/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2004-2022 KiCad Developers. * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* Differential pair gap/coupling test. Errors generated: - DRCE_DIFF_PAIR_GAP_OUT_OF_RANGE - DRCE_DIFF_PAIR_UNCOUPLED_LENGTH_TOO_LONG - DRCE_TOO_MANY_VIAS Todo: - arc support. - improve recognition of coupled segments (now anything that's parallel is considered coupled, causing DRC errors on meanders) */ namespace test { class DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING : public DRC_TEST_PROVIDER { public: DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING () : m_board( nullptr ) { } virtual ~DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING() { } virtual bool Run() override; virtual const wxString GetName() const override { return wxT( "diff_pair_coupling" ); }; virtual const wxString GetDescription() const override { return wxT( "Tests differential pair coupling" ); } private: BOARD* m_board; }; }; static bool commonParallelProjection( SEG p, SEG n, SEG &pClip, SEG& nClip ) { SEG n_proj_p( p.LineProject( n.A ), p.LineProject( n.B ) ); int64_t t_a = 0; int64_t t_b = p.TCoef( p.B ); int64_t tproj_a = p.TCoef( n_proj_p.A ); int64_t tproj_b = p.TCoef( n_proj_p.B ); if( t_b < t_a ) std::swap( t_b, t_a ); if( tproj_b < tproj_a ) std::swap( tproj_b, tproj_a ); if( t_b <= tproj_a ) return false; if( t_a >= tproj_b ) return false; int64_t t[4] = { 0, p.TCoef( p.B ), p.TCoef( n_proj_p.A ), p.TCoef( n_proj_p.B ) }; std::vector tv( t, t + 4 ); std::sort( tv.begin(), tv.end() ); // fixme: awful and disgusting way of finding 2 midpoints int64_t pLenSq = p.SquaredLength(); VECTOR2I dp = p.B - p.A; pClip.A.x = p.A.x + rescale( (int64_t)dp.x, tv[1], pLenSq ); pClip.A.y = p.A.y + rescale( (int64_t)dp.y, tv[1], pLenSq ); pClip.B.x = p.A.x + rescale( (int64_t)dp.x, tv[2], pLenSq ); pClip.B.y = p.A.y + rescale( (int64_t)dp.y, tv[2], pLenSq ); nClip.A = n.LineProject( pClip.A ); nClip.B = n.LineProject( pClip.B ); return true; } struct DIFF_PAIR_KEY { bool operator<( const DIFF_PAIR_KEY& b ) const { if( netP < b.netP ) { return true; } else if( netP > b.netP ) { return false; } else // netP == b.netP { if( netN < b.netN ) return true; else if( netN > b.netN ) return false; else return parentRule < b.parentRule; } } int netP, netN; DRC_RULE* parentRule; }; struct DIFF_PAIR_COUPLED_SEGMENTS { SEG coupledN; SEG coupledP; PCB_TRACK* parentN; PCB_TRACK* parentP; int computedGap; PCB_LAYER_ID layer; bool couplingOK; DIFF_PAIR_COUPLED_SEGMENTS() : parentN( nullptr ), parentP( nullptr ), computedGap( 0 ), layer( UNDEFINED_LAYER ), couplingOK( false ) {} }; struct DIFF_PAIR_ITEMS { std::set itemsP, itemsN; std::vector coupled; int totalCoupled; int totalLengthN; int totalLengthP; }; static void extractDiffPairCoupledItems( DIFF_PAIR_ITEMS& aDp, DRC_RTREE& aTree ) { for( BOARD_CONNECTED_ITEM* itemP : aDp.itemsP ) { PCB_TRACK* sp = dyn_cast( itemP ); OPT bestCoupled; int bestGap = std::numeric_limits::max(); if( !sp ) continue; for ( BOARD_CONNECTED_ITEM* itemN : aDp.itemsN ) { PCB_TRACK* sn = dyn_cast ( itemN ); if( !sn ) continue; if( ( sn->GetLayerSet() & sp->GetLayerSet() ).none() ) continue; SEG ssp ( sp->GetStart(), sp->GetEnd() ); SEG ssn ( sn->GetStart(), sn->GetEnd() ); // Segments that are == 1 IU in length are approximately parallel with everything and their // parallel projection is < 1 IU, leading to bad distance calculations if( ssp.SquaredLength() > 1 && ssn.SquaredLength() > 1 && ssp.ApproxParallel(ssn) ) { DIFF_PAIR_COUPLED_SEGMENTS cpair; bool coupled = commonParallelProjection( ssp, ssn, cpair.coupledP, cpair.coupledN ); if( coupled ) { cpair.parentP = sp; cpair.parentN = sn; cpair.layer = sp->GetLayer(); int gap = (cpair.coupledP.A - cpair.coupledN.A).EuclideanNorm(); if( gap < bestGap ) { bestGap = gap; bestCoupled = cpair; } } } } if( bestCoupled ) { auto excludeSelf = [&] ( BOARD_ITEM *aItem ) { if( aItem == bestCoupled->parentN || aItem == bestCoupled->parentP ) { return false; } if( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_VIA_T ) { auto bci = static_cast( aItem ); if( bci->GetNetCode() == bestCoupled->parentN->GetNetCode() || bci->GetNetCode() == bestCoupled->parentP->GetNetCode() ) return false; } return true; }; SHAPE_SEGMENT checkSegStart( bestCoupled->coupledP.A, bestCoupled->coupledN.A ); SHAPE_SEGMENT checkSegEnd( bestCoupled->coupledP.B, bestCoupled->coupledN.B ); // check if there's anything in between the segments suspected to be coupled. If // there's nothing, assume they are really coupled. if( !aTree.CheckColliding( &checkSegStart, sp->GetLayer(), 0, excludeSelf ) && !aTree.CheckColliding( &checkSegEnd, sp->GetLayer(), 0, excludeSelf ) ) { aDp.coupled.push_back( *bestCoupled ); } } } } bool test::DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING::Run() { m_board = m_drcEngine->GetBoard(); std::map dpRuleMatches; auto evaluateDpConstraints = [&]( BOARD_ITEM *item ) -> bool { DIFF_PAIR_KEY key; BOARD_CONNECTED_ITEM* citem = static_cast( item ); NETINFO_ITEM* refNet = citem->GetNet(); if( refNet && DRC_ENGINE::IsNetADiffPair( m_board, refNet, key.netP, key.netN ) ) { drc_dbg( 10, wxT( "eval dp %p\n" ), item ); const DRC_CONSTRAINT_T constraintsToCheck[] = { DIFF_PAIR_GAP_CONSTRAINT, DIFF_PAIR_MAX_UNCOUPLED_CONSTRAINT }; for( int i = 0; i < 2; i++ ) { auto constraint = m_drcEngine->EvalRules( constraintsToCheck[ i ], item, nullptr, item->GetLayer() ); if( constraint.IsNull() || constraint.GetSeverity() == RPT_SEVERITY_IGNORE ) continue; drc_dbg( 10, wxT( "cns %d item %p\n" ), constraintsToCheck[i], item ); key.parentRule = constraint.GetParentRule(); if( refNet->GetNetCode() == key.netN ) dpRuleMatches[key].itemsN.insert( citem ); else dpRuleMatches[key].itemsP.insert( citem ); } } return true; }; m_board->GetConnectivity()->GetFromToCache()->Rebuild( m_board ); forEachGeometryItem( { PCB_TRACE_T, PCB_VIA_T, PCB_ARC_T }, LSET::AllCuMask(), evaluateDpConstraints ); drc_dbg( 10, wxT( "dp rule matches %d\n" ), (int) dpRuleMatches.size() ); DRC_RTREE copperTree; auto addToTree = [&copperTree]( BOARD_ITEM *item ) -> bool { for( PCB_LAYER_ID layer : item->GetLayerSet().Seq() ) { if( IsCopperLayer( layer ) ) copperTree.Insert( item, layer ); } return true; }; forEachGeometryItem( { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T, PCB_ZONE_T }, LSET::AllCuMask(), addToTree ); reportAux( wxString::Format( _("DPs evaluated:") ) ); for( auto& it : dpRuleMatches ) { NETINFO_ITEM *niP = m_board->GetNetInfo().GetNetItem( it.first.netP ); NETINFO_ITEM *niN = m_board->GetNetInfo().GetNetItem( it.first.netN ); assert( niP ); assert( niN ); wxString nameP = niP->GetNetname(); wxString nameN = niN->GetNetname(); reportAux( wxString::Format( wxT( "Rule '%s', DP: (+) %s - (-) %s" ), it.first.parentRule->m_Name, nameP, nameN ) ); extractDiffPairCoupledItems( it.second, copperTree ); it.second.totalCoupled = 0; it.second.totalLengthN = 0; it.second.totalLengthP = 0; drc_dbg(10, wxT( " coupled prims : %d\n" ), (int) it.second.coupled.size() ); OPT gapConstraint = it.first.parentRule->FindConstraint( DIFF_PAIR_GAP_CONSTRAINT ); OPT maxUncoupledConstraint = it.first.parentRule->FindConstraint( DIFF_PAIR_MAX_UNCOUPLED_CONSTRAINT ); for( BOARD_CONNECTED_ITEM* item : it.second.itemsN ) { // fixme: include vias if( PCB_TRACK* track = dyn_cast( item ) ) it.second.totalLengthN += track->GetLength(); } for( BOARD_CONNECTED_ITEM* item : it.second.itemsP ) { // fixme: include vias if( PCB_TRACK* track = dyn_cast( item ) ) it.second.totalLengthP += track->GetLength(); } for( auto& cpair : it.second.coupled ) { int length = cpair.coupledN.Length(); int gap = cpair.coupledN.Distance( cpair.coupledP ); gap -= cpair.parentN->GetWidth() / 2; gap -= cpair.parentP->GetWidth() / 2; cpair.computedGap = gap; auto overlay = m_drcEngine->GetDebugOverlay(); if( overlay ) { overlay->SetIsFill(false); overlay->SetIsStroke(true); overlay->SetStrokeColor( RED ); overlay->SetLineWidth( 100000 ); overlay->Line( cpair.coupledP ); overlay->SetStrokeColor( BLUE ); overlay->Line( cpair.coupledN ); } drc_dbg( 10, wxT( " len %d gap %d l %d\n" ), length, gap, cpair.parentP->GetLayer() ); if( gapConstraint ) { auto val = gapConstraint->GetValue(); bool insideRange = true; if( val.HasMin() && gap < val.Min() ) insideRange = false; if( val.HasMax() && gap > val.Max() ) insideRange = false; cpair.couplingOK = insideRange; } else { cpair.couplingOK = true; } if( cpair.couplingOK ) it.second.totalCoupled += length; } int totalLen = std::max( it.second.totalLengthN, it.second.totalLengthP ); reportAux( wxString::Format( wxT( " - coupled length: %s, total length: %s" ), MessageTextFromValue( userUnits(), it.second.totalCoupled ), MessageTextFromValue( userUnits(), totalLen ) ) ); int totalUncoupled = totalLen - it.second.totalCoupled; bool uncoupledViolation = false; if( maxUncoupledConstraint ) { auto val = maxUncoupledConstraint->GetValue(); if ( val.HasMax() && totalUncoupled > val.Max() ) { auto drce = DRC_ITEM::Create( DRCE_DIFF_PAIR_UNCOUPLED_LENGTH_TOO_LONG ); m_msg = wxString::Format( _( "(%s maximum uncoupled length: %s; actual: %s)" ), maxUncoupledConstraint->GetParentRule()->m_Name, MessageTextFromValue( userUnits(), val.Max() ), MessageTextFromValue( userUnits(), totalUncoupled ) ); drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg ); auto pit = it.second.itemsP.begin(); auto nit = it.second.itemsN.begin(); drce->AddItem( *pit ); drce->AddItem( *nit ); for( pit++; pit != it.second.itemsP.end(); pit++ ) drce->AddItem( *pit ); for( nit++; nit != it.second.itemsN.end(); nit++ ) drce->AddItem( *nit ); uncoupledViolation = true; drce->SetViolatingRule( maxUncoupledConstraint->GetParentRule() ); reportViolation( drce, ( *it.second.itemsP.begin() )->GetPosition(), ( *it.second.itemsP.begin() )->GetLayer() ); } } if ( gapConstraint && ( uncoupledViolation || !maxUncoupledConstraint ) ) { for( auto& cpair : it.second.coupled ) { if( !cpair.couplingOK ) { auto val = gapConstraint->GetValue(); auto drcItem = DRC_ITEM::Create( DRCE_DIFF_PAIR_GAP_OUT_OF_RANGE ); m_msg = drcItem->GetErrorText() + wxT( " (" ) + gapConstraint->GetParentRule()->m_Name + wxS( " " ); if( val.HasMin() ) m_msg += wxString::Format( _( "minimum gap: %s; " ), MessageTextFromValue( userUnits(), val.Min() ) ); if( val.HasMax() ) m_msg += wxString::Format( _( "maximum gap: %s; " ), MessageTextFromValue( userUnits(), val.Max() ) ); m_msg += wxString::Format( _( "actual: %s)" ), MessageTextFromValue( userUnits(), cpair.computedGap ) ); drcItem->SetErrorMessage( m_msg ); drcItem->AddItem( cpair.parentP ); drcItem->AddItem( cpair.parentN ); drcItem->SetViolatingRule( gapConstraint->GetParentRule() ); reportViolation( drcItem, cpair.parentP->GetPosition(), cpair.parentP->GetLayer() ); } } } } reportRuleStatistics(); return true; } namespace detail { static DRC_REGISTER_TEST_PROVIDER dummy; }