/******************************************************************************* * * * Author : Angus Johnson * * Version : 6.4.2 * * Date : 27 February 2017 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2017 * * * * License: * * Use, modification & distribution is subject to Boost Software License Ver 1. * * http://www.boost.org/LICENSE_1_0.txt * * * * Attributions: * * The code in this library is an extension of Bala Vatti's clipping algorithm: * * "A generic solution to polygon clipping" * * Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * * http://portal.acm.org/citation.cfm?id=129906 * * * * Computer graphics and geometric modeling: implementation and algorithms * * By Max K. Agoston * * Springer; 1 edition (January 4, 2005) * * http://books.google.com/books?q=vatti+clipping+agoston * * * * See also: * * "Polygon Offsetting by Computing Winding Numbers" * * Paper no. DETC2005-85513 pp. 565-575 * * ASME 2005 International Design Engineering Technical Conferences * * and Computers and Information in Engineering Conference (IDETC/CIE2005) * * September 24-28, 2005 , Long Beach, California, USA * * http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * * * *******************************************************************************/ /******************************************************************************* * * * This is a translation of the Delphi Clipper library and the naming style * * used has retained a Delphi flavour. * * * *******************************************************************************/ #include "clipper.hpp" #include #include #include #include #include #include #include #include namespace ClipperLib { static double const pi = 3.141592653589793238; static double const two_pi = pi * 2; static double const def_arc_tolerance = 0.25; enum Direction { dRightToLeft, dLeftToRight }; static int const Unassigned = -1; // edge not currently 'owning' a solution static int const Skip = -2; // edge that would otherwise close a path #define HORIZONTAL (-1.0E+40) #define TOLERANCE (1.0e-20) #define NEAR_ZERO( val ) ( ( (val) > -TOLERANCE ) && ( (val) < TOLERANCE ) ) struct TEdge { IntPoint Bot; IntPoint Curr; // current (updated for every new scanbeam) IntPoint Top; double Dx; PolyType PolyTyp; EdgeSide Side; // side only refers to current side of solution poly int WindDelta; // 1 or -1 depending on winding direction int WindCnt; int WindCnt2; // winding count of the opposite polytype int OutIdx; TEdge* Next; TEdge* Prev; TEdge* NextInLML; TEdge* NextInAEL; TEdge* PrevInAEL; TEdge* NextInSEL; TEdge* PrevInSEL; }; struct IntersectNode { TEdge* Edge1; TEdge* Edge2; IntPoint Pt; }; struct LocalMinimum { cInt Y; TEdge* LeftBound; TEdge* RightBound; }; struct OutPt; // OutRec: contains a path in the clipping solution. Edges in the AEL will // carry a pointer to an OutRec when they are part of the clipping solution. struct OutRec { int Idx; bool IsHole; bool IsOpen; OutRec* FirstLeft; // see comments in clipper.pas PolyNode* PolyNd; OutPt* Pts; OutPt* BottomPt; }; struct OutPt { int Idx; IntPoint Pt; OutPt* Next; OutPt* Prev; }; struct Join { OutPt* OutPt1; OutPt* OutPt2; IntPoint OffPt; }; struct LocMinSorter { inline bool operator()( const LocalMinimum& locMin1, const LocalMinimum& locMin2 ) { return locMin2.Y < locMin1.Y; } }; // ------------------------------------------------------------------------------ // ------------------------------------------------------------------------------ inline cInt Round( double val ) { if( (val < 0) ) return static_cast(val - 0.5); else return static_cast(val + 0.5); } // ------------------------------------------------------------------------------ inline cInt Abs( cInt val ) { return val < 0 ? -val : val; } // ------------------------------------------------------------------------------ // PolyTree methods ... // ------------------------------------------------------------------------------ void PolyTree::Clear() { for( PolyNodes::size_type i = 0; i < AllNodes.size(); ++i ) delete AllNodes[i]; AllNodes.resize( 0 ); Childs.resize( 0 ); } // ------------------------------------------------------------------------------ PolyNode* PolyTree::GetFirst() const { if( !Childs.empty() ) return Childs[0]; else return 0; } // ------------------------------------------------------------------------------ int PolyTree::Total() const { int result = (int) AllNodes.size(); // with negative offsets, ignore the hidden outer polygon ... if( result > 0 && Childs[0] != AllNodes[0] ) result--; return result; } // ------------------------------------------------------------------------------ // PolyNode methods ... // ------------------------------------------------------------------------------ PolyNode::PolyNode() : Parent( 0 ), Index( 0 ), m_IsOpen( false ) { } // ------------------------------------------------------------------------------ int PolyNode::ChildCount() const { return (int) Childs.size(); } // ------------------------------------------------------------------------------ void PolyNode::AddChild( PolyNode& child ) { unsigned cnt = (unsigned) Childs.size(); Childs.push_back( &child ); child.Parent = this; child.Index = cnt; } // ------------------------------------------------------------------------------ PolyNode* PolyNode::GetNext() const { if( !Childs.empty() ) return Childs[0]; else return GetNextSiblingUp(); } // ------------------------------------------------------------------------------ PolyNode* PolyNode::GetNextSiblingUp() const { if( !Parent ) // protects against PolyTree.GetNextSiblingUp() return 0; else if( Index == Parent->Childs.size() - 1 ) return Parent->GetNextSiblingUp(); else return Parent->Childs[Index + 1]; } // ------------------------------------------------------------------------------ bool PolyNode::IsHole() const { bool result = true; PolyNode* node = Parent; while( node ) { result = !result; node = node->Parent; } return result; } // ------------------------------------------------------------------------------ bool PolyNode::IsOpen() const { return m_IsOpen; } // ------------------------------------------------------------------------------ #ifndef use_int32 // ------------------------------------------------------------------------------ // Int128 class (enables safe math on signed 64bit integers) // eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1 // Int128 val2((long64)9223372036854775807); // Int128 val3 = val1 * val2; // val3.AsString => "85070591730234615847396907784232501249" (8.5e+37) // ------------------------------------------------------------------------------ class Int128 { public: ulong64 lo; long64 hi; Int128( long64 _lo = 0 ) { lo = (ulong64) _lo; if( _lo < 0 ) hi = -1; else hi = 0; } Int128( const Int128& val ) : lo( val.lo ), hi( val.hi ) {} Int128( const long64& _hi, const ulong64& _lo ) : lo( _lo ), hi( _hi ) {} Int128& operator =( const long64& val ) { lo = (ulong64) val; if( val < 0 ) hi = -1; else hi = 0; return *this; } bool operator ==( const Int128& val ) const { return hi == val.hi && lo == val.lo; } bool operator !=( const Int128& val ) const { return !(*this == val); } bool operator >( const Int128& val ) const { if( hi != val.hi ) return hi > val.hi; else return lo > val.lo; } bool operator <( const Int128& val ) const { if( hi != val.hi ) return hi < val.hi; else return lo < val.lo; } bool operator >=( const Int128& val ) const { return !(*this < val); } bool operator <=( const Int128& val ) const { return !(*this > val); } Int128& operator +=( const Int128& rhs ) { hi += rhs.hi; lo += rhs.lo; if( lo < rhs.lo ) hi++; return *this; } Int128 operator +( const Int128& rhs ) const { Int128 result( *this ); result += rhs; return result; } Int128& operator -=( const Int128& rhs ) { *this += -rhs; return *this; } Int128 operator -( const Int128& rhs ) const { Int128 result( *this ); result -= rhs; return result; } Int128 operator-() const // unary negation { if( lo == 0 ) return Int128( -hi, 0 ); else return Int128( ~hi, ~lo + 1 ); } operator double() const { const double shift64 = 18446744073709551616.0; // 2^64 if( hi < 0 ) { if( lo == 0 ) return (double) hi * shift64; else return -(double) (~lo + ~hi * shift64); } else return (double) (lo + hi * shift64); } }; // ------------------------------------------------------------------------------ Int128 Int128Mul( long64 lhs, long64 rhs ) { bool negate = (lhs < 0) != (rhs < 0); if( lhs < 0 ) lhs = -lhs; ulong64 int1Hi = ulong64( lhs ) >> 32; ulong64 int1Lo = ulong64( lhs & 0xFFFFFFFF ); if( rhs < 0 ) rhs = -rhs; ulong64 int2Hi = ulong64( rhs ) >> 32; ulong64 int2Lo = ulong64( rhs & 0xFFFFFFFF ); // nb: see comments in clipper.pas ulong64 a = int1Hi * int2Hi; ulong64 b = int1Lo * int2Lo; ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi; Int128 tmp; tmp.hi = long64( a + (c >> 32) ); tmp.lo = long64( c << 32 ); tmp.lo += long64( b ); if( tmp.lo < b ) tmp.hi++; if( negate ) tmp = -tmp; return tmp; } #endif // ------------------------------------------------------------------------------ // Miscellaneous global functions // ------------------------------------------------------------------------------ bool Orientation( const Path& poly ) { return Area( poly ) >= 0; } // ------------------------------------------------------------------------------ double Area( const Path& poly ) { int size = (int) poly.size(); if( size < 3 ) return 0; double a = 0; for( int i = 0, j = size - 1; i < size; ++i ) { a += ( (double) poly[j].X + poly[i].X ) * ( (double) poly[j].Y - poly[i].Y ); j = i; } return -a * 0.5; } // ------------------------------------------------------------------------------ double Area( const OutPt* op ) { const OutPt* startOp = op; if( !op ) return 0; double a = 0; do { a += (double) (op->Prev->Pt.X + op->Pt.X) * (double) (op->Prev->Pt.Y - op->Pt.Y); op = op->Next; } while( op != startOp ); return a * 0.5; } // ------------------------------------------------------------------------------ double Area( const OutRec& outRec ) { return Area( outRec.Pts ); } // ------------------------------------------------------------------------------ bool PointIsVertex( const IntPoint& Pt, OutPt* pp ) { OutPt* pp2 = pp; do { if( pp2->Pt == Pt ) return true; pp2 = pp2->Next; } while( pp2 != pp ); return false; } // ------------------------------------------------------------------------------ // See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann & Agathos // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf int PointInPolygon( const IntPoint& pt, const Path& path ) { // returns 0 if false, +1 if true, -1 if pt ON polygon boundary int result = 0; size_t cnt = path.size(); if( cnt < 3 ) return 0; IntPoint ip = path[0]; for( size_t i = 1; i <= cnt; ++i ) { IntPoint ipNext = (i == cnt ? path[0] : path[i]); if( ipNext.Y == pt.Y ) { if( (ipNext.X == pt.X) || ( ip.Y == pt.Y && ( (ipNext.X > pt.X) == (ip.X < pt.X) ) ) ) return -1; } if( (ip.Y < pt.Y) != (ipNext.Y < pt.Y) ) { if( ip.X >= pt.X ) { if( ipNext.X > pt.X ) result = 1 - result; else { double d = (double) (ip.X - pt.X) * (ipNext.Y - pt.Y) - (double) (ipNext.X - pt.X) * (ip.Y - pt.Y); if( !d ) return -1; if( (d > 0) == (ipNext.Y > ip.Y) ) result = 1 - result; } } else { if( ipNext.X > pt.X ) { double d = (double) (ip.X - pt.X) * (ipNext.Y - pt.Y) - (double) (ipNext.X - pt.X) * (ip.Y - pt.Y); if( !d ) return -1; if( (d > 0) == (ipNext.Y > ip.Y) ) result = 1 - result; } } } ip = ipNext; } return result; } // ------------------------------------------------------------------------------ int PointInPolygon( const IntPoint& pt, OutPt* op ) { // returns 0 if false, +1 if true, -1 if pt ON polygon boundary int result = 0; OutPt* startOp = op; for( ; ; ) { if( op->Next->Pt.Y == pt.Y ) { if( (op->Next->Pt.X == pt.X) || ( op->Pt.Y == pt.Y && ( (op->Next->Pt.X > pt.X) == (op->Pt.X < pt.X) ) ) ) return -1; } if( (op->Pt.Y < pt.Y) != (op->Next->Pt.Y < pt.Y) ) { if( op->Pt.X >= pt.X ) { if( op->Next->Pt.X > pt.X ) result = 1 - result; else { double d = (double) (op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - (double) (op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); if( !d ) return -1; if( (d > 0) == (op->Next->Pt.Y > op->Pt.Y) ) result = 1 - result; } } else { if( op->Next->Pt.X > pt.X ) { double d = (double) (op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - (double) (op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); if( !d ) return -1; if( (d > 0) == (op->Next->Pt.Y > op->Pt.Y) ) result = 1 - result; } } } op = op->Next; if( startOp == op ) break; } return result; } // ------------------------------------------------------------------------------ bool Poly2ContainsPoly1( OutPt* OutPt1, OutPt* OutPt2 ) { OutPt* op = OutPt1; do { // nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon int res = PointInPolygon( op->Pt, OutPt2 ); if( res >= 0 ) return res > 0; op = op->Next; } while( op != OutPt1 ); return true; } // ---------------------------------------------------------------------- bool SlopesEqual( const TEdge& e1, const TEdge& e2, bool UseFullInt64Range ) { #ifndef use_int32 if( UseFullInt64Range ) return Int128Mul( e1.Top.Y - e1.Bot.Y, e2.Top.X - e2.Bot.X ) == Int128Mul( e1.Top.X - e1.Bot.X, e2.Top.Y - e2.Bot.Y ); else #endif return (e1.Top.Y - e1.Bot.Y) * (e2.Top.X - e2.Bot.X) == (e1.Top.X - e1.Bot.X) * (e2.Top.Y - e2.Bot.Y); } // ------------------------------------------------------------------------------ bool SlopesEqual( const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, bool UseFullInt64Range ) { #ifndef use_int32 if( UseFullInt64Range ) return Int128Mul( pt1.Y - pt2.Y, pt2.X - pt3.X ) == Int128Mul( pt1.X - pt2.X, pt2.Y - pt3.Y ); else #endif return (pt1.Y - pt2.Y) * (pt2.X - pt3.X) == (pt1.X - pt2.X) * (pt2.Y - pt3.Y); } // ------------------------------------------------------------------------------ bool SlopesEqual( const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, const IntPoint pt4, bool UseFullInt64Range ) { #ifndef use_int32 if( UseFullInt64Range ) return Int128Mul( pt1.Y - pt2.Y, pt3.X - pt4.X ) == Int128Mul( pt1.X - pt2.X, pt3.Y - pt4.Y ); else #endif return (pt1.Y - pt2.Y) * (pt3.X - pt4.X) == (pt1.X - pt2.X) * (pt3.Y - pt4.Y); } // ------------------------------------------------------------------------------ inline bool IsHorizontal( TEdge& e ) { return e.Dx == HORIZONTAL; } // ------------------------------------------------------------------------------ inline double GetDx( const IntPoint pt1, const IntPoint pt2 ) { return (pt1.Y == pt2.Y) ? HORIZONTAL : (double) (pt2.X - pt1.X) / (pt2.Y - pt1.Y); } // --------------------------------------------------------------------------- inline void SetDx( TEdge& e ) { cInt dy = (e.Top.Y - e.Bot.Y); if( dy == 0 ) e.Dx = HORIZONTAL; else e.Dx = (double) (e.Top.X - e.Bot.X) / dy; } // --------------------------------------------------------------------------- inline void SwapSides( TEdge& Edge1, TEdge& Edge2 ) { EdgeSide Side = Edge1.Side; Edge1.Side = Edge2.Side; Edge2.Side = Side; } // ------------------------------------------------------------------------------ inline void SwapPolyIndexes( TEdge& Edge1, TEdge& Edge2 ) { int OutIdx = Edge1.OutIdx; Edge1.OutIdx = Edge2.OutIdx; Edge2.OutIdx = OutIdx; } // ------------------------------------------------------------------------------ inline