/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2019 CERN * Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include #include #include "pns_arc.h" #include "pns_item.h" #include "pns_itemset.h" #include "pns_line.h" #include "pns_node.h" #include "pns_via.h" #include "pns_solid.h" #include "pns_joint.h" #include "pns_index.h" #include "pns_debug_decorator.h" #include "pns_router.h" #include "pns_utils.h" namespace PNS { #ifdef DEBUG static std::unordered_set allocNodes; #endif NODE::NODE() { m_depth = 0; m_root = this; m_parent = nullptr; m_maxClearance = 800000; // fixme: depends on how thick traces are. m_ruleResolver = nullptr; m_index = new INDEX; #ifdef DEBUG allocNodes.insert( this ); #endif } NODE::~NODE() { if( !m_children.empty() ) { wxLogTrace( wxT( "PNS" ), wxT( "attempting to free a node that has kids." ) ); assert( false ); } #ifdef DEBUG if( allocNodes.find( this ) == allocNodes.end() ) { wxLogTrace( wxT( "PNS" ), wxT( "attempting to free an already-free'd node." ) ); assert( false ); } allocNodes.erase( this ); #endif m_joints.clear(); std::vector toDelete; toDelete.reserve( m_index->Size() ); for( ITEM* item : *m_index ) { if( item->BelongsTo( this ) && item->OfKind( ITEM::HOLE_T ) ) toDelete.push_back( item ); } for( ITEM* item : toDelete ) { wxLogTrace( wxT( "PNS" ), wxT( "del item %p type %s" ), item, item->KindStr().c_str() ); delete item; } releaseGarbage(); unlinkParent(); delete m_index; } int NODE::GetClearance( const ITEM* aA, const ITEM* aB, bool aUseClearanceEpsilon ) const { if( !m_ruleResolver ) return 100000; if( aA->IsVirtual() || aB->IsVirtual() ) return 0; int cl = m_ruleResolver->Clearance( aA, aB, aUseClearanceEpsilon ); return cl; } NODE* NODE::Branch() { NODE* child = new NODE; m_children.insert( child ); child->m_depth = m_depth + 1; child->m_parent = this; child->m_ruleResolver = m_ruleResolver; child->m_root = isRoot() ? this : m_root; child->m_maxClearance = m_maxClearance; // Immediate offspring of the root branch needs not copy anything. For the rest, deep-copy // joints, overridden item maps and pointers to stored items. if( !isRoot() ) { JOINT_MAP::iterator j; for( ITEM* item : *m_index ) child->m_index->Add( item ); child->m_joints = m_joints; child->m_override = m_override; } #if 0 wxLogTrace( wxT( "PNS" ), wxT( "%d items, %d joints, %d overrides" ), child->m_index->Size(), (int) child->m_joints.size(), (int) child->m_override.size() ); #endif return child; } void NODE::unlinkParent() { if( isRoot() ) return; m_parent->m_children.erase( this ); } OBSTACLE_VISITOR::OBSTACLE_VISITOR( const ITEM* aItem ) : m_item( aItem ), m_node( nullptr ), m_override( nullptr ) { } void OBSTACLE_VISITOR::SetWorld( const NODE* aNode, const NODE* aOverride ) { m_node = aNode; m_override = aOverride; } bool OBSTACLE_VISITOR::visit( ITEM* aCandidate ) { // check if there is a more recent branch with a newer (possibly modified) version of this // item. if( m_override && m_override->Overrides( aCandidate ) ) return true; return false; } // function object that visits potential obstacles and performs the actual collision refining struct NODE::DEFAULT_OBSTACLE_VISITOR : public OBSTACLE_VISITOR { COLLISION_SEARCH_CONTEXT* m_ctx; DEFAULT_OBSTACLE_VISITOR( COLLISION_SEARCH_CONTEXT* aCtx, const ITEM* aItem ) : OBSTACLE_VISITOR( aItem ), m_ctx( aCtx ) { } virtual ~DEFAULT_OBSTACLE_VISITOR() { } bool operator()( ITEM* aCandidate ) override { if( !aCandidate->OfKind( m_ctx->options.m_kindMask ) ) return true; if( visit( aCandidate ) ) return true; if( !aCandidate->Collide( m_item, m_node, m_ctx ) ) return