( c.m_case_name ) { BOOST_CHECK_PREDICATE( SegDistanceCorrect, ( c.m_seg_a )( c.m_seg_b )( c.m_exp_dist ) ); } } } struct SEG_VECTOR_DISTANCE_CASE { std::string m_case_name; SEG m_seg; VECTOR2I m_vec; int m_exp_dist; }; // clang-format off static const std::vector seg_vec_dist_cases = { { "On endpoint", { { 0, 0 }, { 10, 0 } }, { 0, 0 }, 0, }, { "On segment", { { 0, 0 }, { 10, 0 } }, { 3, 0 }, 0, }, { "At side", { { 0, 0 }, { 10, 0 } }, { 3, 2 }, 2, }, { "At end (collinear)", { { 0, 0 }, { 10, 0 } }, { 12, 0 }, 2, }, { "At end (not collinear)", { { 0, 0 }, { 1000, 0 } }, { 1000 + 200, 200 }, 282, // sqrt(200^2 + 200^2) = 282.8, rounded to nearest }, }; // clang-format on BOOST_AUTO_TEST_CASE( SegVecDistance ) { for( const auto& c : seg_vec_dist_cases ) { BOOST_TEST_CONTEXT( c.m_case_name ) { BOOST_CHECK_PREDICATE( SegVecDistanceCorrect, ( c.m_seg )( c.m_vec )( c.m_exp_dist ) ); } } } /** * Test cases for collisions (with clearance, for no clearance, * it's just a SEG_SEG_DISTANCE_CASE of 0) */ struct SEG_SEG_COLLIDE_CASE { std::string m_case_name; SEG m_seg_a; SEG m_seg_b; int m_clearance; bool m_exp_coll; }; // clang-format off static const std::vector seg_seg_coll_cases = { { "Parallel, 10 apart, 5 clear", { { 0, 0 }, { 10, 0 } }, { { 0, 10 }, { 10, 10 } }, 5, false, }, { "Parallel, 10 apart, 10 clear", { { 0, 0 }, { 10, 0 } }, { { 0, 10 }, { 10, 10 } }, 10, false, }, { "Parallel, 10 apart, 11 clear", { { 0, 0 }, { 10, 0 } }, { { 0, 10 }, { 10, 10 } }, 11, true, }, { "T-junction, 2 apart, 2 clear", { { 0, -10 }, { 0, 0 } }, { { -20, 0 }, { -2, 0 } }, 2, false, }, { "T-junction, 2 apart, 3 clear", { { 0, -10 }, { 0, 0 } }, { { -20, 0 }, { -2, 0 } }, 3, true, }, }; // clang-format on BOOST_AUTO_TEST_CASE( SegSegCollision ) { for( const auto& c : seg_seg_coll_cases ) { BOOST_TEST_CONTEXT( c.m_case_name ) { BOOST_CHECK_PREDICATE( SegCollideCorrect, ( c.m_seg_a )( c.m_seg_b )( c.m_clearance )( c.m_exp_coll ) ); } } } /** * Struct to hold general cases for collinearity, parallelism and perpendicularity */ struct SEG_SEG_BOOLEAN_CASE { std::string m_case_name; SEG m_seg_a; SEG m_seg_b; bool m_exp_result; }; // clang-format off /** * Test cases for collinearity */ static const std::vector seg_vec_collinear_cases = { { "coincident", { { 0, 0 }, { 10, 0 } }, { { 0, 0 }, { 10, 0 } }, true, }, { "end-to-end", { { 0, 0 }, { 10, 0 } }, { { 10, 0 }, { 20, 0 } }, true, }, { "In segment", { { 0, 0 }, { 10, 0 } }, { { 4, 0 }, { 7, 0 } }, true, }, { "At side, parallel", { { 0, 0 }, { 10, 0 } }, { { 4, 1 }, { 7, 1 } }, false, }, { "crossing", { { 0, 0 }, { 10, 0 } }, { { 5, -5 }, { 5, 5 } }, false, }, }; // clang-format on BOOST_AUTO_TEST_CASE( SegSegCollinear ) { for( const auto& c : seg_vec_collinear_cases ) { BOOST_TEST_CONTEXT( c.m_case_name ) { BOOST_CHECK_PREDICATE( SegCollinearCorrect, ( c.m_seg_a )( c.m_seg_b )( c.m_exp_result ) ); } } } // clang-format off /** * Test cases for parallelism */ static const std::vector seg_vec_parallel_cases = { { "coincident", { { 0, 0 }, { 10, 0 } }, { { 0, 0 }, { 10, 0 } }, true, }, { "end-to-end", { { 0, 0 }, { 10, 0 } }, { { 10, 0 }, { 20, 0 } }, true, }, { "In