cInt TopX( TEdge& edge, const cInt currentY ) { return ( currentY == edge.Top.Y ) ? edge.Top.X : edge.Bot.X + Round( edge.Dx * (currentY - edge.Bot.Y) ); } // ------------------------------------------------------------------------------ void IntersectPoint( TEdge& Edge1, TEdge& Edge2, IntPoint& ip ) { #ifdef use_xyz ip.Z = 0; #endif double b1, b2; if( Edge1.Dx == Edge2.Dx ) { ip.Y = Edge1.Curr.Y; ip.X = TopX( Edge1, ip.Y ); return; } else if( Edge1.Dx == 0 ) { ip.X = Edge1.Bot.X; if( IsHorizontal( Edge2 ) ) ip.Y = Edge2.Bot.Y; else { b2 = Edge2.Bot.Y - (Edge2.Bot.X / Edge2.Dx); ip.Y = Round( ip.X / Edge2.Dx + b2 ); } } else if( Edge2.Dx == 0 ) { ip.X = Edge2.Bot.X; if( IsHorizontal( Edge1 ) ) ip.Y = Edge1.Bot.Y; else { b1 = Edge1.Bot.Y - (Edge1.Bot.X / Edge1.Dx); ip.Y = Round( ip.X / Edge1.Dx + b1 ); } } else { b1 = Edge1.Bot.X - Edge1.Bot.Y * Edge1.Dx; b2 = Edge2.Bot.X - Edge2.Bot.Y * Edge2.Dx; double q = (b2 - b1) / (Edge1.Dx - Edge2.Dx); ip.Y = Round( q ); if( std::fabs( Edge1.Dx ) < std::fabs( Edge2.Dx ) ) ip.X = Round( Edge1.Dx * q + b1 ); else ip.X = Round( Edge2.Dx * q + b2 ); } if( ip.Y < Edge1.Top.Y || ip.Y < Edge2.Top.Y ) { if( Edge1.Top.Y > Edge2.Top.Y ) ip.Y = Edge1.Top.Y; else ip.Y = Edge2.Top.Y; if( std::fabs( Edge1.Dx ) < std::fabs( Edge2.Dx ) ) ip.X = TopX( Edge1, ip.Y ); else ip.X = TopX( Edge2, ip.Y ); } // finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ... if( ip.Y > Edge1.Curr.Y ) { ip.Y = Edge1.Curr.Y; // use the more vertical edge to derive X ... if( std::fabs( Edge1.Dx ) > std::fabs( Edge2.Dx ) ) ip.X = TopX( Edge2, ip.Y ); else ip.X = TopX( Edge1, ip.Y ); } } // ------------------------------------------------------------------------------ void ReversePolyPtLinks( OutPt* pp ) { if( !pp ) return; OutPt* pp1, * pp2; pp1 = pp; do { pp2 = pp1->Next; pp1->Next = pp1->Prev; pp1->Prev = pp2; pp1 = pp2; } while( pp1 != pp ); } // ------------------------------------------------------------------------------ void DisposeOutPts( OutPt*& pp ) { if( pp == 0 ) return; pp->Prev->Next = 0; while( pp ) { OutPt* tmpPp = pp; pp = pp->Next; delete tmpPp; } } // ------------------------------------------------------------------------------ inline void InitEdge( TEdge* e, TEdge* eNext, TEdge* ePrev, const IntPoint& Pt ) { // This clears the C++ way *e = TEdge( { 0 } ); e->Next = eNext; e->Prev = ePrev; e->Curr = Pt; e->OutIdx = Unassigned; } // ------------------------------------------------------------------------------ void InitEdge2( TEdge& e, PolyType Pt ) { if( e.Curr.Y >= e.Next->Curr.Y ) { e.Bot = e.Curr; e.Top = e.Next->Curr; } else { e.Top = e.Curr; e.Bot = e.Next->Curr; } SetDx( e ); e.PolyTyp = Pt; } // ------------------------------------------------------------------------------ TEdge* RemoveEdge( TEdge* e ) { // removes e from double_linked_list (but without removing from memory) e->Prev->Next = e->Next; e->Next->Prev = e->Prev; TEdge* result = e->Next; e->Prev = 0; // flag as removed (see ClipperBase.Clear) return result; } // ------------------------------------------------------------------------------ inline void ReverseHorizontal( TEdge& e ) { // swap horizontal edges' Top and Bottom x's so they follow the natural // progression of the bounds - ie so their xbots will align with the // adjoining lower edge. [Helpful in the ProcessHorizontal() method.] std::swap( e.Top.X, e.Bot.X ); #ifdef use_xyz std::swap( e.Top.Z, e.Bot.Z ); #endif } // ------------------------------------------------------------------------------ void SwapPoints( IntPoint& pt1, IntPoint& pt2 ) { IntPoint tmp = pt1; pt1 = pt2; pt2 = tmp; } // ------------------------------------------------------------------------------ bool GetOverlapSegment( IntPoint pt1a, IntPoint pt1b, IntPoint pt2a, IntPoint pt2b, IntPoint& pt1, IntPoint& pt2 ) { // precondition: segments are Collinear. if( Abs( pt1a.X - pt1b.X ) > Abs( pt1a.Y - pt1b.Y ) ) { if( pt1a.X > pt1b.X ) SwapPoints( pt1a, pt1b ); if( pt2a.X > pt2b.X ) SwapPoints( pt2a, pt2b ); if( pt1a.X > pt2a.X ) pt1 = pt1a; else pt1 = pt2a; if( pt1b.X < pt2b.X ) pt2 = pt1b; else pt2 = pt2b; return pt1.X < pt2.X; } else { if( pt1a.Y < pt1b.Y ) SwapPoints( pt1a, pt1b ); if( pt2a.Y < pt2b.Y ) SwapPoints( pt2a, pt2b ); if( pt1a.Y < pt2a.Y ) pt1 = pt1a; else pt1 = pt2a; if( pt1b.Y > pt2b.Y ) pt2 = pt1b; else pt2 = pt2b; return pt1.Y > pt2.Y; } } // ------------------------------------------------------------------------------ bool FirstIsBottomPt( const OutPt* btmPt1, const OutPt* btmPt2 ) { OutPt* p = btmPt1->Prev; while( (p->Pt == btmPt1->Pt) && (p != btmPt1) ) p = p->Prev; double dx1p = std::fabs( GetDx( btmPt1->Pt, p->Pt ) ); p = btmPt1->Next; while( (p->Pt == btmPt1->Pt) && (p != btmPt1) ) p = p->Next; double dx1n = std::fabs( GetDx( btmPt1->Pt, p->Pt ) ); p = btmPt2->Prev; while( (p->Pt == btmPt2->Pt) && (p != btmPt2) ) p = p->Prev; double dx2p = std::fabs( GetDx( btmPt2->Pt, p->Pt ) ); p = btmPt2->Next; while( (p->Pt == btmPt2->Pt) && (p != btmPt2) ) p = p->Next; double dx2n = std::fabs( GetDx( btmPt2->Pt, p->Pt ) ); if( std::max( dx1p, dx1n ) == std::max( dx2p, dx2n ) && std::min( dx1p, dx1n ) == std::min( dx2p, dx2n ) ) return Area( btmPt1 ) > 0; // if otherwise identical use orientation else return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n); } // ------------------------------------------------------------------------------ OutPt* GetBottomPt( OutPt* pp ) { OutPt* dups = 0; OutPt* p = pp->Next; while( p != pp ) { if( p->Pt.Y > pp->Pt.Y ) { pp = p; dups = 0; } else if( p->Pt.Y == pp->Pt.Y && p->Pt.X <= pp->Pt.X ) { if( p->Pt.X < pp->Pt.X ) { dups = 0; pp = p; } else { if( p->Next != pp && p->Prev != pp ) dups = p; } } p = p->Next; } if( dups ) { // there appears to be at least 2 vertices at BottomPt so ... while( dups != p ) { if( !FirstIsBottomPt( p, dups ) ) pp = dups; dups = dups->Next; while( dups->Pt != pp->Pt ) dups = dups->Next; } } return pp; } // ------------------------------------------------------------------------------ bool Pt2IsBetweenPt1AndPt3( const IntPoint pt1, const IntPoint pt2, const IntPoint pt3 ) { if( (pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2) ) return false; else if( pt1.X != pt3.X ) return (pt2.X > pt1.X) == (pt2.X < pt3.X); else return (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y); } // ------------------------------------------------------------------------------ bool HorzSegmentsOverlap( cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b ) { if( seg1a > seg1b ) std::swap( seg1a, seg1b ); if( seg2a > seg2b ) std::swap( seg2a, seg2b ); return (seg1a < seg2b) && (seg2a < seg1b); } // ------------------------------------------------------------------------------ // ClipperBase class methods ... // ------------------------------------------------------------------------------ ClipperBase::ClipperBase() // constructor { m_CurrentLM = m_MinimaList.begin(); // begin() == end() here m_UseFullRange = false; } // ------------------------------------------------------------------------------ ClipperBase::~ClipperBase() // destructor { Clear(); } // ------------------------------------------------------------------------------ void RangeTest( const IntPoint& Pt, bool& useFullRange ) { if( useFullRange ) { if( Pt.X > hiRange || Pt.Y > hiRange || -Pt.X > hiRange || -Pt.Y > hiRange ) throw clipperException( "Coordinate outside allowed range" ); } else if( Pt.X > loRange|| Pt.Y > loRange || -Pt.X > loRange || -Pt.Y > loRange ) { useFullRange = true; RangeTest( Pt, useFullRange ); } } // ------------------------------------------------------------------------------ TEdge* FindNextLocMin( TEdge* E ) { for( ; ; ) { while( E->Bot != E->Prev->Bot || E->Curr == E->Top ) E = E->Next; if( !IsHorizontal( *E ) && !IsHorizontal( *E->Prev ) ) break; while( IsHorizontal( *E->Prev ) ) E = E->Prev; TEdge* E2 = E; while( IsHorizontal( *E ) ) E = E->Next; if( E->Top.Y == E->Prev->Bot.Y ) continue; // ie just an intermediate horz. if( E2->Prev->Bot.X < E->Bot.X ) E = E2; break; } return E; } // ------------------------------------------------------------------------------ TEdge* ClipperBase::ProcessBound( TEdge* E, bool NextIsForward ) { TEdge* Result = E; TEdge* Horz = 0; if( E->OutIdx == Skip ) { // if edges still remain in the current bound beyond the skip edge then // create another LocMin and call ProcessBound once more if( NextIsForward ) { while( E->Top.Y == E->Next->Bot.Y ) E = E->Next; // don't include top horizontals when parsing a bound a second time, // they will be contained in the opposite bound ... while( E != Result && IsHorizontal( *E ) ) E = E->Prev; } else { while( E->Top.Y == E->Prev->Bot.Y ) E = E->Prev; while( E != Result && IsHorizontal( *E ) ) E = E->Next; } if( E == Result ) { if( NextIsForward ) Result = E->Next; else Result = E->Prev; } else { // there are more edges in the bound beyond result starting with E if( NextIsForward ) E = Result->Next; else E = Result->Prev; MinimaList::value_type locMin; locMin.Y = E->Bot.Y; locMin.LeftBound = 0; locMin.RightBound = E; E->WindDelta = 0; Result = ProcessBound( E, NextIsForward ); m_MinimaList.push_back( locMin ); } return Result; } TEdge* EStart; if( IsHorizontal( *E ) ) { // We need to be careful with open paths because this may not be a // true local minima (ie E may be following a skip edge). // Also, consecutive horz. edges may start heading left before going right. if( NextIsForward ) EStart = E->Prev; else EStart = E->Next; if( IsHorizontal( *EStart ) ) // ie an adjoining horizontal skip edge { if( EStart->Bot.X != E->Bot.X && EStart->Top.X != E->Bot.X ) ReverseHorizontal( *E ); } else if( EStart->Bot.X != E->Bot.X ) ReverseHorizontal( *E ); } EStart = E; if( NextIsForward ) { while( Result->Top.Y == Result->Next->Bot.Y && Result->Next->OutIdx != Skip ) Result = Result->Next; if( IsHorizontal( *Result ) && Result->Next->OutIdx != Skip ) { // nb: at the top of a bound, horizontals are added to the bound // only when the preceding edge attaches to the horizontal's left vertex // unless a Skip edge is encountered when that becomes the top divide Horz = Result; while( IsHorizontal( *Horz->Prev ) ) Horz = Horz->Prev; if( Horz->Prev->Top.X > Result->Next->Top.X ) Result = Horz->Prev; } while( E != Result ) { E->NextInLML = E->Next; if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Prev->Top.X ) ReverseHorizontal( *E ); E = E->Next; } if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Prev->Top.X ) ReverseHorizontal( *E ); Result = Result->Next; // move to the edge just beyond current bound } else { while( Result->Top.Y == Result->Prev->Bot.Y && Result->Prev->OutIdx != Skip ) Result = Result->Prev; if( IsHorizontal( *Result ) && Result->Prev->OutIdx != Skip ) { Horz = Result; while( IsHorizontal( *Horz->Next ) ) Horz = Horz->Next; if( Horz->Next->Top.X == Result->Prev->Top.X || Horz->Next->Top.X > Result->Prev->Top.X ) Result = Horz->Next; } while( E != Result ) { E->NextInLML = E->Prev; if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Next->Top.X ) ReverseHorizontal( *E ); E = E->Prev; } if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Next->Top.X ) ReverseHorizontal( *E ); Result = Result->Prev; // move to the edge just beyond current bound } return Result; } // ------------------------------------------------------------------------------ bool ClipperBase::AddPath( const Path& pg, PolyType PolyTyp, bool Closed ) { #ifdef use_lines if( !Closed && PolyTyp == ptClip ) throw clipperException( "AddPath: Open paths must be subject." ); #else if( !Closed ) throw clipperException( "AddPath: Open paths have been disabled." ); #endif int highI = (int) pg.size() - 1; if( Closed ) while( highI > 0 && (pg[highI] == pg[0]) ) --highI; while( highI > 0 && (pg[highI] == pg[highI - 1]) ) --highI; if( (Closed && highI < 2) || (!Closed && highI < 1) ) return false; // create a new edge array ... TEdge* edges = new TEdge[highI + 1]; bool IsFlat = true; // 1. Basic (first) edge initialization ... try { edges[1].Curr = pg[1]; RangeTest( pg[0], m_UseFullRange ); RangeTest( pg[highI], m_UseFullRange ); InitEdge( &edges[0], &edges[1], &edges[highI], pg[0] ); InitEdge( &edges[highI], &edges[0], &edges[highI - 1], pg[highI] ); for( int i = highI - 1; i >= 1; --i ) { RangeTest( pg[i], m_UseFullRange ); InitEdge( &edges[i], &edges[i + 1], &edges[i - 1], pg[i] ); } } catch( ... ) { delete [] edges; throw; // range test fails } TEdge* eStart = &edges[0]; // 2. Remove duplicate vertices, and (when closed) collinear edges ... TEdge* E = eStart, * eLoopStop = eStart; for( ; ; ) { // nb: allows matching start and end points when not Closed ... if( E->Curr == E->Next->Curr && (Closed || E->Next != eStart) ) { if( E == E->Next ) break; if( E == eStart ) eStart = E->Next; E = RemoveEdge( E ); eLoopStop = E; continue; } if( E->Prev == E->Next ) break; // only two vertices else if( Closed && SlopesEqual( E->Prev->Curr, E->Curr, E->Next->Curr, m_UseFullRange ) && ( !m_PreserveCollinear || !Pt2IsBetweenPt1AndPt3( E->Prev->Curr, E->Curr, E->Next->Curr ) ) ) { // Collinear edges are allowed for open paths but in closed paths // the default is to merge adjacent collinear edges into a single edge. // However, if the PreserveCollinear property is enabled, only overlapping // collinear edges (ie spikes) will be removed from closed paths. if( E == eStart ) eStart = E->Next; E = RemoveEdge( E ); E = E->Prev; eLoopStop = E; continue; } E = E->Next; if( (E == eLoopStop) || (!Closed && E->Next == eStart) ) break; } if( ( !Closed && (E == E->Next) ) || ( Closed && (E->Prev == E->Next) ) ) { delete [] edges; return false; } if( !Closed ) { m_HasOpenPaths = true; eStart->Prev->OutIdx = Skip; } // 3. Do second stage of edge initialization ... E = eStart; do { InitEdge2( *E, PolyTyp ); E = E->Next; if( IsFlat && E->Curr.Y != eStart->Curr.Y ) IsFlat = false; } while( E != eStart ); // 4. Finally, add edge bounds to LocalMinima list ... // Totally flat paths must be handled differently when adding them // to LocalMinima list to avoid endless loops etc ... if( IsFlat ) { if( Closed ) { delete [] edges; return false; } E->Prev->OutIdx = Skip; MinimaList::value_type locMin; locMin.Y = E->Bot.Y; locMin.LeftBound = 0; locMin.RightBound = E; locMin.RightBound->Side = esRight; locMin.RightBound->WindDelta = 0; for( ; ; ) { if( E->Bot.X != E->Prev->Top.X ) ReverseHorizontal( *E ); if( E->Next->OutIdx == Skip ) break; E->NextInLML = E->Next; E = E->Next; } m_MinimaList.push_back( locMin ); m_edges.push_back( edges ); return true; } m_edges.push_back( edges ); bool leftBoundIsForward; TEdge* EMin = 0; // workaround to avoid an endless loop in the while loop below when // open paths have matching start and end points ... if( E->Prev->Bot == E->Prev->Top ) E = E->Next; for( ; ; ) { E = FindNextLocMin( E ); if( E == EMin ) break; else if( !EMin ) EMin = E; // E and E.Prev now share a local minima (left aligned if horizontal). // Compare their slopes to find which starts which bound ... MinimaList::value_type locMin; locMin.Y = E->Bot.Y; if( E->Dx < E->Prev->Dx ) { locMin.LeftBound = E->Prev; locMin.RightBound = E; leftBoundIsForward = false; // Q.nextInLML = Q.prev } else { locMin.LeftBound = E; locMin.RightBound = E->Prev; leftBoundIsForward = true; // Q.nextInLML = Q.next } if( !Closed ) locMin.LeftBound->WindDelta = 0; else