true; if( m_ctx->options.m_limitCount > 0 && m_ctx->obstacles.size() >= m_ctx->options.m_limitCount ) return false; return true; }; }; int NODE::QueryColliding( const ITEM* aItem, NODE::OBSTACLES& aObstacles, const COLLISION_SEARCH_OPTIONS& aOpts ) const { COLLISION_SEARCH_CONTEXT ctx( aObstacles, aOpts ); /// By default, virtual items cannot collide if( aItem->IsVirtual() ) return 0; DEFAULT_OBSTACLE_VISITOR visitor( &ctx, aItem ); #ifdef DEBUG assert( allocNodes.find( this ) != allocNodes.end() ); #endif visitor.SetWorld( this, nullptr ); // first, look for colliding items in the local index m_index->Query( aItem, m_maxClearance, visitor ); // if we haven't found enough items, look in the root branch as well. if( !isRoot() && ( ctx.obstacles.size() < aOpts.m_limitCount || aOpts.m_limitCount < 0 ) ) { visitor.SetWorld( m_root, this ); m_root->m_index->Query( aItem, m_maxClearance, visitor ); } return aObstacles.size(); } NODE::OPT_OBSTACLE NODE::NearestObstacle( const LINE* aLine, const COLLISION_SEARCH_OPTIONS& aOpts ) { const int clearanceEpsilon = GetRuleResolver()->ClearanceEpsilon(); OBSTACLES obstacleList; std::vector tmpSegs; tmpSegs.reserve( aLine->CLine().SegmentCount() ); for( int i = 0; i < aLine->CLine().SegmentCount(); i++ ) { // Note: Clearances between tmpSegs.back() and other items are cached, // which means they'll be the same for all segments in the line. // Disabling the cache will lead to slowness. tmpSegs.emplace_back( *aLine, aLine->CLine().CSegment( i ) ); QueryColliding( &tmpSegs.back(), obstacleList, aOpts ); } if( aLine->EndsWithVia() ) QueryColliding( &aLine->Via(), obstacleList, aOpts ); if( obstacleList.empty() ) return OPT_OBSTACLE(); OBSTACLE nearest; nearest.m_head = nullptr; nearest.m_item = nullptr; nearest.m_distFirst = INT_MAX; nearest.m_maxFanoutWidth = 0; auto updateNearest = [&]( const SHAPE_LINE_CHAIN::INTERSECTION& pt, const OBSTACLE& obstacle ) { int dist = aLine->CLine().PathLength( pt.p, pt.index_their ); if( dist < nearest.m_distFirst ) { nearest = obstacle; nearest.m_distFirst = dist; nearest.m_ipFirst = pt.p; } }; SHAPE_LINE_CHAIN obstacleHull; DEBUG_DECORATOR* debugDecorator = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator(); std::vector intersectingPts; int layer = aLine->Layer(); for( const OBSTACLE& obstacle : obstacleList ) { if( aOpts.m_restrictedSet && aOpts.m_restrictedSet->count( obstacle.m_item ) == 0 ) continue; int clearance = GetClearance( obstacle.m_item, aLine, aOpts.m_useClearanceEpsilon ) + aLine->Width() / 2; obstacleHull = obstacle.m_item->Hull( clearance, 0, layer ); //debugDecorator->AddLine( obstacleHull, 2, 40000, "obstacle-hull-test" ); //debugDecorator->AddLine( aLine->CLine(), 5, 40000, "obstacle-test-line" ); intersectingPts.clear(); HullIntersection( obstacleHull, aLine->CLine(), intersectingPts ); for( const auto& ip : intersectingPts ) { //debugDecorator->AddPoint( ip.p, ip.valid?3:6, 100000, (const char *) wxString::Format("obstacle-isect-point-%d" ).c_str() ); if( ip.valid ) updateNearest( ip, obstacle ); } if( aLine->EndsWithVia() ) { const VIA& via = aLine->Via(); int viaClearance = GetClearance( obstacle.m_item, &via, aOpts.m_useClearanceEpsilon ) + via.Diameter() / 2; obstacleHull = obstacle.m_item->Hull( viaClearance, 0, layer ); //debugDecorator->AddLine( obstacleHull, 3 ); intersectingPts.clear(); HullIntersection( obstacleHull, aLine->CLine(), intersectingPts ); for( const SHAPE_LINE_CHAIN::INTERSECTION& ip : intersectingPts ) updateNearest( ip, obstacle ); } } if( nearest.m_distFirst == INT_MAX ) nearest = (*obstacleList.begin()); return nearest; } NODE::OPT_OBSTACLE