segment", { { 0, 0 }, { 10, 0 } }, { { 4, 0 }, { 7, 0 } }, true, }, { "At side, parallel", { { 0, 0 }, { 10, 0 } }, { { 4, 1 }, { 7, 1 } }, true, }, { "crossing", { { 0, 0 }, { 10, 0 } }, { { 5, -5 }, { 5, 5 } }, false, }, }; // clang-format on BOOST_AUTO_TEST_CASE( SegSegParallel ) { for( const auto& c : seg_vec_parallel_cases ) { BOOST_TEST_CONTEXT( c.m_case_name ) { BOOST_CHECK_PREDICATE( SegParallelCorrect, ( c.m_seg_a )( c.m_seg_b )( c.m_exp_result ) ); } } } // clang-format off /** * Test cases for perpendicularity */ static const std::vector seg_vec_perpendicular_cases = { { "coincident", { { 0, 0 }, { 10, 0 } }, { { 0, 0 }, { 10, 0 } }, false, }, { "end-to-end", { { 0, 0 }, { 10, 0 } }, { { 10, 0 }, { 20, 0 } }, false, }, { "In segment", { { 0, 0 }, { 10, 0 } }, { { 4, 0 }, { 7, 0 } }, false, }, { "At side, parallel", { { 0, 0 }, { 10, 0 } }, { { 4, 1 }, { 7, 1 } }, false, }, { "crossing 45 deg", { { 0, 0 }, { 10, 0 } }, { { 0, 0 }, { 5, 5 } }, false, }, { "very nearly perpendicular", { { 0, 0 }, { 10, 0 } }, { { 0, 0 }, { 1, 10 } }, true, //allow error margin of 1 IU }, { "not really perpendicular", { { 0, 0 }, { 10, 0 } }, { { 0, 0 }, { 3, 10 } }, false, }, { "perpendicular", { { 0, 0 }, { 10, 0 } }, { { 0, 0 }, { 0, 10 } }, true, }, { "perpendicular not intersecting", { { 0, 0 }, { 10, 0 } }, { { 15, 5 }, { 15, 10 } }, true, }, }; // clang-format on BOOST_AUTO_TEST_CASE( SegSegPerpendicular ) { for( const auto& c : seg_vec_perpendicular_cases ) { BOOST_TEST_CONTEXT( c.m_case_name ) { BOOST_CHECK_PREDICATE( SegPerpendicularCorrect, ( c.m_seg_a )( c.m_seg_b )( c.m_exp_result ) ); } } } /** * Struct to hold cases for operations with a #SEG, and a #VECTOR2I */ struct SEG_VEC_CASE { std::string m_case_name; SEG m_seg; VECTOR2I m_vec; }; // clang-format off /** * Test cases to create segments passing through a point */ static const std::vector segment_and_point_cases = { { "Horizontal: point on edge of seg", { { 0, 0 }, { 10, 0 } }, { 0, 0 }, }, { "Horizontal: point in middle of seg", { { 0, 0 }, { 10, 0 } }, { 5, 0 }, }, { "Horizontal: point outside seg", { { 0, 0 }, { 10, 0 } }, { 20, 20 }, }, { "Vertical: point on edge of seg", { { 0, 0 }, { 0, 10 } }, { 0, 0 }, }, { "Vertical: point in middle of seg", { { 0, 0 }, { 0, 10 } }, { 0, 5 }, }, { "Vertical: point outside seg", { { 0, 0 }, { 0, 10 } }, { 20, 20 }, }, }; // clang-format on BOOST_AUTO_TEST_CASE( SegCreateParallel ) { for( const auto& c : segment_and_point_cases ) { BOOST_TEST_CONTEXT( c.m_case_name ) { SEG perpendicular = c.m_seg.ParallelSeg( c.m_vec ); BOOST_CHECK_PREDICATE( SegParallelCorrect, ( perpendicular )( c.m_seg )( true ) ); BOOST_CHECK_PREDICATE( SegVecDistanceCorrect, ( perpendicular )( c.m_vec )( 0 ) ); } } } BOOST_AUTO_TEST_CASE( SegCreatePerpendicular ) { for( const auto& c : segment_and_point_cases ) { BOOST_TEST_CONTEXT( c.m_case_name ) { SEG perpendicular = c.m_seg.PerpendicularSeg( c.m_vec ); BOOST_CHECK_PREDICATE( SegPerpendicularCorrect, ( perpendicular )( c.m_seg )( true ) ); BOOST_CHECK_PREDICATE( SegVecDistanceCorrect, ( perpendicular )( c.m_vec )( 0 ) ); } } } BOOST_AUTO_TEST_SUITE_END()