if( locMin.LeftBound->Next == locMin.RightBound ) locMin.LeftBound->WindDelta = -1; else locMin.LeftBound->WindDelta = 1; locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta; E = ProcessBound( locMin.LeftBound, leftBoundIsForward ); if( E->OutIdx == Skip ) E = ProcessBound( E, leftBoundIsForward ); TEdge* E2 = ProcessBound( locMin.RightBound, !leftBoundIsForward ); if( E2->OutIdx == Skip ) E2 = ProcessBound( E2, !leftBoundIsForward ); if( locMin.LeftBound->OutIdx == Skip ) locMin.LeftBound = 0; else if( locMin.RightBound->OutIdx == Skip ) locMin.RightBound = 0; m_MinimaList.push_back( locMin ); if( !leftBoundIsForward ) E = E2; } return true; } // ------------------------------------------------------------------------------ bool ClipperBase::AddPaths( const Paths& ppg, PolyType PolyTyp, bool Closed ) { bool result = false; for( Paths::size_type i = 0; i < ppg.size(); ++i ) if( AddPath( ppg[i], PolyTyp, Closed ) ) result = true; return result; } // ------------------------------------------------------------------------------ void ClipperBase::Clear() { DisposeLocalMinimaList(); for( EdgeList::size_type i = 0; i < m_edges.size(); ++i ) { TEdge* edges = m_edges[i]; delete [] edges; } m_edges.clear(); m_UseFullRange = false; m_HasOpenPaths = false; } // ------------------------------------------------------------------------------ void ClipperBase::Reset() { m_CurrentLM = m_MinimaList.begin(); if( m_CurrentLM == m_MinimaList.end() ) return; // ie nothing to process std::sort( m_MinimaList.begin(), m_MinimaList.end(), LocMinSorter() ); m_Scanbeam = ScanbeamList(); // clears/resets priority_queue // reset all edges ... for( MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end(); ++lm ) { InsertScanbeam( lm->Y ); TEdge* e = lm->LeftBound; if( e ) { e->Curr = e->Bot; e->Side = esLeft; e->OutIdx = Unassigned; } e = lm->RightBound; if( e ) { e->Curr = e->Bot; e->Side = esRight; e->OutIdx = Unassigned; } } m_ActiveEdges = 0; m_CurrentLM = m_MinimaList.begin(); } // ------------------------------------------------------------------------------ void ClipperBase::DisposeLocalMinimaList() { m_MinimaList.clear(); m_CurrentLM = m_MinimaList.begin(); } // ------------------------------------------------------------------------------ bool ClipperBase::PopLocalMinima( cInt Y, const LocalMinimum*& locMin ) { if( m_CurrentLM == m_MinimaList.end() || (*m_CurrentLM).Y != Y ) return false; locMin = &(*m_CurrentLM); ++m_CurrentLM; return true; } // ------------------------------------------------------------------------------ IntRect ClipperBase::GetBounds() { IntRect result; MinimaList::iterator lm = m_MinimaList.begin(); if( lm == m_MinimaList.end() ) { result.left = result.top = result.right = result.bottom = 0; return result; } result.left = lm->LeftBound->Bot.X; result.top = lm->LeftBound->Bot.Y; result.right = lm->LeftBound->Bot.X; result.bottom = lm->LeftBound->Bot.Y; while( lm != m_MinimaList.end() ) { // todo - needs fixing for open paths result.bottom = std::max( result.bottom, lm->LeftBound->Bot.Y ); TEdge* e = lm->LeftBound; for( ; ; ) { TEdge* bottomE = e; while( e->NextInLML ) { if( e->Bot.X < result.left ) result.left = e->Bot.X; if( e->Bot.X > result.right ) result.right = e->Bot.X; e = e->NextInLML; } result.left = std::min( result.left, e->Bot.X ); result.right = std::max( result.right, e->Bot.X ); result.left = std::min( result.left, e->Top.X ); result.right = std::max( result.right, e->Top.X ); result.top = std::min( result.top, e->Top.Y ); if( bottomE == lm->LeftBound ) e = lm->RightBound; else break; } ++lm; } return result; } // ------------------------------------------------------------------------------ void ClipperBase::InsertScanbeam( const cInt Y ) { m_Scanbeam.push( Y ); } // ------------------------------------------------------------------------------ bool ClipperBase::PopScanbeam( cInt& Y ) { if( m_Scanbeam.empty() ) return false; Y = m_Scanbeam.top(); m_Scanbeam.pop(); while( !m_Scanbeam.empty() && Y == m_Scanbeam.top() ) { m_Scanbeam.pop(); } // Pop duplicates. return true; } // ------------------------------------------------------------------------------ void ClipperBase::DisposeAllOutRecs() { for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) DisposeOutRec( i ); m_PolyOuts.clear(); } // ------------------------------------------------------------------------------ void ClipperBase::DisposeOutRec( PolyOutList::size_type index ) { OutRec* outRec = m_PolyOuts[index]; if( outRec->Pts ) DisposeOutPts( outRec->Pts ); delete outRec; m_PolyOuts[index] = 0; } // ------------------------------------------------------------------------------ void ClipperBase::DeleteFromAEL( TEdge* e ) { TEdge* AelPrev = e->PrevInAEL; TEdge* AelNext = e->NextInAEL; if( !AelPrev && !AelNext && (e != m_ActiveEdges) ) return; // already deleted if( AelPrev ) AelPrev->NextInAEL = AelNext; else m_ActiveEdges = AelNext; if( AelNext ) AelNext->PrevInAEL = AelPrev; e->NextInAEL = 0; e->PrevInAEL = 0; } // ------------------------------------------------------------------------------ OutRec* ClipperBase::CreateOutRec() { OutRec* result = new OutRec; result->IsHole = false; result->IsOpen = false; result->FirstLeft = 0; result->Pts = 0; result->BottomPt = 0; result->PolyNd = 0; m_PolyOuts.push_back( result ); result->Idx = (int) m_PolyOuts.size() - 1; return result; } // ------------------------------------------------------------------------------ void ClipperBase::SwapPositionsInAEL( TEdge* Edge1, TEdge* Edge2 ) { // check that one or other edge hasn't already been removed from AEL ... if( Edge1->NextInAEL == Edge1->PrevInAEL || Edge2->NextInAEL == Edge2->PrevInAEL ) return; if( Edge1->NextInAEL == Edge2 ) { TEdge* Next = Edge2->NextInAEL; if( Next ) Next->PrevInAEL = Edge1; TEdge* Prev = Edge1->PrevInAEL; if( Prev ) Prev->NextInAEL = Edge2; Edge2->PrevInAEL = Prev; Edge2->NextInAEL = Edge1; Edge1->PrevInAEL = Edge2; Edge1->NextInAEL = Next; } else if( Edge2->NextInAEL == Edge1 ) { TEdge* Next = Edge1->NextInAEL; if( Next ) Next->PrevInAEL = Edge2; TEdge* Prev = Edge2->PrevInAEL; if( Prev ) Prev->NextInAEL = Edge1; Edge1->PrevInAEL = Prev; Edge1->NextInAEL = Edge2; Edge2->PrevInAEL = Edge1; Edge2->NextInAEL = Next; } else { TEdge* Next = Edge1->NextInAEL; TEdge* Prev = Edge1->PrevInAEL; Edge1->NextInAEL = Edge2->NextInAEL; if( Edge1->NextInAEL ) Edge1->NextInAEL->PrevInAEL = Edge1; Edge1->PrevInAEL = Edge2->PrevInAEL; if( Edge1->PrevInAEL ) Edge1->PrevInAEL->NextInAEL = Edge1; Edge2->NextInAEL = Next; if( Edge2->NextInAEL ) Edge2->NextInAEL->PrevInAEL = Edge2; Edge2->PrevInAEL = Prev; if( Edge2->PrevInAEL ) Edge2->PrevInAEL->NextInAEL = Edge2; } if( !Edge1->PrevInAEL ) m_ActiveEdges = Edge1; else if( !Edge2->PrevInAEL ) m_ActiveEdges = Edge2; } // ------------------------------------------------------------------------------ void ClipperBase::UpdateEdgeIntoAEL( TEdge*& e ) { if( !e->NextInLML ) throw clipperException( "UpdateEdgeIntoAEL: invalid call" ); e->NextInLML->OutIdx = e->OutIdx; TEdge* AelPrev = e->PrevInAEL; TEdge* AelNext = e->NextInAEL; if( AelPrev ) AelPrev->NextInAEL = e->NextInLML; else m_ActiveEdges = e->NextInLML; if( AelNext ) AelNext->PrevInAEL = e->NextInLML; e->NextInLML->Side = e->Side; e->NextInLML->WindDelta = e->WindDelta; e->NextInLML->WindCnt = e->WindCnt; e->NextInLML->WindCnt2 = e->WindCnt2; e = e->NextInLML; e->Curr = e->Bot; e->PrevInAEL = AelPrev; e->NextInAEL = AelNext; if( !IsHorizontal( *e ) ) InsertScanbeam( e->Top.Y ); } // ------------------------------------------------------------------------------ bool ClipperBase::LocalMinimaPending() { return m_CurrentLM != m_MinimaList.end(); } // ------------------------------------------------------------------------------ // TClipper methods ... // ------------------------------------------------------------------------------ Clipper::Clipper( int initOptions ) : ClipperBase() // constructor { m_ExecuteLocked = false; m_UseFullRange = false; m_ReverseOutput = ( (initOptions & ioReverseSolution) != 0 ); m_StrictSimple = ( (initOptions & ioStrictlySimple) != 0 ); m_PreserveCollinear = ( (initOptions & ioPreserveCollinear) != 0 ); m_HasOpenPaths = false; #ifdef use_xyz m_ZFill = 0; #endif } // ------------------------------------------------------------------------------ #ifdef use_xyz void Clipper::ZFillFunction( ZFillCallback zFillFunc ) { m_ZFill = zFillFunc; } // ------------------------------------------------------------------------------ #endif bool Clipper::Execute( ClipType clipType, Paths& solution, PolyFillType fillType ) { return Execute( clipType, solution, fillType, fillType ); } // ------------------------------------------------------------------------------ bool Clipper::Execute( ClipType clipType, PolyTree& polytree, PolyFillType fillType ) { return Execute( clipType, polytree, fillType, fillType ); } // ------------------------------------------------------------------------------ bool Clipper::Execute( ClipType clipType, Paths& solution, PolyFillType subjFillType, PolyFillType clipFillType ) { if( m_ExecuteLocked ) return false; if( m_HasOpenPaths ) throw clipperException( "Error: PolyTree struct is needed for open path clipping." ); m_ExecuteLocked = true; solution.resize( 0 ); m_SubjFillType = subjFillType; m_ClipFillType = clipFillType; m_ClipType = clipType; m_UsingPolyTree = false; bool succeeded = ExecuteInternal(); if( succeeded ) BuildResult( solution ); DisposeAllOutRecs(); m_ExecuteLocked = false; return succeeded; } // ------------------------------------------------------------------------------ bool Clipper::Execute( ClipType clipType, PolyTree& polytree, PolyFillType subjFillType, PolyFillType clipFillType ) { if( m_ExecuteLocked ) return false; m_ExecuteLocked = true; m_SubjFillType = subjFillType; m_ClipFillType = clipFillType; m_ClipType = clipType; m_UsingPolyTree = true; bool succeeded = ExecuteInternal(); if( succeeded ) BuildResult2( polytree ); DisposeAllOutRecs(); m_ExecuteLocked = false; return succeeded; } // ------------------------------------------------------------------------------ void Clipper::FixHoleLinkage( OutRec& outrec ) { // skip OutRecs that (a) contain outermost polygons or // (b) already have the correct owner/child linkage ... if( !outrec.FirstLeft || (outrec.IsHole != outrec.FirstLeft->IsHole && outrec.FirstLeft->Pts) ) return; OutRec* orfl = outrec.FirstLeft; while( orfl && ( (orfl->IsHole == outrec.IsHole) || !orfl->Pts ) ) orfl = orfl->FirstLeft; outrec.FirstLeft = orfl; } // ------------------------------------------------------------------------------ bool Clipper::ExecuteInternal() { bool succeeded = true; try { Reset(); m_Maxima = MaximaList(); m_SortedEdges = 0; succeeded = true; cInt botY, topY; if( !PopScanbeam( botY ) ) return false; InsertLocalMinimaIntoAEL( botY ); while( PopScanbeam( topY ) || LocalMinimaPending() ) { ProcessHorizontals(); ClearGhostJoins(); if( !ProcessIntersections( topY ) ) { succeeded = false; break; } ProcessEdgesAtTopOfScanbeam( topY ); botY = topY; InsertLocalMinimaIntoAEL( botY ); } } catch( ... ) { succeeded = false; } if( succeeded ) { // fix orientations ... for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i]; if( !outRec->Pts || outRec->IsOpen ) continue; if( (outRec->IsHole ^ m_ReverseOutput) == (Area( *outRec ) > 0) ) ReversePolyPtLinks( outRec->Pts ); } if( !m_Joins.empty() ) JoinCommonEdges(); // unfortunately FixupOutPolygon() must be done after JoinCommonEdges() for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i]; if( !outRec->Pts ) continue; if( outRec->IsOpen ) FixupOutPolyline( *outRec ); else FixupOutPolygon( *outRec ); } if( m_StrictSimple ) DoSimplePolygons(); } ClearJoins(); ClearGhostJoins(); return succeeded; } // ------------------------------------------------------------------------------ void Clipper::SetWindingCount( TEdge& edge ) { TEdge* e = edge.PrevInAEL; // find the edge of the same polytype that immediately preceeds 'edge' in AEL while( e && ( (e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0) ) ) e = e->PrevInAEL; if( !e ) { if( edge.WindDelta == 0 ) { PolyFillType pft = (edge.PolyTyp == ptSubject ? m_SubjFillType : m_ClipFillType); edge.WindCnt = (pft == pftNegative ? -1 : 1); } else edge.WindCnt = edge.WindDelta; edge.WindCnt2 = 0; e = m_ActiveEdges; // ie get ready to calc WindCnt2 } else if( edge.WindDelta == 0 && m_ClipType != ctUnion ) { edge.WindCnt = 1; edge.WindCnt2 = e->WindCnt2; e = e->NextInAEL; // ie get ready to calc WindCnt2 } else if( IsEvenOddFillType( edge ) ) { // EvenOdd filling ... if( edge.WindDelta == 0 ) { // are we inside a subj polygon ... bool Inside = true; TEdge* e2 = e->PrevInAEL; while( e2 ) { if( e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0 ) Inside = !Inside; e2 = e2->PrevInAEL; } edge.WindCnt = (Inside ? 0 : 1); } else { edge.WindCnt = edge.WindDelta; } edge.WindCnt2 = e->WindCnt2; e = e->NextInAEL; // ie get ready to calc WindCnt2 } else { // nonZero, Positive or Negative filling ... if( e->WindCnt * e->WindDelta < 0 ) { // prev edge is 'decreasing' WindCount (WC) toward zero // so we're outside the previous polygon ... if( Abs( e->WindCnt ) > 1 ) { // outside prev poly but still inside another. // when reversing direction of prev poly use the same WC if( e->WindDelta * edge.WindDelta < 0 ) edge.WindCnt = e->WindCnt; // otherwise continue to 'decrease' WC ... else edge.WindCnt = e->WindCnt + edge.WindDelta; } else // now outside all polys of same polytype so set own WC ... edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta); } else { // prev edge is 'increasing' WindCount (WC) away from zero // so we're inside the previous polygon ... if( edge.WindDelta == 0 ) edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1); // if wind direction is reversing prev then use same WC else if( e->WindDelta * edge.WindDelta < 0 ) edge.WindCnt = e->WindCnt; // otherwise add to WC ... else edge.WindCnt = e->WindCnt + edge.WindDelta; } edge.WindCnt2 = e->WindCnt2; e = e->NextInAEL; // ie get ready to calc WindCnt2 } // update WindCnt2 ... if( IsEvenOddAltFillType( edge ) ) { // EvenOdd filling ... while( e != &edge ) { if( e->WindDelta != 0 ) edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0); e = e->NextInAEL; } } else { // nonZero, Positive or Negative filling ... while( e != &edge ) { edge.WindCnt2 += e->WindDelta; e = e->NextInAEL; } } } // ------------------------------------------------------------------------------ bool Clipper::IsEvenOddFillType( const TEdge& edge ) const { if( edge.PolyTyp == ptSubject ) return m_SubjFillType == pftEvenOdd; else return m_ClipFillType == pftEvenOdd; } // ------------------------------------------------------------------------------ bool Clipper::IsEvenOddAltFillType( const TEdge& edge ) const { if( edge.PolyTyp == ptSubject ) return m_ClipFillType == pftEvenOdd; else return m_SubjFillType == pftEvenOdd; } // ------------------------------------------------------------------------------ bool Clipper::IsContributing( const TEdge& edge ) const { PolyFillType pft, pft2; if( edge.PolyTyp == ptSubject ) { pft = m_SubjFillType; pft2 = m_ClipFillType; } else { pft = m_ClipFillType; pft2 = m_SubjFillType; } switch( pft ) { case pftEvenOdd: // return false if a subj line has been flagged as inside a subj polygon if( edge.WindDelta == 0 && edge.WindCnt != 1 ) return false; break; case pftNonZero: if( Abs( edge.WindCnt ) != 1 ) return false; break; case pftPositive: if( edge.WindCnt != 1 ) return false; break; default: // pftNegative if( edge.WindCnt != -1 ) return false; } switch( m_ClipType ) { case ctIntersection: switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 != 0; case pftPositive: return edge.WindCnt2 > 0; default: return edge.WindCnt2 < 0; } break; case ctUnion: switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 == 0; case pftPositive: return edge.WindCnt2 <= 0; default: return edge.WindCnt2 >= 0; } break; case ctDifference: if( edge.PolyTyp == ptSubject ) switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 == 0; case pftPositive: return edge.WindCnt2 <= 0; default: return edge.WindCnt2 >= 0; } else switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 != 0; case pftPositive: return edge.WindCnt2 > 0; default: return edge.WindCnt2 < 0; } break; case ctXor: if( edge.WindDelta == 0 ) // XOr always contributing unless open switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 == 0; case pftPositive: return edge.WindCnt2 <= 0; default: return edge.WindCnt2 >= 0; } else return true; break; default: return true; } } // ------------------------------------------------------------------------------ OutPt* Clipper::AddLocalMinPoly( TEdge* e1, TEdge* e2, const IntPoint& Pt ) { OutPt* result; TEdge* e, * prevE; if( IsHorizontal( *e2 ) || ( e1->Dx > e2->Dx ) ) { result = AddOutPt( e1, Pt ); e2->OutIdx = e1->OutIdx; e1->Side = esLeft; e2->Side = esRight; e = e1; if( e->PrevInAEL == e2 ) prevE = e2->PrevInAEL; else prevE = e->PrevInAEL; } else { result = AddOutPt( e2, Pt ); e1->OutIdx = e2->OutIdx; e1->Side = esRight; e2->Side = esLeft; e = e2; if( e->PrevInAEL == e1 ) prevE = e1->PrevInAEL; else prevE = e->PrevInAEL; } if( prevE && prevE->OutIdx >= 0 && prevE->Top.Y < Pt.Y && e->Top.Y < Pt.Y ) { cInt xPrev = TopX( *prevE, Pt.Y ); cInt xE = TopX( *e, Pt.Y ); if( xPrev == xE && (e->WindDelta != 0) && (prevE->WindDelta != 0) && SlopesEqual( IntPoint( xPrev, Pt.Y ), prevE->Top, IntPoint( xE, Pt.Y ), e->Top, m_UseFullRange ) ) { OutPt* outPt = AddOutPt( prevE, Pt ); AddJoin( result, outPt, e->Top ); } } return result; } // ------------------------------------------------------------------------------ void Clipper::AddLocalMaxPoly( TEdge* e1, TEdge* e2, const IntPoint& Pt ) { AddOutPt( e1, Pt ); if( e2->WindDelta == 0 ) AddOutPt( e2, Pt ); if( e1->OutIdx == e2->OutIdx ) { e1->OutIdx = Unassigned; e2->OutIdx = Unassigned; } else if( e1->OutIdx < e2->OutIdx ) AppendPolygon( e1, e2 ); else AppendPolygon( e2, e1 ); } // ------------------------------------------------------------------------------ void Clipper::AddEdgeToSEL( TEdge* edge ) { // SEL pointers in PEdge are reused to build a list of horizontal edges. // However, we don't need to worry about order with horizontal edge processing. if( !m_SortedEdges ) { m_SortedEdges = edge; edge->PrevInSEL = 0; edge->NextInSEL = 0; } else { edge->NextInSEL = m_SortedEdges; edge->PrevInSEL = 0; m_SortedEdges->PrevInSEL = edge; m_SortedEdges = edge; } } // ------------------------------------------------------------------------------ bool Clipper::PopEdgeFromSEL( TEdge*& edge ) { if( !m_SortedEdges ) return false; edge = m_SortedEdges; DeleteFromSEL( m_SortedEdges ); return true; } // ------------------------------------------------------------------------------ void Clipper::CopyAELToSEL() { TEdge* e = m_ActiveEdges; m_SortedEdges = e; while( e ) { e->PrevInSEL = e->PrevInAEL; e->NextInSEL = e->NextInAEL; e = e->NextInAEL; } } // ------------------------------------------------------------------------------ void Clipper::AddJoin( OutPt* op1, OutPt* op2, const IntPoint OffPt ) { Join* j = new Join; j->OutPt1 = op1; j->OutPt2 = op2; j->OffPt = OffPt; m_Joins.push_back( j ); } // ------------------------------------------------------------------------------ void Clipper::ClearJoins() { for( JoinList::size_type i = 0; i < m_Joins.size(); i++ ) delete m_Joins[i]; m_Joins.resize( 0 ); } // ------------------------------------------------------------------------------ void Clipper::ClearGhostJoins() { for( JoinList::size_type i = 0; i < m_GhostJoins.size(); i++ ) delete m_GhostJoins[i]; m_GhostJoins.resize( 0 ); } // ------------------------------------------------------------------------------ void Clipper::AddGhostJoin( OutPt* op, const IntPoint OffPt ) { Join* j = new Join; j->OutPt1 = op; j->OutPt2 = 0; j->OffPt = OffPt; m_GhostJoins.push_back( j ); } // ------------------------------------------------------------------------------ void Clipper::InsertLocalMinimaIntoAEL( const cInt botY ) { const LocalMinimum* lm; while( PopLocalMinima( botY, lm ) ) { TEdge* lb = lm->LeftBound; TEdge* rb = lm->RightBound; OutPt* Op1 = 0; if( !lb ) { // nb: don't insert LB into either AEL or SEL InsertEdgeIntoAEL( rb, 0 ); SetWindingCount( *rb ); if( IsContributing( *rb ) ) Op1 = AddOutPt( rb, rb->Bot ); } else if( !rb ) { InsertEdgeIntoAEL( lb, 0 ); SetWindingCount( *lb ); if( IsContributing( *lb ) ) Op1 = AddOutPt( lb, lb->Bot ); InsertScanbeam( lb->Top.Y ); } else { InsertEdgeIntoAEL( lb, 0 ); InsertEdgeIntoAEL( rb, lb ); SetWindingCount( *lb ); rb->WindCnt = lb->WindCnt; rb->WindCnt2 = lb->WindCnt2; if( IsContributing( *lb ) ) Op1 = AddLocalMinPoly( lb, rb, lb->Bot ); InsertScanbeam( lb->Top.Y ); } if( rb ) { if( IsHorizontal( *rb ) ) { AddEdgeToSEL( rb ); if( rb->NextInLML ) InsertScanbeam( rb->NextInLML->Top.Y ); } else InsertScanbeam( rb->Top.Y ); } if( !lb || !rb ) continue; // if any output polygons share an edge, they'll need joining later ... if( Op1 && IsHorizontal( *rb ) && m_GhostJoins.size() > 0 && (rb->WindDelta != 0) ) { for( JoinList::size_type i = 0; i < m_GhostJoins.size(); ++i ) { Join* jr = m_GhostJoins[i]; // if the horizontal Rb and a 'ghost' horizontal overlap, then convert // the 'ghost' join to a real join ready for later ... if( HorzSegmentsOverlap( jr->OutPt1->Pt.X, jr->OffPt.X, rb->Bot.X, rb->Top.X ) ) AddJoin( jr->OutPt1, Op1, jr->OffPt ); } } if( lb->OutIdx >= 0 && lb->PrevInAEL && lb->PrevInAEL->Curr.X == lb->Bot.X && lb->PrevInAEL->OutIdx >= 0 && SlopesEqual( lb->PrevInAEL->Bot, lb->PrevInAEL->Top, lb->Curr, lb->Top, m_UseFullRange ) && (lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0) ) { OutPt* Op2 = AddOutPt( lb->PrevInAEL, lb->Bot ); AddJoin( Op1, Op2, lb->Top ); } if( lb->NextInAEL != rb ) { if( rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 && SlopesEqual( rb->PrevInAEL->Curr, rb->PrevInAEL->Top, rb->Curr, rb->Top, m_UseFullRange ) && (rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0) ) { OutPt* Op2 = AddOutPt( rb->PrevInAEL, rb->Bot ); AddJoin( Op1, Op2, rb->Top ); } TEdge* e = lb->NextInAEL; if( e ) { while( e != rb ) { // nb: For calculating winding counts etc, IntersectEdges() assumes // that param1 will be to the Right of param2 ABOVE the intersection ... IntersectEdges( rb, e, lb->Curr ); // order important here e = e->NextInAEL; } } } } } // ------------------------------------------------------------------------------ void Clipper::DeleteFromSEL( TEdge* e ) { TEdge* SelPrev = e->PrevInSEL; TEdge* SelNext = e->NextInSEL; if( !SelPrev && !SelNext && (e != m_SortedEdges) ) return; // already deleted if( SelPrev ) SelPrev->NextInSEL = SelNext; else m_SortedEdges = SelNext; if( SelNext ) SelNext->PrevInSEL = SelPrev; e->NextInSEL = 0; e->PrevInSEL = 0; } // ------------------------------------------------------------------------------ #ifdef use_xyz void Clipper::SetZ( IntPoint& pt, TEdge& e1, TEdge& e2 ) { if( pt.Z != 0 || !m_ZFill ) return; else if( pt == e1.Bot ) pt.Z = e1.Bot.Z; else if( pt == e1.Top ) pt.Z = e1.Top.Z; else if( pt == e2.Bot ) pt.Z = e2.Bot.Z; else if( pt == e2.Top ) pt.Z = e2.Top.Z; else (*m_ZFill)( e1.Bot, e1.Top, e2.Bot, e2.Top, pt ); } // ------------------------------------------------------------------------------ #endif void Clipper::IntersectEdges( TEdge* e1, TEdge* e2, IntPoint& Pt ) { bool e1Contributing = ( e1->OutIdx >= 0 ); bool e2Contributing = ( e2->OutIdx >= 0 ); #ifdef use_xyz SetZ( Pt, *e1, *e2 ); #endif #ifdef use_lines // if either edge is on an OPEN path ... if( e1->WindDelta == 0 || e2->WindDelta == 0 ) { // ignore subject-subject open path intersections UNLESS they // are both open paths, AND they are both 'contributing maximas' ... if( e1->WindDelta == 0 && e2->WindDelta == 0 ) return; // if intersecting a subj line with a subj poly ... else if( e1->PolyTyp == e2->PolyTyp && e1->WindDelta != e2->WindDelta && m_ClipType == ctUnion ) { if( e1->WindDelta == 0 ) { if( e2Contributing ) { AddOutPt( e1, Pt ); if( e1Contributing ) e1->OutIdx = Unassigned; } } else { if( e1Contributing ) { AddOutPt( e2, Pt ); if( e2Contributing ) e2->OutIdx = Unassigned; } } } else if( e1->PolyTyp != e2->PolyTyp ) { // toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ... if( (e1->WindDelta == 0) && abs( e2->WindCnt ) == 1 && (m_ClipType != ctUnion || e2->WindCnt2 == 0) ) { AddOutPt( e1, Pt ); if( e1Contributing ) e1->OutIdx = Unassigned; } else if( (e2->WindDelta == 0) && (abs( e1->WindCnt ) == 1) && (m_ClipType != ctUnion || e1->WindCnt2 == 0) ) { AddOutPt( e2, Pt ); if( e2Contributing ) e2->OutIdx = Unassigned; } } return; } #endif // update winding counts... // assumes that e1 will be to the Right of e2 ABOVE the intersection if( e1->PolyTyp == e2->PolyTyp ) { if( IsEvenOddFillType( *e1 ) ) { int oldE1WindCnt = e1->WindCnt; e1->WindCnt = e2->WindCnt; e2->WindCnt = oldE1WindCnt; } else { if( e1->WindCnt + e2->WindDelta == 0 ) e1->WindCnt = -e1->WindCnt; else e1->WindCnt += e2->WindDelta; if( e2->WindCnt - e1->WindDelta == 0 ) e2->WindCnt = -e2->WindCnt; else e2->WindCnt -= e1->WindDelta; } } else { if( !IsEvenOddFillType( *e2 ) ) e1->WindCnt2 += e2->WindDelta; else e1->WindCnt2 = ( e1->WindCnt2 == 0 ) ? 1 : 0; if( !IsEvenOddFillType( *e1 ) ) e2->WindCnt2 -= e1->WindDelta; else e2->WindCnt2 = ( e2->WindCnt2 == 0 ) ? 1 : 0; } PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2; if( e1->PolyTyp == ptSubject ) { e1FillType = m_SubjFillType; e1FillType2 = m_ClipFillType; } else { e1FillType = m_ClipFillType; e1FillType2 = m_SubjFillType; } if( e2->PolyTyp == ptSubject ) { e2FillType = m_SubjFillType; e2FillType2 = m_ClipFillType; } else { e2FillType = m_ClipFillType; e2FillType2 = m_SubjFillType; } cInt e1Wc, e2Wc; switch( e1FillType ) { case pftPositive: e1Wc = e1->WindCnt; break; case pftNegative: e1Wc = -e1->WindCnt; break; default: e1Wc = Abs( e1->WindCnt ); } switch( e2FillType ) { case pftPositive: e2Wc = e2->WindCnt; break; case pftNegative: e2Wc = -e2->WindCnt; break; default: e2Wc = Abs( e2->WindCnt ); } if( e1Contributing && e2Contributing ) { if( (e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) || (e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor) ) { AddLocalMaxPoly( e1, e2, Pt ); } else { AddOutPt( e1, Pt ); AddOutPt( e2, Pt ); SwapSides( *e1, *e2 ); SwapPolyIndexes( *e1, *e2 ); } } else if( e1Contributing ) { if( e2Wc == 0 || e2Wc == 1 ) { AddOutPt( e1, Pt ); SwapSides( *e1, *e2 ); SwapPolyIndexes( *e1, *e2 ); } } else if( e2Contributing ) { if( e1Wc == 0 || e1Wc == 1 ) { AddOutPt( e2, Pt ); SwapSides( *e1, *e2 ); SwapPolyIndexes( *e1, *e2 ); } } else if( (e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1) ) { // neither edge is currently contributing ... cInt e1Wc2, e2Wc2; switch( e1FillType2 ) { case pftPositive: e1Wc2 = e1->WindCnt2; break; case pftNegative: e1Wc2 = -e1->WindCnt2; break; default: e1Wc2 = Abs( e1->WindCnt2 ); } switch( e2FillType2 ) { case pftPositive: e2Wc2 = e2->WindCnt2; break; case pftNegative: e2Wc2 = -e2->WindCnt2; break; default: e2Wc2 = Abs( e2->WindCnt2 ); } if( e1->PolyTyp != e2->PolyTyp ) { AddLocalMinPoly( e1, e2, Pt ); } else if( e1Wc == 1 && e2Wc == 1 ) switch( m_ClipType ) { case ctIntersection: if( e1Wc2 > 0 && e2Wc2 > 0 ) AddLocalMinPoly( e1, e2, Pt ); break; case ctUnion: if( e1Wc2 <= 0 && e2Wc2 <= 0 ) AddLocalMinPoly( e1, e2, Pt ); break; case ctDifference: if( ( (e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0) ) || ( (e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0) ) ) AddLocalMinPoly( e1, e2, Pt ); break; case ctXor: AddLocalMinPoly( e1, e2, Pt ); } else SwapSides( *e1, *e2 ); } } // ------------------------------------------------------------------------------ void Clipper::SetHoleState( TEdge* e, OutRec* outrec ) { TEdge* e2 = e->PrevInAEL; TEdge* eTmp = 0; while( e2 ) { if( e2->OutIdx >= 0 && e2->WindDelta != 0 ) { if( !eTmp ) eTmp = e2; else if( eTmp->OutIdx == e2->OutIdx ) eTmp = 0; } e2 = e2->PrevInAEL; } if( !eTmp ) { outrec->FirstLeft = 0; outrec->IsHole = false; } else { outrec->FirstLeft = m_PolyOuts[eTmp->OutIdx]; outrec->IsHole = !outrec->FirstLeft->IsHole; } } // ------------------------------------------------------------------------------ OutRec* GetLowermostRec( OutRec* outRec1, OutRec* outRec2 ) { // work out which polygon fragment has the correct hole state ... if( !outRec1->BottomPt ) outRec1->BottomPt = GetBottomPt( outRec1->Pts ); if( !outRec2->BottomPt ) outRec2->BottomPt = GetBottomPt( outRec2->Pts ); OutPt* OutPt1 = outRec1->BottomPt; OutPt* OutPt2 = outRec2->BottomPt; if( OutPt1->Pt.Y > OutPt2->Pt.Y ) return outRec1; else if( OutPt1->Pt.Y < OutPt2->Pt.Y ) return outRec2; else if( OutPt1->Pt.X < OutPt2->Pt.X ) return outRec1; else if( OutPt1->Pt.X > OutPt2->Pt.X ) return outRec2; else if( OutPt1->Next == OutPt1 ) return outRec2; else if( OutPt2->Next == OutPt2 ) return outRec1; else if( FirstIsBottomPt( OutPt1, OutPt2 ) ) return outRec1; else return outRec2; } // ------------------------------------------------------------------------------ bool OutRec1RightOfOutRec2( OutRec* outRec1, OutRec* outRec2 ) { do { outRec1 = outRec1->FirstLeft; if( outRec1 == outRec2 ) return true; } while( outRec1 ); return false; } // ------------------------------------------------------------------------------ OutRec* Clipper::GetOutRec( int Idx ) { OutRec* outrec = m_PolyOuts[Idx]; while( outrec != m_PolyOuts[outrec->Idx] ) outrec = m_PolyOuts[outrec->Idx]; return outrec; } // ------------------------------------------------------------------------------ void Clipper::AppendPolygon( TEdge* e1, TEdge* e2 ) { // get the start and ends of both output polygons ... OutRec* outRec1 = m_PolyOuts[e1->OutIdx]; OutRec* outRec2 = m_PolyOuts[e2->OutIdx]; OutRec* holeStateRec; if( OutRec1RightOfOutRec2( outRec1, outRec2 ) ) holeStateRec = outRec2; else if( OutRec1RightOfOutRec2( outRec2, outRec1 ) ) holeStateRec = outRec1; else holeStateRec = GetLowermostRec( outRec1, outRec2 ); // get the start and ends of both output polygons and // join e2 poly onto e1 poly and delete pointers to e2 ... OutPt* p1_lft = outRec1->Pts; OutPt* p1_rt = p1_lft->Prev; OutPt* p2_lft = outRec2->Pts; OutPt* p2_rt = p2_lft->Prev; // join e2 poly onto e1 poly and delete pointers to e2 ... if( e1->Side == esLeft ) { if( e2->Side == esLeft ) { // z y x a b c ReversePolyPtLinks( p2_lft ); p2_lft->Next = p1_lft; p1_lft->Prev = p2_lft; p1_rt->Next = p2_rt; p2_rt->Prev = p1_rt; outRec1->Pts = p2_rt; } else { // x y z a b c p2_rt->Next = p1_lft; p1_lft->Prev = p2_rt; p2_lft->Prev = p1_rt; p1_rt->Next = p2_lft; outRec1->Pts = p2_lft; } } else { if( e2->Side == esRight ) { // a b c z y x ReversePolyPtLinks( p2_lft ); p1_rt->Next = p2_rt; p2_rt->Prev = p1_rt; p2_lft->Next = p1_lft; p1_lft->Prev = p2_lft; } else { // a b c x y z p1_rt->Next = p2_lft; p2_lft->Prev = p1_rt; p1_lft->Prev = p2_rt; p2_rt->Next = p1_lft; } } outRec1->BottomPt = 0; if( holeStateRec == outRec2 ) { if( outRec2->FirstLeft != outRec1 ) outRec1->FirstLeft = outRec2->FirstLeft; outRec1->IsHole = outRec2->IsHole; } outRec2->Pts = 0; outRec2->BottomPt = 0; outRec2->FirstLeft = outRec1; int OKIdx = e1->OutIdx; int ObsoleteIdx = e2->OutIdx; e1->OutIdx = Unassigned; // nb: safe because we only get here via AddLocalMaxPoly e2->OutIdx = Unassigned; TEdge* e = m_ActiveEdges; while( e ) { if( e->OutIdx == ObsoleteIdx ) { e->OutIdx = OKIdx; e->Side = e1->Side; break; } e = e->NextInAEL; } outRec2->Idx = outRec1->Idx; } // ------------------------------------------------------------------------------ OutPt* Clipper::AddOutPt( TEdge* e, const IntPoint& pt ) { if( e->OutIdx < 0 ) { OutRec* outRec = CreateOutRec(); outRec->IsOpen = (e->WindDelta == 0); OutPt* newOp = new OutPt; outRec->Pts = newOp; newOp->Idx = outRec->Idx; newOp->Pt = pt; newOp->Next = newOp; newOp->Prev = newOp; if( !outRec->IsOpen ) SetHoleState( e, outRec ); e->OutIdx = outRec->Idx; return newOp; } else { OutRec* outRec = m_PolyOuts[e->OutIdx]; // OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most' OutPt* op = outRec->Pts; bool ToFront = (e->Side == esLeft); if( ToFront && (pt == op->Pt) ) return op; else if( !ToFront && (pt == op->Prev->Pt) ) return op->Prev; OutPt* newOp = new OutPt; newOp->Idx = outRec->Idx; newOp->Pt = pt; newOp->Next = op; newOp->Prev = op->Prev; newOp->Prev->Next = newOp; op->Prev = newOp; if( ToFront ) outRec->Pts = newOp; return newOp; } } // ------------------------------------------------------------------------------ OutPt* Clipper::GetLastOutPt( TEdge* e ) { OutRec* outRec = m_PolyOuts[e->OutIdx]; if( e->Side == esLeft ) return outRec->Pts; else return outRec->Pts->Prev; } // ------------------------------------------------------------------------------ void Clipper::ProcessHorizontals() { TEdge* horzEdge; while( PopEdgeFromSEL( horzEdge ) ) ProcessHorizontal( horzEdge ); } // ------------------------------------------------------------------------------ inline bool IsMinima( TEdge* e ) { return e && (e->Prev->NextInLML != e) && (e->Next->NextInLML != e); } // ------------------------------------------------------------------------------ inline bool IsMaxima( TEdge* e, const cInt Y ) { return e && e->Top.Y == Y && !e->NextInLML; } // ------------------------------------------------------------------------------ inline bool IsIntermediate( TEdge* e, const cInt Y ) { return e->Top.Y == Y && e->NextInLML; } // ------------------------------------------------------------------------------ TEdge* GetMaximaPair( TEdge* e ) { if( (e->Next->Top == e->Top) && !e->Next->NextInLML ) return e->Next; else if( (e->Prev->Top == e->Top) && !e->Prev->NextInLML ) return e->Prev; else return 0; } // ------------------------------------------------------------------------------ TEdge* GetMaximaPairEx( TEdge* e ) { // as GetMaximaPair() but returns 0 if MaxPair isn't in AEL (unless it's horizontal) TEdge* result = GetMaximaPair( e ); if( result && ( result->OutIdx == Skip || ( result->NextInAEL == result->PrevInAEL && !IsHorizontal( *result ) ) ) ) return 0; return result; } // ------------------------------------------------------------------------------ void Clipper::SwapPositionsInSEL( TEdge* Edge1, TEdge* Edge2 ) { if( !( Edge1->NextInSEL ) && !( Edge1->PrevInSEL ) ) return; if( !( Edge2->NextInSEL ) && !( Edge2->PrevInSEL ) ) return; if( Edge1->NextInSEL == Edge2 ) { TEdge* Next = Edge2->NextInSEL; if( Next ) Next->PrevInSEL = Edge1; TEdge* Prev = Edge1->PrevInSEL; if( Prev ) Prev->NextInSEL = Edge2; Edge2->PrevInSEL = Prev; Edge2->NextInSEL = Edge1; Edge1->PrevInSEL = Edge2; Edge1->NextInSEL = Next; } else if( Edge2->NextInSEL == Edge1 ) { TEdge* Next = Edge1->NextInSEL; if( Next ) Next->PrevInSEL = Edge2; TEdge* Prev = Edge2->PrevInSEL; if( Prev ) Prev->NextInSEL = Edge1; Edge1->PrevInSEL = Prev; Edge1->NextInSEL = Edge2; Edge2->PrevInSEL = Edge1; Edge2->NextInSEL = Next; } else { TEdge* Next = Edge1->NextInSEL; TEdge* Prev = Edge1->PrevInSEL; Edge1->NextInSEL = Edge2->NextInSEL; if( Edge1->NextInSEL ) Edge1->NextInSEL->PrevInSEL = Edge1; Edge1->PrevInSEL = Edge2->PrevInSEL; if( Edge1->PrevInSEL ) Edge1->PrevInSEL->NextInSEL = Edge1; Edge2->NextInSEL = Next; if( Edge2->NextInSEL ) Edge2->NextInSEL->PrevInSEL = Edge2; Edge2->PrevInSEL = Prev; if( Edge2->PrevInSEL ) Edge2->PrevInSEL->NextInSEL = Edge2; } if( !Edge1->PrevInSEL ) m_SortedEdges = Edge1; else if( !Edge2->PrevInSEL ) m_SortedEdges = Edge2; } // ------------------------------------------------------------------------------ TEdge* GetNextInAEL( TEdge* e, Direction dir ) { return dir == dLeftToRight ? e->NextInAEL : e->PrevInAEL; } // ------------------------------------------------------------------------------ void GetHorzDirection( TEdge& HorzEdge, Direction& Dir, cInt& Left, cInt& Right ) { if( HorzEdge.Bot.X < HorzEdge.Top.X ) { Left = HorzEdge.Bot.X; Right = HorzEdge.Top.X; Dir = dLeftToRight; } else { Left = HorzEdge.Top.X; Right = HorzEdge.Bot.X; Dir = dRightToLeft; } } // ------------------------------------------------------------------------ /******************************************************************************* * Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or * * Bottom of a scanbeam) are processed as if layered. The order in which HEs * * are processed doesn't matter. HEs intersect with other HE Bot.Xs only [#] * * (or they could intersect with Top.Xs only, ie EITHER Bot.Xs OR Top.Xs), * * and with other non-horizontal edges [*]. Once these intersections are * * processed, intermediate HEs then 'promote' the Edge above (NextInLML) into * * the AEL. These 'promoted' edges may in turn intersect [%] with other HEs. * *******************************************************************************/ void Clipper::ProcessHorizontal( TEdge* horzEdge ) { Direction dir; cInt horzLeft, horzRight; bool IsOpen = (horzEdge->WindDelta == 0); GetHorzDirection( *horzEdge, dir, horzLeft, horzRight ); TEdge* eLastHorz = horzEdge, * eMaxPair = 0; while( eLastHorz->NextInLML && IsHorizontal( *eLastHorz->NextInLML ) ) eLastHorz = eLastHorz->NextInLML; if( !eLastHorz->NextInLML ) eMaxPair = GetMaximaPair( eLastHorz ); MaximaList::const_iterator maxIt; MaximaList::const_reverse_iterator maxRit; if( m_Maxima.size() > 0 ) { // get the first maxima in range (X) ... if( dir == dLeftToRight ) { maxIt = m_Maxima.begin(); while( maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X ) maxIt++; if( maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X ) maxIt = m_Maxima.end(); } else { maxRit = m_Maxima.rbegin(); while( maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X ) maxRit++; if( maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X ) maxRit = m_Maxima.rend(); } } OutPt* op1 = 0; for( ; ; ) // loop through consec. horizontal edges { bool IsLastHorz = (horzEdge == eLastHorz); TEdge* e = GetNextInAEL( horzEdge, dir ); while( e ) { // this code block inserts extra coords into horizontal edges (in output // polygons) whereever maxima touch these horizontal edges. This helps // 'simplifying' polygons (ie if the Simplify property is set). if( m_Maxima.size() > 0 ) { if( dir == dLeftToRight ) { while( maxIt != m_Maxima.end() && *maxIt < e->Curr.X ) { if( horzEdge->OutIdx >= 0 && !IsOpen ) AddOutPt( horzEdge, IntPoint( *maxIt, horzEdge->Bot.Y ) ); maxIt++; } } else { while( maxRit != m_Maxima.rend() && *maxRit > e->Curr.X ) { if( horzEdge->OutIdx >= 0 && !IsOpen ) AddOutPt( horzEdge, IntPoint( *maxRit, horzEdge->Bot.Y ) ); maxRit++; } } } ; if( (dir == dLeftToRight && e->Curr.X > horzRight) || (dir == dRightToLeft && e->Curr.X < horzLeft) ) break; // Also break if we've got to the end of an intermediate horizontal edge ... // nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal. if( e->Curr.X == horzEdge->Top.X && horzEdge->NextInLML && e->Dx < horzEdge->NextInLML->Dx ) break; if( horzEdge->OutIdx >= 0 && !IsOpen ) // note: may be done multiple times { #ifdef use_xyz if( dir == dLeftToRight ) SetZ( e->Curr, *horzEdge, *e ); else SetZ( e->Curr, *e, *horzEdge ); #endif op1 = AddOutPt( horzEdge, e->Curr ); TEdge* eNextHorz = m_SortedEdges; while( eNextHorz ) { if( eNextHorz->OutIdx >= 0 && HorzSegmentsOverlap( horzEdge->Bot.X, horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X ) ) { OutPt* op2 = GetLastOutPt( eNextHorz ); AddJoin( op2, op1, eNextHorz->Top ); } eNextHorz = eNextHorz->NextInSEL; } AddGhostJoin( op1, horzEdge->Bot ); } // OK, so far we're still in range of the horizontal Edge but make sure // we're at the last of consec. horizontals when matching with eMaxPair if( e == eMaxPair && IsLastHorz ) { if( horzEdge->OutIdx >= 0 ) AddLocalMaxPoly( horzEdge, eMaxPair, horzEdge->Top ); DeleteFromAEL( horzEdge ); DeleteFromAEL( eMaxPair ); return; } if( dir == dLeftToRight ) { IntPoint Pt = IntPoint( e->Curr.X, horzEdge->Curr.Y ); IntersectEdges( horzEdge, e, Pt ); } else { IntPoint Pt = IntPoint( e->Curr.X, horzEdge->Curr.Y ); IntersectEdges( e, horzEdge, Pt ); } TEdge* eNext = GetNextInAEL( e, dir ); SwapPositionsInAEL( horzEdge, e ); e = eNext; } // end while(e) // Break out of loop if HorzEdge.NextInLML is not also horizontal ... if( !horzEdge->NextInLML || !IsHorizontal( *horzEdge->NextInLML ) ) break; UpdateEdgeIntoAEL( horzEdge ); if( horzEdge->OutIdx >= 0 ) AddOutPt( horzEdge, horzEdge->Bot ); GetHorzDirection( *horzEdge, dir, horzLeft, horzRight ); } // end for (;;) if( horzEdge->OutIdx >= 0 && !op1 ) { op1 = GetLastOutPt( horzEdge ); TEdge* eNextHorz = m_SortedEdges; while( eNextHorz ) { if( eNextHorz->OutIdx >= 0 && HorzSegmentsOverlap( horzEdge->Bot.X, horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X ) ) { OutPt* op2 = GetLastOutPt( eNextHorz ); AddJoin( op2, op1, eNextHorz->Top ); } eNextHorz = eNextHorz->NextInSEL; } AddGhostJoin( op1, horzEdge->Top ); } if( horzEdge->NextInLML ) { if( horzEdge->OutIdx >= 0 ) { op1 = AddOutPt( horzEdge, horzEdge->Top ); UpdateEdgeIntoAEL( horzEdge ); if( horzEdge->WindDelta == 0 ) return; // nb: HorzEdge is no longer horizontal here TEdge* ePrev = horzEdge->PrevInAEL; TEdge* eNext = horzEdge->NextInAEL; if( ePrev && ePrev->Curr.X == horzEdge->Bot.X && ePrev->Curr.Y == horzEdge->Bot.Y && ePrev->WindDelta != 0 && ( ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && SlopesEqual( *horzEdge, *ePrev, m_UseFullRange ) ) ) { OutPt* op2 = AddOutPt( ePrev, horzEdge->Bot ); AddJoin( op1, op2, horzEdge->Top ); } else if( eNext && eNext->Curr.X == horzEdge->Bot.X && eNext->Curr.Y == horzEdge->Bot.Y && eNext->WindDelta != 0 && eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && SlopesEqual( *horzEdge, *eNext, m_UseFullRange ) ) { OutPt* op2 = AddOutPt( eNext, horzEdge->Bot ); AddJoin( op1, op2, horzEdge->Top ); } } else UpdateEdgeIntoAEL( horzEdge ); } else { if( horzEdge->OutIdx >= 0 ) AddOutPt( horzEdge, horzEdge->Top ); DeleteFromAEL( horzEdge ); } } // ------------------------------------------------------------------------------ bool Clipper::ProcessIntersections( const cInt topY ) { if( !m_ActiveEdges ) return true; try { BuildIntersectList( topY ); size_t IlSize = m_IntersectList.size(); if( IlSize == 0 ) return true; if( IlSize == 1 || FixupIntersectionOrder() ) ProcessIntersectList(); else return false; } catch( ... ) { m_SortedEdges = 0; DisposeIntersectNodes(); throw clipperException( "ProcessIntersections error" ); } m_SortedEdges = 0; return true; } // ------------------------------------------------------------------------------ void Clipper::DisposeIntersectNodes() { for( size_t i = 0; i < m_IntersectList.size(); ++i ) delete m_IntersectList[i]; m_IntersectList.clear(); } // ------------------------------------------------------------------------------ void Clipper::BuildIntersectList( const cInt topY ) { if( !m_ActiveEdges ) return; // prepare for sorting ... TEdge* e = m_ActiveEdges; m_SortedEdges = e; while( e ) { e->PrevInSEL = e->PrevInAEL; e->NextInSEL = e->NextInAEL; e->Curr.X = TopX( *e, topY ); e = e->NextInAEL; } // bubblesort ... bool isModified; do { isModified = false; e = m_SortedEdges; while( e->NextInSEL ) { TEdge* eNext = e->NextInSEL; IntPoint Pt; if( e->Curr.X > eNext->Curr.X ) { IntersectPoint( *e, *eNext, Pt ); if( Pt.Y < topY ) Pt = IntPoint( TopX( *e, topY ), topY ); IntersectNode* newNode = new IntersectNode; newNode->Edge1 = e; newNode->Edge2 = eNext; newNode->Pt = Pt; m_IntersectList.push_back( newNode ); SwapPositionsInSEL( e, eNext ); isModified = true; } else e = eNext; } if( e->PrevInSEL ) e->PrevInSEL->NextInSEL = 0; else break; } while( isModified ); m_SortedEdges = 0; // important } // ------------------------------------------------------------------------------ void Clipper::ProcessIntersectList() { for( size_t i = 0; i < m_IntersectList.size(); ++i ) { IntersectNode* iNode = m_IntersectList[i]; { IntersectEdges( iNode->Edge1, iNode->Edge2, iNode->Pt ); SwapPositionsInAEL( iNode->Edge1, iNode->Edge2 ); } delete iNode; } m_IntersectList.clear(); } // ------------------------------------------------------------------------------ bool IntersectListSort( IntersectNode* node1, IntersectNode* node2 ) { return node2->Pt.Y < node1->Pt.Y; } // ------------------------------------------------------------------------------ inline bool EdgesAdjacent( const IntersectNode& inode ) { return (inode.Edge1->NextInSEL == inode.Edge2) || (inode.Edge1->PrevInSEL == inode.Edge2); } // ------------------------------------------------------------------------------ bool Clipper::FixupIntersectionOrder() { // pre-condition: intersections are sorted Bottom-most first. // Now it's crucial that intersections are made only between adjacent edges, // so to ensure this the order of intersections may need adjusting ... CopyAELToSEL(); std::sort( m_IntersectList.begin(), m_IntersectList.end(), IntersectListSort ); size_t cnt = m_IntersectList.size(); for( size_t i = 0; i < cnt; ++i ) { if( !EdgesAdjacent( *m_IntersectList[i] ) ) { size_t j = i + 1; while( j < cnt && !EdgesAdjacent( *m_IntersectList[j] ) ) j++; if( j == cnt ) return false; std::swap( m_IntersectList[i], m_IntersectList[j] ); } SwapPositionsInSEL( m_IntersectList[i]->Edge1, m_IntersectList[i]->Edge2 ); } return true; } // ------------------------------------------------------------------------------ void Clipper::DoMaxima( TEdge* e ) { TEdge* eMaxPair = GetMaximaPairEx( e ); if( !eMaxPair ) { if( e->OutIdx >= 0 ) AddOutPt( e, e->Top ); DeleteFromAEL( e ); return; } TEdge* eNext = e->NextInAEL; while( eNext && eNext != eMaxPair ) { IntersectEdges( e, eNext, e->Top ); SwapPositionsInAEL( e, eNext ); eNext = e->NextInAEL; } if( e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned ) { DeleteFromAEL( e ); DeleteFromAEL( eMaxPair ); } else if( e->OutIdx >= 0 && eMaxPair->OutIdx >= 0 ) { if( e->OutIdx >= 0 ) AddLocalMaxPoly( e, eMaxPair, e->Top ); DeleteFromAEL( e ); DeleteFromAEL( eMaxPair ); } #ifdef use_lines else if( e->WindDelta == 0 ) { if( e->OutIdx >= 0 ) { AddOutPt( e, e->Top ); e->OutIdx = Unassigned; } DeleteFromAEL( e ); if( eMaxPair->OutIdx >= 0 ) { AddOutPt( eMaxPair, e->Top ); eMaxPair->OutIdx = Unassigned; } DeleteFromAEL( eMaxPair ); } #endif else throw clipperException( "DoMaxima error" ); } // ------------------------------------------------------------------------------ void Clipper::ProcessEdgesAtTopOfScanbeam( const cInt topY ) { TEdge* e = m_ActiveEdges; while( e ) { // 1. process maxima, treating them as if they're 'bent' horizontal edges, // but exclude maxima with horizontal edges. nb: e can't be a horizontal. bool IsMaximaEdge = IsMaxima( e, topY ); if( IsMaximaEdge ) { TEdge* eMaxPair = GetMaximaPairEx( e ); IsMaximaEdge = ( !eMaxPair || !IsHorizontal( *eMaxPair ) ); } if( IsMaximaEdge ) { if( m_StrictSimple ) m_Maxima.push_back( e->Top.X ); TEdge* ePrev = e->PrevInAEL; DoMaxima( e ); if( !ePrev ) e = m_ActiveEdges; else e = ePrev->NextInAEL; } else { // 2. promote horizontal edges, otherwise update Curr.X and Curr.Y ... if( IsIntermediate( e, topY ) && IsHorizontal( *e->NextInLML ) ) { UpdateEdgeIntoAEL( e ); if( e->OutIdx >= 0 ) AddOutPt( e, e->Bot ); AddEdgeToSEL( e ); } else { e->Curr.X = TopX( *e, topY ); e->Curr.Y = topY; #ifdef use_xyz e->Curr.Z = topY == e->Top.Y ? e->Top.Z : (topY == e->Bot.Y ? e->Bot.Z : 0); #endif } // When StrictlySimple and 'e' is being touched by another edge, then // make sure both edges have a vertex here ... if( m_StrictSimple ) { TEdge* ePrev = e->PrevInAEL; if( (e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev && (ePrev->OutIdx >= 0) && (ePrev->Curr.X == e->Curr.X) && (ePrev->WindDelta != 0) ) { IntPoint pt = e->Curr; #ifdef use_xyz SetZ( pt, *ePrev, *e ); #endif OutPt* op = AddOutPt( ePrev, pt ); OutPt* op2 = AddOutPt( e, pt ); AddJoin( op, op2, pt ); // StrictlySimple (type-3) join } } e = e->NextInAEL; } } // 3. Process horizontals at the Top of the scanbeam ... m_Maxima.sort(); ProcessHorizontals(); m_Maxima.clear(); // 4. Promote intermediate vertices ... e = m_ActiveEdges; while( e ) { if( IsIntermediate( e, topY ) ) { OutPt* op = 0; if( e->OutIdx >= 0 ) op = AddOutPt( e, e->Top ); UpdateEdgeIntoAEL( e ); // if output polygons share an edge, they'll need joining later ... TEdge* ePrev = e->PrevInAEL; TEdge* eNext = e->NextInAEL; if( ePrev && ePrev->Curr.X == e->Bot.X && ePrev->Curr.Y == e->Bot.Y && op && ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && SlopesEqual( e->Curr, e->Top, ePrev->Curr, ePrev->Top, m_UseFullRange ) && (e->WindDelta != 0) && (ePrev->WindDelta != 0) ) { OutPt* op2 = AddOutPt( ePrev, e->Bot ); AddJoin( op, op2, e->Top ); } else if( eNext && eNext->Curr.X == e->Bot.X && eNext->Curr.Y == e->Bot.Y && op && eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && SlopesEqual( e->Curr, e->Top, eNext->Curr, eNext->Top, m_UseFullRange ) && (e->WindDelta != 0) && (eNext->WindDelta != 0) ) { OutPt* op2 = AddOutPt( eNext, e->Bot ); AddJoin( op, op2, e->Top ); } } e = e->NextInAEL; } } // ------------------------------------------------------------------------------ void Clipper::FixupOutPolyline( OutRec& outrec ) { OutPt* pp = outrec.Pts; OutPt* lastPP = pp->Prev; while( pp != lastPP ) { pp = pp->Next; if( pp->Pt == pp->Prev->Pt ) { if( pp == lastPP ) lastPP = pp->Prev; OutPt* tmpPP = pp->Prev; tmpPP->Next = pp->Next; pp->Next->Prev = tmpPP; delete pp; pp = tmpPP; } } if( pp == pp->Prev ) { DisposeOutPts( pp ); outrec.Pts = 0; return; } } // ------------------------------------------------------------------------------ void Clipper::FixupOutPolygon( OutRec& outrec ) { // FixupOutPolygon() - removes duplicate points and simplifies consecutive // parallel edges by removing the middle vertex. OutPt* lastOK = 0; outrec.BottomPt = 0; OutPt* pp = outrec.Pts; bool preserveCol = m_PreserveCollinear || m_StrictSimple; for( ; ; ) { if( pp->Prev == pp || pp->Prev == pp->Next ) { DisposeOutPts( pp ); outrec.Pts = 0; return; } // test for duplicate points and collinear edges ... if( (pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) || ( SlopesEqual( pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange ) && ( !preserveCol || !Pt2IsBetweenPt1AndPt3( pp->Prev->Pt, pp->Pt, pp->Next->Pt ) ) ) ) { lastOK = 0; OutPt* tmp = pp; pp->Prev->Next = pp->Next; pp->Next->Prev = pp->Prev; pp = pp->Prev; delete tmp; } else if( pp == lastOK ) break; else { if( !lastOK ) lastOK = pp; pp = pp->Next; } } outrec.Pts = pp; } // ------------------------------------------------------------------------------ int PointCount( OutPt* Pts ) { if( !Pts ) return 0; int result = 0; OutPt* p = Pts; do { result++; p = p->Next; } while( p != Pts ); return result; } // ------------------------------------------------------------------------------ void Clipper::BuildResult( Paths& polys ) { polys.reserve( m_PolyOuts.size() ); for( PolyOutList::size_type ii = 0; ii < m_PolyOuts.size(); ++ii ) { if( !m_PolyOuts[ii]->Pts ) continue; Path pg; OutPt* p = m_PolyOuts[ii]->Pts->Prev; int cnt = PointCount( p ); if( cnt < 2 ) continue; pg.reserve( cnt ); for( int jj = 0; jj < cnt; ++jj ) { pg.push_back( p->Pt ); p = p->Prev; } polys.push_back( pg ); } } // ------------------------------------------------------------------------------ void Clipper::BuildResult2( PolyTree& polytree ) { polytree.Clear(); polytree.AllNodes.reserve( m_PolyOuts.size() ); // add each output polygon/contour to polytree ... for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++ ) { OutRec* outRec = m_PolyOuts[i]; int cnt = PointCount( outRec->Pts ); if( (outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3) ) continue; FixHoleLinkage( *outRec ); PolyNode* pn = new PolyNode(); // nb: polytree takes ownership of all the PolyNodes polytree.AllNodes.push_back( pn ); outRec->PolyNd = pn; pn->Parent = 0; pn->Index = 0; pn->Contour.reserve( cnt ); OutPt* op = outRec->Pts->Prev; for( int j = 0; j < cnt; j++ ) { pn->Contour.push_back( op->Pt ); op = op->Prev; } } // fixup PolyNode links etc ... polytree.Childs.reserve( m_PolyOuts.size() ); for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++ ) { OutRec* outRec = m_PolyOuts[i]; if( !outRec->PolyNd ) continue; if( outRec->IsOpen ) { outRec->PolyNd->m_IsOpen = true; polytree.AddChild( *outRec->PolyNd ); } else if( outRec->FirstLeft && outRec->FirstLeft->PolyNd ) outRec->FirstLeft->PolyNd->AddChild( *outRec->PolyNd ); else polytree.AddChild( *outRec->PolyNd ); } } // ------------------------------------------------------------------------------ void SwapIntersectNodes( IntersectNode& int1, IntersectNode& int2 ) { // just swap the contents (because fIntersectNodes is a single-linked-list) IntersectNode inode = int1; // gets a copy of Int1 int1.Edge1 = int2.Edge1; int1.Edge2 = int2.Edge2; int1.Pt = int2.Pt; int2.Edge1 = inode.Edge1; int2.Edge2 = inode.Edge2; int2.Pt = inode.Pt; } // ------------------------------------------------------------------------------ inline bool E2InsertsBeforeE1( TEdge& e1, TEdge& e2 ) { if( e2.Curr.X == e1.Curr.X ) { if( e2.Top.Y > e1.Top.Y ) return e2.Top.X < TopX( e1, e2.Top.Y ); else return e1.Top.X > TopX( e2, e1.Top.Y ); } else return e2.Curr.X < e1.Curr.X; } // ------------------------------------------------------------------------------ bool GetOverlap( const cInt a1, const cInt a2, const cInt b1, const cInt b2, cInt& Left, cInt& Right ) { if( a1 < a2 ) { if( b1 < b2 ) { Left = std::max( a1, b1 ); Right = std::min( a2, b2 ); } else { Left = std::max( a1, b2 ); Right = std::min( a2, b1 ); } } else { if( b1 < b2 ) { Left = std::max( a2, b1 ); Right = std::min( a1, b2 ); } else { Left = std::max( a2, b2 ); Right = std::min( a1, b1 ); } } return Left < Right; } // ------------------------------------------------------------------------------ inline void UpdateOutPtIdxs( OutRec& outrec ) { OutPt* op = outrec.Pts; do { op->Idx = outrec.Idx; op = op->Prev; } while( op != outrec.Pts ); } // ------------------------------------------------------------------------------ void Clipper::InsertEdgeIntoAEL( TEdge* edge, TEdge* startEdge ) { if( !m_ActiveEdges ) { edge->PrevInAEL = 0; edge->NextInAEL = 0; m_ActiveEdges = edge; } else if( !startEdge && E2InsertsBeforeE1( *m_ActiveEdges, *edge ) ) { edge->PrevInAEL = 0; edge->NextInAEL = m_ActiveEdges; m_ActiveEdges->PrevInAEL = edge; m_ActiveEdges = edge; } else { if( !startEdge ) startEdge = m_ActiveEdges; while( startEdge->NextInAEL && !E2InsertsBeforeE1( *startEdge->NextInAEL, *edge ) ) startEdge = startEdge->NextInAEL; edge->NextInAEL = startEdge->NextInAEL; if( startEdge->NextInAEL ) startEdge->NextInAEL->PrevInAEL = edge; edge->PrevInAEL = startEdge; startEdge->NextInAEL = edge; } } // ---------------------------------------------------------------------- OutPt* DupOutPt( OutPt* outPt, bool InsertAfter ) { OutPt* result = new OutPt; result->Pt = outPt->Pt; result->Idx = outPt->Idx; if( InsertAfter ) { result->Next = outPt->Next; result->Prev = outPt; outPt->Next->Prev = result; outPt->Next = result; } else { result->Prev = outPt->Prev; result->Next = outPt; outPt->Prev->Next = result; outPt->Prev = result; } return result; } // ------------------------------------------------------------------------------ bool JoinHorz( OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b, const IntPoint Pt, bool DiscardLeft ) { Direction Dir1 = (op1->Pt.X > op1b->Pt.X ? dRightToLeft : dLeftToRight); Direction Dir2 = (op2->Pt.X > op2b->Pt.X ? dRightToLeft : dLeftToRight); if( Dir1 == Dir2 ) return false; // When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we // want Op1b to be on the Right. (And likewise with Op2 and Op2b.) // So, to facilitate this while inserting Op1b and Op2b ... // when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b, // otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.) if( Dir1 == dLeftToRight ) { while( op1->Next->Pt.X <= Pt.X && op1->Next->Pt.X >= op1->Pt.X && op1->Next->Pt.Y == Pt.Y ) op1 = op1->Next; if( DiscardLeft && (op1->Pt.X != Pt.X) ) op1 = op1->Next; op1b = DupOutPt( op1, !DiscardLeft ); if( op1b->Pt != Pt ) { op1 = op1b; op1->Pt = Pt; op1b = DupOutPt( op1, !DiscardLeft ); } } else { while( op1->Next->Pt.X >= Pt.X && op1->Next->Pt.X <= op1->Pt.X && op1->Next->Pt.Y == Pt.Y ) op1 = op1->Next; if( !DiscardLeft && (op1->Pt.X != Pt.X) ) op1 = op1->Next; op1b = DupOutPt( op1, DiscardLeft ); if( op1b->Pt != Pt ) { op1 = op1b; op1->Pt = Pt; op1b = DupOutPt( op1, DiscardLeft ); } } if( Dir2 == dLeftToRight ) { while( op2->Next->Pt.X <= Pt.X && op2->Next->Pt.X >= op2->Pt.X && op2->Next->Pt.Y == Pt.Y ) op2 = op2->Next; if( DiscardLeft && (op2->Pt.X != Pt.X) ) op2 = op2->Next; op2b = DupOutPt( op2, !DiscardLeft ); if( op2b->Pt != Pt ) { op2 = op2b; op2->Pt = Pt; op2b = DupOutPt( op2, !DiscardLeft ); } ; } else { while( op2->Next->Pt.X >= Pt.X && op2->Next->Pt.X <= op2->Pt.X && op2->Next->Pt.Y == Pt.Y ) op2 = op2->Next; if( !DiscardLeft && (op2->Pt.X != Pt.X) ) op2 = op2->Next; op2b = DupOutPt( op2, DiscardLeft ); if( op2b->Pt != Pt ) { op2 = op2b; op2->Pt = Pt; op2b = DupOutPt( op2, DiscardLeft ); } ; } ; if( (Dir1 == dLeftToRight) == DiscardLeft ) { op1->Prev = op2; op2->Next = op1; op1b->Next = op2b; op2b->Prev = op1b; } else { op1->Next = op2; op2->Prev = op1; op1b->Prev = op2b; op2b->Next = op1b; } return true; } // ------------------------------------------------------------------------------ bool Clipper::JoinPoints( Join* j, OutRec* outRec1, OutRec* outRec2 ) { OutPt* op1 = j->OutPt1, * op1b; OutPt* op2 = j->OutPt2, * op2b; // There are 3 kinds of joins for output polygons ... // 1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere // along (horizontal) collinear edges (& Join.OffPt is on the same horizontal). // 2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same // location at the Bottom of the overlapping segment (& Join.OffPt is above). // 3. StrictSimple joins where edges touch but are not collinear and where // Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point. bool isHorizontal = (j->OutPt1->Pt.Y == j->OffPt.Y); if( isHorizontal && (j->OffPt == j->OutPt1->Pt) && (j->OffPt == j->OutPt2->Pt) ) { // Strictly Simple join ... if( outRec1 != outRec2 ) return false; op1b = j->OutPt1->Next; while( op1b != op1 && (op1b->Pt == j->OffPt) ) op1b = op1b->Next; bool reverse1 = (op1b->Pt.Y > j->OffPt.Y); op2b = j->OutPt2->Next; while( op2b != op2 && (op2b->Pt == j->OffPt) ) op2b = op2b->Next; bool reverse2 = (op2b->Pt.Y > j->OffPt.Y); if( reverse1 == reverse2 ) return false; if( reverse1 ) { op1b = DupOutPt( op1, false ); op2b = DupOutPt( op2, true ); op1->Prev = op2; op2->Next = op1; op1b->Next = op2b; op2b->Prev = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } else { op1b = DupOutPt( op1, true ); op2b = DupOutPt( op2, false ); op1->Next = op2; op2->Prev = op1; op1b->Prev = op2b; op2b->Next = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } } else if( isHorizontal ) { // treat horizontal joins differently to non-horizontal joins since with // them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt // may be anywhere along the horizontal edge. op1b = op1; while( op1->Prev->Pt.Y == op1->Pt.Y && op1->Prev != op1b && op1->Prev != op2 ) op1 = op1->Prev; while( op1b->Next->Pt.Y == op1b->Pt.Y && op1b->Next != op1 && op1b->Next != op2 ) op1b = op1b->Next; if( op1b->Next == op1 || op1b->Next == op2 ) return false; // a flat 'polygon' op2b = op2; while( op2->Prev->Pt.Y == op2->Pt.Y && op2->Prev != op2b && op2->Prev != op1b ) op2 = op2->Prev; while( op2b->Next->Pt.Y == op2b->Pt.Y && op2b->Next != op2 && op2b->Next != op1 ) op2b = op2b->Next; if( op2b->Next == op2 || op2b->Next == op1 ) return false; // a flat 'polygon' cInt Left, Right; // Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges if( !GetOverlap( op1->Pt.X, op1b->Pt.X, op2->Pt.X, op2b->Pt.X, Left, Right ) ) return false; // DiscardLeftSide: when overlapping edges are joined, a spike will created // which needs to be cleaned up. However, we don't want Op1 or Op2 caught up // on the discard Side as either may still be needed for other joins ... IntPoint Pt; bool DiscardLeftSide; if( op1->Pt.X >= Left && op1->Pt.X <= Right ) { Pt = op1->Pt; DiscardLeftSide = (op1->Pt.X > op1b->Pt.X); } else if( op2->Pt.X >= Left&& op2->Pt.X <= Right ) { Pt = op2->Pt; DiscardLeftSide = (op2->Pt.X > op2b->Pt.X); } else if( op1b->Pt.X >= Left && op1b->Pt.X <= Right ) { Pt = op1b->Pt; DiscardLeftSide = op1b->Pt.X > op1->Pt.X; } else { Pt = op2b->Pt; DiscardLeftSide = (op2b->Pt.X > op2->Pt.X); } j->OutPt1 = op1; j->OutPt2 = op2; return JoinHorz( op1, op1b, op2, op2b, Pt, DiscardLeftSide ); } else { // nb: For non-horizontal joins ... // 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y // 2. Jr.OutPt1.Pt > Jr.OffPt.Y // make sure the polygons are correctly oriented ... op1b = op1->Next; while( (op1b->Pt == op1->Pt) && (op1b != op1) ) op1b = op1b->Next; bool Reverse1 = ( (op1b->Pt.Y > op1->Pt.Y) || !SlopesEqual( op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange ) ); if( Reverse1 ) { op1b = op1->Prev; while( (op1b->Pt == op1->Pt) && (op1b != op1) ) op1b = op1b->Prev; if( (op1b->Pt.Y > op1->Pt.Y) || !SlopesEqual( op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange ) ) return false; } ; op2b = op2->Next; while( (op2b->Pt == op2->Pt) && (op2b != op2) ) op2b = op2b->Next; bool Reverse2 = ( (op2b->Pt.Y > op2->Pt.Y) || !SlopesEqual( op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange ) ); if( Reverse2 ) { op2b = op2->Prev; while( (op2b->Pt == op2->Pt) && (op2b != op2) ) op2b = op2b->Prev; if( (op2b->Pt.Y > op2->Pt.Y) || !SlopesEqual( op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange ) ) return false; } if( (op1b == op1) || (op2b == op2) || (op1b == op2b) || ( (outRec1 == outRec2) && (Reverse1 == Reverse2) ) ) return false; if( Reverse1 ) { op1b = DupOutPt( op1, false ); op2b = DupOutPt( op2, true ); op1->Prev = op2; op2->Next = op1; op1b->Next = op2b; op2b->Prev = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } else { op1b = DupOutPt( op1, true ); op2b = DupOutPt( op2, false ); op1->Next = op2; op2->Prev = op1; op1b->Prev = op2b; op2b->Next = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } } } // ---------------------------------------------------------------------- static OutRec* ParseFirstLeft( OutRec* FirstLeft ) { while( FirstLeft && !FirstLeft->Pts ) FirstLeft = FirstLeft->FirstLeft; return FirstLeft; } // ------------------------------------------------------------------------------ void Clipper::FixupFirstLefts1( OutRec* OldOutRec, OutRec* NewOutRec ) { // tests if NewOutRec contains the polygon before reassigning FirstLeft for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i]; OutRec* firstLeft = ParseFirstLeft( outRec->FirstLeft ); if( outRec->Pts && firstLeft == OldOutRec ) { if( Poly2ContainsPoly1( outRec->Pts, NewOutRec->Pts ) ) outRec->FirstLeft = NewOutRec; } } } // ---------------------------------------------------------------------- void Clipper::FixupFirstLefts2( OutRec* InnerOutRec, OutRec* OuterOutRec ) { // A polygon has split into two such that one is now the inner of the other. // It's possible that these polygons now wrap around other polygons, so check // every polygon that's also contained by OuterOutRec's FirstLeft container // (including 0) to see if they've become inner to the new inner polygon ... OutRec* orfl = OuterOutRec->FirstLeft; for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i]; if( !outRec->Pts || outRec == OuterOutRec || outRec == InnerOutRec ) continue; OutRec* firstLeft = ParseFirstLeft( outRec->FirstLeft ); if( firstLeft != orfl && firstLeft != InnerOutRec && firstLeft != OuterOutRec ) continue; if( Poly2ContainsPoly1( outRec->Pts, InnerOutRec->Pts ) ) outRec->FirstLeft = InnerOutRec; else if( Poly2ContainsPoly1( outRec->Pts, OuterOutRec->Pts ) ) outRec->FirstLeft = OuterOutRec; else if( outRec->FirstLeft == InnerOutRec || outRec->FirstLeft == OuterOutRec ) outRec->FirstLeft = orfl; } } // ---------------------------------------------------------------------- void Clipper::FixupFirstLefts3( OutRec* OldOutRec, OutRec* NewOutRec ) { // reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i]; OutRec* firstLeft = ParseFirstLeft( outRec->FirstLeft ); if( outRec->Pts && firstLeft == OldOutRec ) outRec->FirstLeft = NewOutRec; } } // ---------------------------------------------------------------------- void Clipper::JoinCommonEdges() { for( JoinList::size_type i = 0; i < m_Joins.size(); i++ ) { Join* join = m_Joins[i]; OutRec* outRec1 = GetOutRec( join->OutPt1->Idx ); OutRec* outRec2 = GetOutRec( join->OutPt2->Idx ); if( !outRec1->Pts || !outRec2->Pts ) continue; if( outRec1->IsOpen || outRec2->IsOpen ) continue; // get the polygon fragment with the correct hole state (FirstLeft) // before calling JoinPoints() ... OutRec* holeStateRec; if( outRec1 == outRec2 ) holeStateRec = outRec1; else if( OutRec1RightOfOutRec2( outRec1, outRec2 ) ) holeStateRec = outRec2; else if( OutRec1RightOfOutRec2( outRec2, outRec1 ) ) holeStateRec = outRec1; else holeStateRec = GetLowermostRec( outRec1, outRec2 ); if( !JoinPoints( join, outRec1, outRec2 ) ) continue; if( outRec1 == outRec2 ) { // instead of joining two polygons, we've just created a new one by // splitting one polygon into two. outRec1->Pts = join->OutPt1; outRec1->BottomPt = 0; outRec2 = CreateOutRec(); outRec2->Pts = join->OutPt2; // update all OutRec2.Pts Idx's ... UpdateOutPtIdxs( *outRec2 ); if( Poly2ContainsPoly1( outRec2->Pts, outRec1->Pts ) ) { // outRec1 contains outRec2 ... outRec2->IsHole = !outRec1->IsHole; outRec2->FirstLeft = outRec1; if( m_UsingPolyTree ) FixupFirstLefts2( outRec2, outRec1 ); if( (outRec2->IsHole ^ m_ReverseOutput) == (Area( *outRec2 ) > 0) ) ReversePolyPtLinks( outRec2->Pts ); } else if( Poly2ContainsPoly1( outRec1->Pts, outRec2->Pts ) ) { // outRec2 contains outRec1 ... outRec2->IsHole = outRec1->IsHole; outRec1->IsHole = !outRec2->IsHole; outRec2->FirstLeft = outRec1->FirstLeft; outRec1->FirstLeft = outRec2; if( m_UsingPolyTree ) FixupFirstLefts2( outRec1, outRec2 ); if( (outRec1->IsHole ^ m_ReverseOutput) == (Area( *outRec1 ) > 0) ) ReversePolyPtLinks( outRec1->Pts ); } else { // the 2 polygons are completely separate ... outRec2->IsHole = outRec1->IsHole; outRec2->FirstLeft = outRec1->FirstLeft; // fixup FirstLeft pointers that may need reassigning to OutRec2 if( m_UsingPolyTree ) FixupFirstLefts1( outRec1, outRec2 ); } } else { // joined 2 polygons together ... outRec2->Pts = 0; outRec2->BottomPt = 0; outRec2->Idx = outRec1->Idx; outRec1->IsHole = holeStateRec->IsHole; if( holeStateRec == outRec2 ) outRec1->FirstLeft = outRec2->FirstLeft; outRec2->FirstLeft = outRec1; if( m_UsingPolyTree ) FixupFirstLefts3( outRec2, outRec1 ); } } } // ------------------------------------------------------------------------------ // ClipperOffset support functions ... // ------------------------------------------------------------------------------ DoublePoint GetUnitNormal( const IntPoint& pt1, const IntPoint& pt2 ) { if( pt2.X == pt1.X && pt2.Y == pt1.Y ) return DoublePoint( 0, 0 ); double Dx = (double) (pt2.X - pt1.X); double dy = (double) (pt2.Y - pt1.Y); double f = 1 * 1.0 / std::sqrt( Dx * Dx + dy * dy ); Dx *= f; dy *= f; return DoublePoint( dy, -Dx ); } // ------------------------------------------------------------------------------ // ClipperOffset class // ------------------------------------------------------------------------------ ClipperOffset::ClipperOffset( double miterLimit, double arcTolerance ) { this->MiterLimit = miterLimit; this->ArcTolerance = arcTolerance; m_lowest.X = -1; } // ------------------------------------------------------------------------------ ClipperOffset::~ClipperOffset() { Clear(); } // ------------------------------------------------------------------------------ void ClipperOffset::Clear() { for( int i = 0; i < m_polyNodes.ChildCount(); ++i ) delete m_polyNodes.Childs[i]; m_polyNodes.Childs.clear(); m_lowest.X = -1; } // ------------------------------------------------------------------------------ void ClipperOffset::AddPath( const Path& path, JoinType joinType, EndType endType ) { int highI = (int) path.size() - 1; if( highI < 0 ) return; PolyNode* newNode = new PolyNode(); newNode->m_jointype = joinType; newNode->m_endtype = endType; // strip duplicate points from path and also get index to the lowest point ... if( endType == etClosedLine || endType == etClosedPolygon ) while( highI > 0 && path[0] == path[highI] ) highI--; newNode->Contour.reserve( highI + 1 ); newNode->Contour.push_back( path[0] ); int j = 0, k = 0; for( int i = 1; i <= highI; i++ ) if( newNode->Contour[j] != path[i] ) { j++; newNode->Contour.push_back( path[i] ); if( path[i].Y > newNode->Contour[k].Y || (path[i].Y == newNode->Contour[k].Y && path[i].X < newNode->Contour[k].X) ) k = j; } if( endType == etClosedPolygon && j < 2 ) { delete newNode; return; } m_polyNodes.AddChild( *newNode ); // if this path's lowest pt is lower than all the others then update m_lowest if( endType != etClosedPolygon ) return; if( m_lowest.X < 0 ) m_lowest = IntPoint( m_polyNodes.ChildCount() - 1, k ); else { IntPoint ip = m_polyNodes.Childs[(int) m_lowest.X]->Contour[(int) m_lowest.Y]; if( newNode->Contour[k].Y > ip.Y || (newNode->Contour[k].Y == ip.Y && newNode->Contour[k].X < ip.X) ) m_lowest = IntPoint( m_polyNodes.ChildCount() - 1, k ); } } // ------------------------------------------------------------------------------ void ClipperOffset::AddPaths( const Paths& paths, JoinType joinType, EndType endType ) { for( Paths::size_type i = 0; i < paths.size(); ++i ) AddPath( paths[i], joinType, endType ); } // ------------------------------------------------------------------------------ void ClipperOffset::FixOrientations() { // fixup orientations of all closed paths if the orientation of the // closed path with the lowermost vertex is wrong ... if( m_lowest.X >= 0 && !Orientation( m_polyNodes.Childs[(int) m_lowest.X]->Contour ) ) { for( int i = 0; i < m_polyNodes.ChildCount(); ++i ) { PolyNode& node = *m_polyNodes.Childs[i]; if( node.m_endtype == etClosedPolygon || ( node.m_endtype == etClosedLine && Orientation( node.Contour ) ) ) ReversePath( node.Contour ); } } else { for( int i = 0; i < m_polyNodes.ChildCount(); ++i ) { PolyNode& node = *m_polyNodes.Childs[i]; if( node.m_endtype == etClosedLine && !Orientation( node.Contour ) ) ReversePath( node.Contour ); } } } // ------------------------------------------------------------------------------ void ClipperOffset::Execute( Paths& solution, double delta ) { solution.clear(); FixOrientations(); DoOffset( delta ); // now clean up 'corners' ... Clipper clpr; clpr.AddPaths( m_destPolys, ptSubject, true ); if( delta > 0 ) { clpr.Execute( ctUnion, solution, pftPositive, pftPositive ); } else { IntRect r = clpr.GetBounds(); Path outer( 4 ); outer[0] = IntPoint( r.left - 10, r.bottom + 10 ); outer[1] = IntPoint( r.right + 10, r.bottom + 10 ); outer[2] = IntPoint( r.right + 10, r.top - 10 ); outer[3] = IntPoint( r.left - 10, r.top - 10 ); clpr.AddPath( outer, ptSubject, true ); clpr.ReverseSolution( true ); clpr.Execute( ctUnion, solution, pftNegative, pftNegative ); if( solution.size() > 0 ) solution.erase( solution.begin() ); } } // ------------------------------------------------------------------------------ void ClipperOffset::Execute( PolyTree& solution, double delta ) { solution.Clear(); FixOrientations(); DoOffset( delta ); // now clean up 'corners' ... Clipper clpr; clpr.AddPaths( m_destPolys, ptSubject, true ); if( delta > 0 ) { clpr.Execute( ctUnion, solution, pftPositive, pftPositive ); } else { IntRect r = clpr.GetBounds(); Path outer( 4 ); outer[0] = IntPoint( r.left - 10, r.bottom + 10 ); outer[1] = IntPoint( r.right + 10, r.bottom + 10 ); outer[2] = IntPoint( r.right + 10, r.top - 10 ); outer[3] = IntPoint( r.left - 10, r.top - 10 ); clpr.AddPath( outer, ptSubject, true ); clpr.ReverseSolution( true ); clpr.Execute( ctUnion, solution, pftNegative, pftNegative ); // remove the outer PolyNode rectangle ... if( solution.ChildCount() == 1 && solution.Childs[0]->ChildCount() > 0 ) { PolyNode* outerNode = solution.Childs[0]; solution.Childs.reserve( outerNode->ChildCount() ); solution.Childs[0] = outerNode->Childs[0]; solution.Childs[0]->Parent = outerNode->Parent; for( int i = 1; i < outerNode->ChildCount(); ++i ) solution.AddChild( *outerNode->Childs[i] ); } else solution.Clear(); } } // ------------------------------------------------------------------------------ void ClipperOffset::DoOffset( double delta ) { m_destPolys.clear(); m_delta = delta; // if Zero offset, just copy any CLOSED polygons to m_p and return ... if( NEAR_ZERO( delta ) ) { m_destPolys.reserve( m_polyNodes.ChildCount() ); for( int i = 0; i < m_polyNodes.ChildCount(); i++ ) { PolyNode& node = *m_polyNodes.Childs[i]; if( node.m_endtype == etClosedPolygon ) m_destPolys.push_back( node.Contour ); } return; } // see offset_triginometry3.svg in the documentation folder ... if( MiterLimit > 2 ) m_miterLim = 2 / (MiterLimit * MiterLimit); else m_miterLim = 0.5; double y; if( ArcTolerance <= 0.0 ) y = def_arc_tolerance; else if( ArcTolerance > std::fabs( delta ) * def_arc_tolerance ) y = std::fabs( delta ) * def_arc_tolerance; else y = ArcTolerance; // see offset_triginometry2.svg in the documentation folder ... double steps = pi / std::acos( 1 - y / std::fabs( delta ) ); if( steps > std::fabs( delta ) * pi ) steps = std::fabs( delta ) * pi; // ie excessive precision check m_sin = std::sin( two_pi / steps ); m_cos = std::cos( two_pi / steps ); m_StepsPerRad = steps / two_pi; if( delta < 0.0 ) m_sin = -m_sin; m_destPolys.reserve( m_polyNodes.ChildCount() * 2 ); for( int i = 0; i < m_polyNodes.ChildCount(); i++ ) { PolyNode& node = *m_polyNodes.Childs[i]; m_srcPoly = node.Contour; int len = (int) m_srcPoly.size(); if( len == 0 || ( delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon) ) ) continue; m_destPoly.clear(); if( len == 1 ) { if( node.m_jointype == jtRound ) { double X = 1.0, Y = 0.0; for( cInt j = 1; j <= steps; j++ ) { m_destPoly.push_back( IntPoint( Round( m_srcPoly[0].X + X * delta ), Round( m_srcPoly[0].Y + Y * delta ) ) ); double X2 = X; X = X * m_cos - m_sin * Y; Y = X2 * m_sin + Y * m_cos; } } else { double X = -1.0, Y = -1.0; for( int j = 0; j < 4; ++j ) { m_destPoly.push_back( IntPoint( Round( m_srcPoly[0].X + X * delta ), Round( m_srcPoly[0].Y + Y * delta ) ) ); if( X < 0 ) X = 1; else if( Y < 0 ) Y = 1; else X = -1; } } m_destPolys.push_back( m_destPoly ); continue; } // build m_normals ... m_normals.clear(); m_normals.reserve( len ); for( int j = 0; j < len - 1; ++j ) m_normals.push_back( GetUnitNormal( m_srcPoly[j], m_srcPoly[j + 1] ) ); if( node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon ) m_normals.push_back( GetUnitNormal( m_srcPoly[len - 1], m_srcPoly[0] ) ); else m_normals.push_back( DoublePoint( m_normals[len - 2] ) ); if( node.m_endtype == etClosedPolygon ) { int k = len - 1; for( int j = 0; j < len; ++j ) OffsetPoint( j, k, node.m_jointype ); m_destPolys.push_back( m_destPoly ); } else if( node.m_endtype == etClosedLine ) { int k = len - 1; for( int j = 0; j < len; ++j ) OffsetPoint( j, k, node.m_jointype ); m_destPolys.push_back( m_destPoly ); m_destPoly.clear(); // re-build m_normals ... DoublePoint n = m_normals[len - 1]; for( int j = len - 1; j > 0; j-- ) m_normals[j] = DoublePoint( -m_normals[j - 1].X, -m_normals[j - 1].Y ); m_normals[0] = DoublePoint( -n.X, -n.Y ); k = 0; for( int j = len - 1; j >= 0; j-- ) OffsetPoint( j, k, node.m_jointype ); m_destPolys.push_back( m_destPoly ); } else { int k = 0; for( int j = 1; j < len - 1; ++j ) OffsetPoint( j, k, node.m_jointype ); IntPoint pt1; if( node.m_endtype == etOpenButt ) { int j = len - 1; pt1 = IntPoint( (cInt) Round( m_srcPoly[j].X + m_normals[j].X * delta ), (cInt) Round( m_srcPoly[j].Y + m_normals[j].Y * delta ) ); m_destPoly.push_back( pt1 ); pt1 = IntPoint( (cInt) Round( m_srcPoly[j].X - m_normals[j].X * delta ), (cInt) Round( m_srcPoly[j].Y - m_normals[j].Y * delta ) ); m_destPoly.push_back( pt1 ); } else { int j = len - 1; k = len - 2; m_sinA = 0; m_normals[j] = DoublePoint( -m_normals[j].X, -m_normals[j].Y ); if( node.m_endtype == etOpenSquare ) DoSquare( j, k ); else DoRound( j, k ); } // re-build m_normals ... for( int j = len - 1; j > 0; j-- ) m_normals[j] = DoublePoint( -m_normals[j - 1].X, -m_normals[j - 1].Y ); m_normals[0] = DoublePoint( -m_normals[1].X, -m_normals[1].Y ); k = len - 1; for( int j = k - 1; j > 0; --j ) OffsetPoint( j, k, node.m_jointype ); if( node.m_endtype == etOpenButt ) { pt1 = IntPoint( (cInt) Round( m_srcPoly[0].X - m_normals[0].X * delta ), (cInt) Round( m_srcPoly[0].Y - m_normals[0].Y * delta ) ); m_destPoly.push_back( pt1 ); pt1 = IntPoint( (cInt) Round( m_srcPoly[0].X + m_normals[0].X * delta ), (cInt) Round( m_srcPoly[0].Y + m_normals[0].Y * delta ) ); m_destPoly.push_back( pt1 ); } else { k = 1; m_sinA = 0; if( node.m_endtype == etOpenSquare ) DoSquare( 0, 1 ); else DoRound( 0, 1 ); } m_destPolys.push_back( m_destPoly ); } } } // ------------------------------------------------------------------------------ void ClipperOffset::OffsetPoint( int j, int& k, JoinType jointype ) { // cross product ... m_sinA = (m_normals[k].X * m_normals[j].Y - m_normals[j].X * m_normals[k].Y); if( std::fabs( m_sinA * m_delta ) < 1.0 ) { // dot product ... double cosA = (m_normals[k].X * m_normals[j].X + m_normals[j].Y * m_normals[k].Y ); if( cosA > 0 ) // angle => 0 degrees { m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[k].X * m_delta ), Round( m_srcPoly[j].Y + m_normals[k].Y * m_delta ) ) ); return; } // else angle => 180 degrees } else if( m_sinA > 1.0 ) m_sinA = 1.0; else if( m_sinA < -1.0 ) m_sinA = -1.0; if( m_sinA * m_delta < 0 ) { m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[k].X * m_delta ), Round( m_srcPoly[j].Y + m_normals[k].Y * m_delta ) ) ); m_destPoly.push_back( m_srcPoly[j] ); m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[j].X * m_delta ), Round( m_srcPoly[j].Y + m_normals[j].Y * m_delta ) ) ); } else switch( jointype ) { case jtMiter: { double r = 1 + (m_normals[j].X * m_normals[k].X + m_normals[j].Y * m_normals[k].Y); if( r >= m_miterLim ) DoMiter( j, k, r ); else if( MiterFallback == jtRound ) DoRound( j, k ); else DoSquare( j, k ); break; } case jtSquare: DoSquare( j, k ); break; case jtRound: DoRound( j, k ); break; } k = j; } // ------------------------------------------------------------------------------ void ClipperOffset::DoSquare( int j, int k ) { double dx = std::tan( std::atan2( m_sinA, m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y ) / 4 ); m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_delta * (m_normals[k].X - m_normals[k].Y * dx) ), Round( m_srcPoly[j].Y + m_delta * (m_normals[k].Y + m_normals[k].X * dx) ) ) ); m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_delta * (m_normals[j].X + m_normals[j].Y * dx) ), Round( m_srcPoly[j].Y + m_delta * (m_normals[j].Y - m_normals[j].X * dx) ) ) ); } // ------------------------------------------------------------------------------ void ClipperOffset::DoMiter( int j, int k, double r ) { double q = m_delta / r; m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + (m_normals[k].X + m_normals[j].X) * q ), Round( m_srcPoly[j].Y + (m_normals[k].Y + m_normals[j].Y) * q ) ) ); } // ------------------------------------------------------------------------------ void ClipperOffset::DoRound( int j, int k ) { double a = std::atan2( m_sinA, m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y ); int steps = std::max( (int) Round( m_StepsPerRad * std::fabs( a ) ), 1 ); double X = m_normals[k].X, Y = m_normals[k].Y, X2; for( int i = 0; i < steps; ++i ) { m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + X * m_delta ), Round( m_srcPoly[j].Y + Y * m_delta ) ) ); X2 = X; X = X * m_cos - m_sin * Y; Y = X2 * m_sin + Y * m_cos; } m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[j].X * m_delta ), Round( m_srcPoly[j].Y + m_normals[j].Y * m_delta ) ) ); } // ------------------------------------------------------------------------------ // Miscellaneous public functions // ------------------------------------------------------------------------------ void Clipper::DoSimplePolygons() { PolyOutList::size_type i = 0; while( i < m_PolyOuts.size() ) { OutRec* outrec = m_PolyOuts[i++]; OutPt* op = outrec->Pts; if( !op || outrec->IsOpen ) continue; do // for each Pt in Polygon until duplicate found do ... { OutPt* op2 = op->Next; while( op2 != outrec->Pts ) { if( (op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op ) { // split the polygon into two ... OutPt* op3 = op->Prev; OutPt* op4 = op2->Prev; op->Prev = op4; op4->Next = op; op2->Prev = op3; op3->Next = op2; outrec->Pts = op; OutRec* outrec2 = CreateOutRec(); outrec2->Pts = op2; UpdateOutPtIdxs( *outrec2 ); if( Poly2ContainsPoly1( outrec2->Pts, outrec->Pts ) ) { // OutRec2 is contained by OutRec1 ... outrec2->IsHole = !outrec->IsHole; outrec2->FirstLeft = outrec; if( m_UsingPolyTree ) FixupFirstLefts2( outrec2, outrec ); } else if( Poly2ContainsPoly1( outrec->Pts, outrec2->Pts ) ) { // OutRec1 is contained by OutRec2 ... outrec2->IsHole = outrec->IsHole; outrec->IsHole = !outrec2->IsHole; outrec2->FirstLeft = outrec->FirstLeft; outrec->FirstLeft = outrec2; if( m_UsingPolyTree ) FixupFirstLefts2( outrec, outrec2 ); } else { // the 2 polygons are separate ... outrec2->IsHole = outrec->IsHole; outrec2->FirstLeft = outrec->FirstLeft; if( m_UsingPolyTree ) FixupFirstLefts1( outrec, outrec2 ); } op2 = op; // ie get ready for the Next iteration } op2 = op2->Next; } op = op->Next; } while( op != outrec->Pts ); } } // ------------------------------------------------------------------------------ void ReversePath( Path& p ) { std::reverse( p.begin(), p.end() ); } // ------------------------------------------------------------------------------ void ReversePaths( Paths& p ) { for( Paths::size_type i = 0; i < p.size(); ++i ) ReversePath( p[i] ); } // ------------------------------------------------------------------------------ void SimplifyPolygon( const Path& in_poly, Paths& out_polys, PolyFillType fillType ) { Clipper c; c.StrictlySimple( true ); c.AddPath( in_poly, ptSubject, true ); c.Execute( ctUnion, out_polys, fillType, fillType ); } // ------------------------------------------------------------------------------ void SimplifyPolygons( const Paths& in_polys, Paths& out_polys, PolyFillType fillType ) { Clipper c; c.StrictlySimple( true ); c.AddPaths( in_polys, ptSubject, true ); c.Execute( ctUnion, out_polys, fillType, fillType ); } // ------------------------------------------------------------------------------ void SimplifyPolygons( Paths& polys, PolyFillType fillType ) { SimplifyPolygons( polys, polys, fillType ); } // ------------------------------------------------------------------------------ inline double DistanceSqrd( const IntPoint& pt1, const IntPoint& pt2 ) { double Dx = ( (double) pt1.X - pt2.X ); double dy = ( (double) pt1.Y - pt2.Y ); return Dx * Dx + dy * dy; } // ------------------------------------------------------------------------------ double DistanceFromLineSqrd( const IntPoint& pt, const IntPoint& ln1, const IntPoint& ln2 ) { // The equation of a line in general form (Ax + By + C = 0) // given 2 points (x¹,y¹) & (x²,y²) is ... // (y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0 // A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹ // perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²) // see http://en.wikipedia.org/wiki/Perpendicular_distance double A = double(ln1.Y - ln2.Y); double B = double(ln2.X - ln1.X); double C = A * ln1.X + B * ln1.Y; C = A * pt.X + B * pt.Y - C; return (C * C) / (A * A + B * B); } // --------------------------------------------------------------------------- bool SlopesNearCollinear( const IntPoint& pt1, const IntPoint& pt2, const IntPoint& pt3, double distSqrd ) { // this function is more accurate when the point that's geometrically // between the other 2 points is the one that's tested for distance. // ie makes it more likely to pick up 'spikes' ... if( Abs( pt1.X - pt2.X ) > Abs( pt1.Y - pt2.Y ) ) { if( (pt1.X > pt2.X) == (pt1.X < pt3.X) ) return DistanceFromLineSqrd( pt1, pt2, pt3 ) < distSqrd; else if( (pt2.X > pt1.X) == (pt2.X < pt3.X) ) return DistanceFromLineSqrd( pt2, pt1, pt3 ) < distSqrd; else return DistanceFromLineSqrd( pt3, pt1, pt2 ) < distSqrd; } else { if( (pt1.Y > pt2.Y) == (pt1.Y < pt3.Y) ) return DistanceFromLineSqrd( pt1, pt2, pt3 ) < distSqrd; else if( (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y) ) return DistanceFromLineSqrd( pt2, pt1, pt3 ) < distSqrd; else return DistanceFromLineSqrd( pt3, pt1, pt2 ) < distSqrd; } } // ------------------------------------------------------------------------------ bool PointsAreClose( IntPoint pt1, IntPoint pt2, double distSqrd ) { double Dx = (double) pt1.X - pt2.X; double dy = (double) pt1.Y - pt2.Y; return (Dx * Dx) + (dy * dy) <= distSqrd; } // ------------------------------------------------------------------------------ OutPt* ExcludeOp( OutPt* op ) { OutPt* result = op->Prev; result->Next = op->Next; op->Next->Prev = result; result->Idx = 0; return result; } // ------------------------------------------------------------------------------ void CleanPolygon( const Path& in_poly, Path& out_poly, double distance ) { // distance = proximity in units/pixels below which vertices // will be stripped. Default ~= sqrt(2). size_t size = in_poly.size(); if( size == 0 ) { out_poly.clear(); return; } OutPt* outPts = new OutPt[size]; for( size_t i = 0; i < size; ++i ) { outPts[i].Pt = in_poly[i]; outPts[i].Next = &outPts[(i + 1) % size]; outPts[i].Next->Prev = &outPts[i]; outPts[i].Idx = 0; } double distSqrd = distance * distance; OutPt* op = &outPts[0]; while( op->Idx == 0 && op->Next != op->Prev ) { if( PointsAreClose( op->Pt, op->Prev->Pt, distSqrd ) ) { op = ExcludeOp( op ); size--; } else if( PointsAreClose( op->Prev->Pt, op->Next->Pt, distSqrd ) ) { ExcludeOp( op->Next ); op = ExcludeOp( op ); size -= 2; } else if( SlopesNearCollinear( op->Prev->Pt, op->Pt, op->Next->Pt, distSqrd ) ) { op = ExcludeOp( op ); size--; } else { op->Idx = 1; op = op->Next; } } if( size < 3 ) size = 0; out_poly.resize( size ); for( size_t i = 0; i < size; ++i ) { out_poly[i] = op->Pt; op = op->Next; } delete [] outPts; } // ------------------------------------------------------------------------------ void CleanPolygon( Path& poly, double distance ) { CleanPolygon( poly, poly, distance ); } // ------------------------------------------------------------------------------ void CleanPolygons( const Paths& in_polys, Paths& out_polys, double distance ) { out_polys.resize( in_polys.size() ); for( Paths::size_type i = 0; i < in_polys.size(); ++i ) CleanPolygon( in_polys[i], out_polys[i], distance ); } // ------------------------------------------------------------------------------ void CleanPolygons( Paths& polys, double distance ) { CleanPolygons( polys, polys, distance ); } // ------------------------------------------------------------------------------ void Minkowski( const Path& poly, const Path& path, Paths& solution, bool isSum, bool isClosed ) { int delta = (isClosed ? 1 : 0); size_t polyCnt = poly.size(); size_t pathCnt = path.size(); Paths pp; pp.reserve( pathCnt ); if( isSum ) for( size_t i = 0; i < pathCnt; ++i ) { Path p; p.reserve( polyCnt ); for( size_t j = 0; j < poly.size(); ++j ) p.push_back( IntPoint( path[i].X + poly[j].X, path[i].Y + poly[j].Y ) ); pp.push_back( p ); } else for( size_t i = 0; i < pathCnt; ++i ) { Path p; p.reserve( polyCnt ); for( size_t j = 0; j < poly.size(); ++j ) p.push_back( IntPoint( path[i].X - poly[j].X, path[i].Y - poly[j].Y ) ); pp.push_back( p ); } solution.clear(); solution.reserve( (pathCnt + delta) * (polyCnt + 1) ); for( size_t i = 0; i < pathCnt - 1 + delta; ++i ) for( size_t j = 0; j < polyCnt; ++j ) { Path quad; quad.reserve( 4 ); quad.push_back( pp[i % pathCnt][j % polyCnt] ); quad.push_back( pp[(i + 1) % pathCnt][j % polyCnt] ); quad.push_back( pp[(i + 1) % pathCnt][(j + 1) % polyCnt] ); quad.push_back( pp[i % pathCnt][(j + 1) % polyCnt] ); if( !Orientation( quad ) ) ReversePath( quad ); solution.push_back( quad ); } } // ------------------------------------------------------------------------------ void MinkowskiSum( const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed ) { Minkowski( pattern, path, solution, true, pathIsClosed ); Clipper c; c.AddPaths( solution, ptSubject, true ); c.Execute( ctUnion, solution, pftNonZero, pftNonZero ); } // ------------------------------------------------------------------------------ void TranslatePath( const Path& input, Path& output, const IntPoint delta ) { // precondition: input != output output.resize( input.size() ); for( size_t i = 0; i < input.size(); ++i ) output[i] = IntPoint( input[i].X + delta.X, input[i].Y + delta.Y ); } // ------------------------------------------------------------------------------ void MinkowskiSum( const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed ) { Clipper c; for( size_t i = 0; i < paths.size(); ++i ) { Paths tmp; Minkowski( pattern, paths[i], tmp, true, pathIsClosed ); c.AddPaths( tmp, ptSubject, true ); if( pathIsClosed ) { Path tmp2; TranslatePath( paths[i], tmp2, pattern[0] ); c.AddPath( tmp2, ptClip, true ); } } c.Execute( ctUnion, solution, pftNonZero, pftNonZero ); } // ------------------------------------------------------------------------------ void MinkowskiDiff( const Path& poly1, const Path& poly2, Paths& solution ) { Minkowski( poly1, poly2, solution, false, true ); Clipper c; c.AddPaths( solution, ptSubject, true ); c.Execute( ctUnion, solution, pftNonZero, pftNonZero ); } // ------------------------------------------------------------------------------ enum NodeType { ntAny, ntOpen, ntClosed }; void AddPolyNodeToPaths( const PolyNode& polynode, NodeType nodetype, Paths& paths ) { bool match = true; if( nodetype == ntClosed ) match = !polynode.IsOpen(); else if( nodetype == ntOpen ) return; if( !polynode.Contour.empty() && match ) paths.push_back( polynode.Contour ); for( int i = 0; i < polynode.ChildCount(); ++i ) AddPolyNodeToPaths( *polynode.Childs[i], nodetype, paths ); } // ------------------------------------------------------------------------------ void PolyTreeToPaths( const PolyTree& polytree, Paths& paths ) { paths.resize( 0 ); paths.reserve( polytree.Total() ); AddPolyNodeToPaths( polytree, ntAny, paths ); } // ------------------------------------------------------------------------------ void ClosedPathsFromPolyTree( const PolyTree& polytree, Paths& paths ) { paths.resize( 0 ); paths.reserve( polytree.Total() ); AddPolyNodeToPaths( polytree, ntClosed, paths ); } // ------------------------------------------------------------------------------ void OpenPathsFromPolyTree( PolyTree& polytree, Paths& paths ) { paths.resize( 0 ); paths.reserve( polytree.Total() ); // Open paths are top level only, so ... for( int i = 0; i < polytree.ChildCount(); ++i ) if( polytree.Childs[i]->IsOpen() ) paths.push_back( polytree.Childs[i]->Contour ); } // ------------------------------------------------------------------------------ std::ostream& operator <<( std::ostream& s, const IntPoint& p ) { s << "(" << p.X << "," << p.Y << ")"; return s; } // ------------------------------------------------------------------------------ std::ostream& operator <<( std::ostream& s, const Path& p ) { if( p.empty() ) return s; Path::size_type last = p.size() - 1; for( Path::size_type i = 0; i < last; i++ ) s << "(" << p[i].X << "," << p[i].Y << "), "; s << "(" << p[last].X << "," << p[last].Y << ")\n"; return s; } // ------------------------------------------------------------------------------ std::ostream& operator <<( std::ostream& s, const Paths& p ) { for( Paths::size_type i = 0; i < p.size(); i++ ) s << p[i]; s << "\n"; return s; } // ------------------------------------------------------------------------------ } // ClipperLib namespace