NODE::CheckColliding( const ITEM_SET& aSet, int aKindMask ) { for( const ITEM* item : aSet.CItems() ) { OPT_OBSTACLE obs = CheckColliding( item, aKindMask ); if( obs ) return obs; } return OPT_OBSTACLE(); } NODE::OPT_OBSTACLE NODE::CheckColliding( const ITEM* aItemA, int aKindMask ) { OBSTACLES obs; COLLISION_SEARCH_OPTIONS opts; opts.m_kindMask = aKindMask; opts.m_limitCount = 1; if( aItemA->Kind() == ITEM::LINE_T ) { int n = 0; const LINE* line = static_cast( aItemA ); const SHAPE_LINE_CHAIN& l = line->CLine(); for( int i = 0; i < l.SegmentCount(); i++ ) { // Note: Clearances between &s and other items are cached, // which means they'll be the same for all segments in the line. // Disabling the cache will lead to slowness. const SEGMENT s( *line, l.CSegment( i ) ); n += QueryColliding( &s, obs, opts ); if( n ) return OPT_OBSTACLE( *obs.begin() ); } if( line->EndsWithVia() ) { n += QueryColliding( &line->Via(), obs, opts ); if( n ) return OPT_OBSTACLE( *obs.begin() ); } } else if( QueryColliding( aItemA, obs, opts ) > 0 ) { return OPT_OBSTACLE( *obs.begin() ); } return OPT_OBSTACLE(); } struct HIT_VISITOR : public OBSTACLE_VISITOR { ITEM_SET& m_items; const VECTOR2I& m_point; HIT_VISITOR( ITEM_SET& aTab, const VECTOR2I& aPoint ) : OBSTACLE_VISITOR( nullptr ), m_items( aTab ), m_point( aPoint ) {} virtual ~HIT_VISITOR() { } bool operator()( ITEM* aItem ) override { SHAPE_CIRCLE cp( m_point, 0 ); int cl = 0; if( aItem->Shape()->Collide( &cp, cl ) ) m_items.Add( aItem ); return true; } }; const ITEM_SET NODE::HitTest( const VECTOR2I& aPoint ) const { ITEM_SET items; // fixme: we treat a point as an infinitely small circle - this is inefficient. SHAPE_CIRCLE s( aPoint, 0 ); HIT_VISITOR visitor( items, aPoint ); visitor.SetWorld( this, nullptr ); m_index->Query( &s, m_maxClearance, visitor ); if( !isRoot() ) // fixme: could be made cleaner { ITEM_SET items_root; visitor.SetWorld( m_root, nullptr ); HIT_VISITOR visitor_root( items_root, aPoint ); m_root->m_index->Query( &s, m_maxClearance, visitor_root ); for( ITEM* item : items_root.Items() ) { if( !Overrides( item ) ) items.Add( item ); } } return items; } void NODE::addSolid( SOLID* aSolid ) { if( aSolid->HasHole() && aSolid->Hole()->BelongsTo( aSolid ) ) addHole( aSolid->Hole() ); if( aSolid->IsRoutable() ) linkJoint( aSolid->Pos(), aSolid->Layers(), aSolid->Net(), aSolid ); aSolid->SetOwner( this ); m_index->Add( aSolid ); } void NODE::Add( std::unique_ptr< SOLID >&& aSolid ) { aSolid->SetOwner( this ); addSolid( aSolid.release() ); } void NODE::addVia( VIA* aVia ) { if( aVia->HasHole() && aVia->Hole()->BelongsTo( aVia ) ) addHole( aVia->Hole() ); linkJoint( aVia->Pos(), aVia->Layers(), aVia->Net(), aVia ); aVia->SetOwner( this ); m_index->Add( aVia ); } void NODE::addHole( HOLE* aHole ) { // do we need holes in the connection graph? //linkJoint( aHole->Pos(), aHole->Layers(), aHole->Net(), aHole ); aHole->SetOwner( this ); m_index->Add( aHole ); } void NODE::Add( std::unique_ptr< VIA >&& aVia ) { addVia( aVia.release() ); } void NODE::add( ITEM* aItem, bool aAllowRedundant ) { switch( aItem->Kind() ) { case ITEM::ARC_T: addArc( static_cast( aItem ) ); break; case ITEM::SEGMENT_T: addSegment( static_cast( aItem ) ); break; case ITEM::VIA_T: addVia( static_cast( aItem ) ); break; case ITEM::SOLID_T: addSolid( static_cast( aItem ) ); break; default: assert( false ); } } void NODE::Add( LINE& aLine, bool aAllowRedundant ) { assert( !aLine.IsLinked() ); SHAPE_LINE_CHAIN& l = aLine.Line(); for( size_t i = 0; i < l.ArcCount(); i++ ) { auto s = l.Arc( i ); ARC* rarc; if( !aAllowRedundant && ( rarc = findRedundantArc( s.GetP0(), s.GetP1(), aLine.Layers(), aLine.Net() ) ) ) { aLine.Link( rarc ); } else { auto newarc = std::make_unique< ARC >( aLine, s ); aLine.Link( newarc.get() ); Add( std::move( newarc ), true ); } } for( int i = 0; i < l.SegmentCount(); i++ ) { if( l.IsArcSegment( i ) ) continue; SEG s = l.CSegment( i ); if( s.A != s.B ) { SEGMENT* rseg; if( !aAllowRedundant && ( rseg = findRedundantSegment( s.A, s.B, aLine.Layers(), aLine.Net() ) ) ) { // another line could be referencing this segment too :( aLine.Link( rseg ); } else { std::unique_ptr newseg = std::make_unique( aLine, s ); aLine.Link( newseg.get() ); Add( std::move( newseg ), true ); } } } } void NODE::addSegment( SEGMENT* aSeg ) { aSeg->SetOwner( this ); linkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg ); linkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg ); m_index->Add( aSeg ); } bool NODE::Add( std::unique_ptr< SEGMENT >&& aSegment, bool aAllowRedundant ) { if( aSegment->Seg().A == aSegment->Seg().B ) { wxLogTrace( wxT( "PNS" ), wxT( "attempting to add a segment with same end coordinates, ignoring." ) ); return false; } if( !aAllowRedundant && findRedundantSegment( aSegment.get() ) ) return false; addSegment( aSegment.release() ); return true; } void NODE::addArc( ARC* aArc ) { aArc->SetOwner( this ); linkJoint( aArc->Anchor( 0 ), aArc->Layers(), aArc->Net(), aArc ); linkJoint( aArc->Anchor( 1 ), aArc->Layers(), aArc->Net(), aArc ); m_index->Add( aArc ); } bool NODE::Add( std::unique_ptr< ARC >&& aArc, bool aAllowRedundant ) { const SHAPE_ARC& arc = aArc->CArc(); if( !aAllowRedundant && findRedundantArc( arc.GetP0(), arc.GetP1(), aArc->Layers(), aArc->Net() ) ) { return false; } addArc( aArc.release() ); return true; } void NODE::AddEdgeExclusion( std::unique_ptr aShape ) { m_edgeExclusions.push_back( std::move( aShape ) ); } bool NODE::QueryEdgeExclusions( const VECTOR2I& aPos ) const { for( const std::unique_ptr& edgeExclusion : m_edgeExclusions ) { if( edgeExclusion->Collide( aPos ) ) return true; } return false; } void NODE::doRemove( ITEM* aItem ) { // case 1: removing an item that is stored in the root node from any branch: // mark it as overridden, but do not remove if( aItem->BelongsTo( m_root ) && !isRoot() ) { m_override.insert( aItem ); if( aItem->HasHole() ) m_override.insert( aItem->Hole() ); } // case 2: the item belongs to this branch or a parent, non-root branch, // or the root itself and we are the root: remove from the index else if( !aItem->BelongsTo( m_root ) || isRoot() ) { m_index->Remove( aItem ); if( aItem->HasHole() ) m_index->Remove( aItem->Hole() ); } // the item belongs to this particular branch: un-reference it if( aItem->BelongsTo( this ) ) { aItem->SetOwner( nullptr ); m_root->m_garbageItems.insert( aItem ); HOLE *hole = aItem->Hole(); if( hole ) { m_index->Remove( hole ); // hole is not directly owned by NODE but by the parent SOLID/VIA. hole->SetOwner( hole->ParentPadVia() ); } } } void NODE::removeSegmentIndex( SEGMENT* aSeg ) { unlinkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg ); unlinkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg ); } void NODE::removeArcIndex( ARC* aArc ) { unlinkJoint( aArc->Anchor( 0 ), aArc->Layers(), aArc->Net(), aArc ); unlinkJoint( aArc->Anchor( 1 ), aArc->Layers(), aArc->Net(), aArc ); } void NODE::rebuildJoint( const JOINT* aJoint, const ITEM* aItem ) { // We have to split a single joint (associated with a via or a pad, binding together multiple // layers) into multiple independent joints. As I'm a lazy bastard, I simply delete the // via/solid and all its links