/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015 Mario Luzeiro * Copyright (C) 1992-2015 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file ray.cpp * @brief */ #include "ray.h" #include "3d_math/3d_fastmath.h" #include #include static unsigned int gs_next_rayID = 0; void RAY::Init( const SFVEC3F& o, const SFVEC3F& d ) { m_Origin = o; m_Dir = d; m_InvDir = 1.0f / d; if( fabs(m_Dir.x) < FLT_EPSILON ) m_InvDir.x = NextFloatDown(FLT_MAX); if( fabs(m_Dir.y) < FLT_EPSILON ) m_InvDir.y = NextFloatDown(FLT_MAX); if( fabs(m_Dir.z) < FLT_EPSILON ) m_InvDir.z = NextFloatDown(FLT_MAX); rayID = gs_next_rayID; gs_next_rayID++; // An Efficient and Robust Ray–Box Intersection Algorithm // Amy Williams Steve Barrus R. Keith Morley Peter Shirley // University of Utah // http://people.csail.mit.edu/amy/papers/box-jgt.pdf m_dirIsNeg[0] = m_Dir.x < 0.0f; m_dirIsNeg[1] = m_Dir.y < 0.0f; m_dirIsNeg[2] = m_Dir.z < 0.0f; // ray slope // "Fast Ray / Axis-Aligned Bounding Box Overlap Tests using Ray Slopes" // by Martin Eisemann, Thorsten Grosch, Stefan Müller and Marcus Magnor // Computer Graphics Lab, TU Braunschweig, Germany and // University of Koblenz-Landau, Germany // Licence: "This source code is public domain, but please mention us if you use it." // // https://github.com/rjw57/mcvoxel/tree/master/third-party/rayslope // https://github.com/rjw57/mcvoxel/blob/master/third-party/rayslope/ray.cpp ibyj = m_Dir.x * m_InvDir.y; jbyi = m_Dir.y * m_InvDir.x; jbyk = m_Dir.y * m_InvDir.z; kbyj = m_Dir.z * m_InvDir.y; ibyk = m_Dir.x * m_InvDir.z; kbyi = m_Dir.z * m_InvDir.x; c_xy = m_Origin.y - jbyi * m_Origin.x; c_xz = m_Origin.z - kbyi * m_Origin.x; c_yx = m_Origin.x - ibyj * m_Origin.y; c_yz = m_Origin.z - kbyj * m_Origin.y; c_zx = m_Origin.x - ibyk * m_Origin.z; c_zy = m_Origin.y - jbyk * m_Origin.z; // ray slope classification if( m_Dir.x < 0 ) { if( m_Dir.y < 0 ) { if( m_Dir.z < 0 ) { m_Classification = MMM; } else if( m_Dir.z > 0 ){ m_Classification = MMP; } else//( m_Dir.z >= 0 ) { m_Classification = MMO; } } else//( m_Dir.y >= 0 ) { if( m_Dir.z < 0 ) { m_Classification = MPM; if( m_Dir.y == 0 ) m_Classification = MOM; } else//( m_Dir.z >= 0 ) { if( ( m_Dir.y == 0 ) && ( m_Dir.z == 0 ) ) m_Classification = MOO; else if( m_Dir.z == 0 ) m_Classification = MPO; else if( m_Dir.y == 0 ) m_Classification = MOP; else m_Classification = MPP; } } } else//( m_Dir.x >= 0 ) { if( m_Dir.y < 0 ) { if( m_Dir.z < 0 ) { m_Classification = PMM; if( m_Dir.x == 0 ) m_Classification = OMM; } else//( m_Dir.z >= 0 ) { if( ( m_Dir.x == 0 ) && ( m_Dir.z == 0 ) ) m_Classification = OMO; else if( m_Dir.z == 0 ) m_Classification = PMO; else if( m_Dir.x == 0 ) m_Classification = OMP; else m_Classification = PMP; } } else//( m_Dir.y >= 0 ) { if( m_Dir.z < 0 ) { if( ( m_Dir.x == 0 ) && ( m_Dir.y == 0 ) ) m_Classification = OOM; else if( m_Dir.x == 0 ) m_Classification = OPM; else if( m_Dir.y == 0 ) m_Classification = POM; else m_Classification = PPM; } else//( m_Dir.z > 0 ) { if( m_Dir.x == 0 ) { if( m_Dir.y == 0 ) m_Classification = OOP; else if( m_Dir.z == 0 ) m_Classification = OPO; else m_Classification = OPP; } else { if( ( m_Dir.y == 0 ) && ( m_Dir.z == 0 ) ) m_Classification = POO; else if( m_Dir.y == 0 ) m_Classification = POP; else if( m_Dir.z == 0 ) m_Classification = PPO; else m_Classification = PPP; } } } } } bool IntersectSegment( const SFVEC2F &aStartA, const SFVEC2F &aEnd_minus_startA, const SFVEC2F &aStartB, const SFVEC2F &aEnd_minus_startB ) { float rxs = aEnd_minus_startA.x * aEnd_minus_startB.y - aEnd_minus_startA.y * aEnd_minus_startB.x; if( fabs(rxs) > glm::epsilon() ) { float inv_rxs = 1.0f / rxs; SFVEC2F pq = aStartB - aStartA; float t = (pq.x * aEnd_minus_startB.y - pq.y * aEnd_minus_startB.x) * inv_rxs; if( (t < 0.0f) || (t > 1.0f) ) return false; float u = (pq.x * aEnd_minus_startA.y - pq.y * aEnd_minus_startA.x) * inv_rxs; if( (u < 0.0f) || (u > 1.0f) ) return false; return true; } return false; } // !TODO: not tested bool RAY::IntersectSphere( const SFVEC3F &aCenter, float aRadius, float &aOutT0, float &aOutT1 ) const { /* // Ray-sphere intersection: algebraic SFVEC3F CO = m_Origin - aCenter; float a = glm::dot( m_Dir, m_Dir ); float b = 2.0f * glm::dot( CO, m_Dir ); float c = glm::dot( CO, CO ) - aRadius*aRadius; float discriminant = b * b - 4.0f * a * c; if( discriminant < 0.0f ) return false; aOutT0 = (-b - sqrtf(discriminant)) / (2.0f * a); aOutT1 = (-b + sqrtf(discriminant)) / (2.0f * a); if( aOutT0 > aOutT1 ) { float temp = aOutT0; aOutT0 = aOutT1; aOutT1 = temp; } return true; */ // Ray-sphere intersection: geometric SFVEC3F OC = aCenter - m_Origin; float p_dot_d = glm::dot( OC, m_Dir ); if( p_dot_d < 0.0f ) return 0.0f; float p_dot_p = glm::dot( OC, OC ); float discriminant = p_dot_p - p_dot_d * p_dot_d; if( discriminant > aRadius*aRadius ) return false; discriminant = sqrtf( aRadius*aRadius - discriminant ); aOutT0 = p_dot_d - discriminant; aOutT1 = p_dot_d + discriminant; if( aOutT0 > aOutT1 ) { float temp = aOutT0; aOutT0 = aOutT1; aOutT1 = temp; } return true; } RAYSEG2D::RAYSEG2D( const SFVEC2F& s, const SFVEC2F& e ) { m_Start = s; m_End = e; m_End_minus_start = e - s; m_Length = glm::length( m_End_minus_start ); m_Dir = glm::normalize( m_End_minus_start ); m_InvDir = (1.0f / m_Dir); if( fabs(m_Dir.x) < FLT_EPSILON ) m_InvDir.x = NextFloatDown(FLT_MAX); if( fabs(m_Dir.y) < FLT_EPSILON ) m_InvDir.y = NextFloatDown(FLT_MAX); m_DOT_End_minus_start = glm::dot( m_End_minus_start, m_End_minus_start ); } bool RAYSEG2D::IntersectSegment( const SFVEC2F &aStart, const SFVEC2F &aEnd_minus_start, float *aOutT ) const { float rxs = m_End_minus_start.x * aEnd_minus_start.y - m_End_minus_start.y * aEnd_minus_start.x; if( fabs(rxs) > glm::epsilon() ) { float inv_rxs = 1.0f / rxs; SFVEC2F pq = aStart - m_Start; float t = (pq.x * aEnd_minus_start.y - pq.y * aEnd_minus_start.x) * inv_rxs; if( (t < 0.0f) || (t > 1.0f) ) return false; float u = (pq.x * m_End_minus_start.y - pq.y * m_End_minus_start.x) * inv_rxs; if( (u < 0.0f) || (u > 1.0f) ) return false; *aOutT = t; return true; } return false; } // http://geomalgorithms.com/a02-_lines.html float RAYSEG2D::DistanceToPointSquared( const SFVEC2F &aPoint ) const { SFVEC2F p = aPoint - m_Start; float c1 = glm::dot( p, m_End_minus_start ); if( c1 < FLT_EPSILON ) return glm::dot( p, p ); if( m_DOT_End_minus_start <= c1 ) p = aPoint - m_End; else { float b = c1 / m_DOT_End_minus_start; SFVEC2F pb = m_Start + m_End_minus_start * b; p = aPoint - pb; } return glm::dot( p, p ); } bool RAYSEG2D::IntersectCircle( const SFVEC2F &aCenter, float aRadius, float *aOutT0, float *aOutT1, SFVEC2F *aOutNormalT0, SFVEC2F *aOutNormalT1 ) const { // This code used directly from Steve Marschner's CS667 framework // http://cs665pd.googlecode.com/svn/trunk/photon/sphere.cpp // Compute some factors used in computation float qx = m_Start.x - aCenter.x; float qy = m_Start.y - aCenter.y; float qd = qx * m_Dir.x + qy * m_Dir.y; float qq = qx * qx + qy * qy; // solving the quadratic equation for t at the pts of intersection // dd*t^2 + (2*qd)*t + (qq-r^2) = 0 float discriminantsqr = (qd * qd - (qq - aRadius * aRadius)); // If the discriminant is less than zero, there is no intersection if( discriminantsqr < FLT_EPSILON ) return false; // Otherwise check and make sure that the intersections occur on the ray (t // > 0) and return the closer one float discriminant = sqrt(discriminantsqr); float t1 = (-qd - discriminant); float t2 = (-qd + discriminant); if( (( t1 < 0.0f ) || ( t1 > m_Length ) ) && (( t2 < 0.0f ) || ( t2 > m_Length ) ) ) return false;// Neither intersection was in the ray's half line. // Convert the intersection to a normalized *aOutT0 = t1 / m_Length; *aOutT1 = t2 / m_Length; SFVEC2F hitPointT1 = at( t1 ); SFVEC2F hitPointT2 = at( t2 ); *aOutNormalT0 = (hitPointT1 - aCenter) / aRadius; *aOutNormalT1 = (hitPointT2 - aCenter) / aRadius; return true; } void RAY::debug() const { printf("O(%f, %f, %f) D(%f, %f, %f)\n", m_Origin.x, m_Origin.y, m_Origin.z, m_Dir.x, m_Dir.y, m_Dir.z ); }