and re-insert them. std::vector links( aJoint->LinkList() ); JOINT::HASH_TAG tag; int net = aItem->Net(); tag.net = net; tag.pos = aJoint->Pos(); bool split; do { split = false; auto range = m_joints.equal_range( tag ); if( range.first == m_joints.end() ) break; // find and remove all joints containing the via to be removed for( auto f = range.first; f != range.second; ++f ) { if( aItem->LayersOverlap( &f->second ) ) { m_joints.erase( f ); split = true; break; } } } while( split ); // and re-link them, using the former via's link list for( ITEM* link : links ) { if( link != aItem ) linkJoint( tag.pos, link->Layers(), net, link ); } } void NODE::removeViaIndex( VIA* aVia ) { const JOINT* jt = FindJoint( aVia->Pos(), aVia->Layers().Start(), aVia->Net() ); assert( jt ); rebuildJoint( jt, aVia ); } void NODE::removeSolidIndex( SOLID* aSolid ) { if( !aSolid->IsRoutable() ) return; // fixme: redundant code const JOINT* jt = FindJoint( aSolid->Pos(), aSolid->Layers().Start(), aSolid->Net() ); assert( jt ); rebuildJoint( jt, aSolid ); } void NODE::Replace( ITEM* aOldItem, std::unique_ptr< ITEM >&& aNewItem ) { Remove( aOldItem ); add( aNewItem.release() ); } void NODE::Replace( LINE& aOldLine, LINE& aNewLine ) { Remove( aOldLine ); Add( aNewLine ); } void NODE::Remove( SOLID* aSolid ) { removeSolidIndex( aSolid ); doRemove( aSolid ); } void NODE::Remove( VIA* aVia ) { removeViaIndex( aVia ); doRemove( aVia ); } void NODE::Remove( SEGMENT* aSegment ) { removeSegmentIndex( aSegment ); doRemove( aSegment ); } void NODE::Remove( ARC* aArc ) { removeArcIndex( aArc ); doRemove( aArc ); } void NODE::Remove( ITEM* aItem ) { switch( aItem->Kind() ) { case ITEM::ARC_T: Remove( static_cast( aItem ) ); break; case ITEM::SOLID_T: Remove( static_cast( aItem ) ); break; case ITEM::SEGMENT_T: Remove( static_cast( aItem ) ); break; case ITEM::LINE_T: { LINE* l = static_cast( aItem ); for ( LINKED_ITEM* s : l->Links() ) Remove( s ); break; } case ITEM::VIA_T: Remove( static_cast( aItem ) ); break; default: break; } } void NODE::Remove( LINE& aLine ) { // LINE does not have a separate remover, as LINEs are never truly a member of the tree std::vector& segRefs = aLine.Links(); for( LINKED_ITEM* li : segRefs ) { if( li->OfKind( ITEM::SEGMENT_T ) ) Remove( static_cast( li ) ); else if( li->OfKind( ITEM::ARC_T ) ) Remove( static_cast( li ) ); } aLine.SetOwner( nullptr ); aLine.ClearLinks(); } void NODE::followLine( LINKED_ITEM* aCurrent, bool aScanDirection, int& aPos, int aLimit, VECTOR2I* aCorners, LINKED_ITEM** aSegments, bool* aArcReversed, bool& aGuardHit, bool aStopAtLockedJoints, bool aFollowLockedSegments ) { bool prevReversed = false; const VECTOR2I guard = aCurrent->Anchor( aScanDirection ); for( int count = 0 ; ; ++count ) { const VECTOR2I p = aCurrent->Anchor( aScanDirection ^ prevReversed ); const JOINT* jt = FindJoint( p, aCurrent ); assert( jt ); aCorners[aPos] = jt->Pos(); aSegments[aPos] = aCurrent; aArcReversed[aPos] = false; if( aCurrent->Kind() == ITEM::ARC_T ) { if( ( aScanDirection && jt->Pos() == aCurrent->Anchor( 0 ) ) || ( !aScanDirection && jt->Pos() == aCurrent->Anchor( 1 ) ) ) aArcReversed[aPos] = true; } aPos += ( aScanDirection ? 1 : -1 ); if( count && guard == p ) { if( aPos >= 0 && aPos < aLimit ) aSegments[aPos] = nullptr; aGuardHit = true; break; } bool locked = aStopAtLockedJoints ? jt->IsLocked() : false; if( locked || !jt->IsLineCorner( aFollowLockedSegments ) || aPos < 0 || aPos == aLimit ) break; aCurrent = jt->NextSegment( aCurrent, aFollowLockedSegments ); prevReversed = ( aCurrent && jt->Pos() == aCurrent->Anchor( aScanDirection ) ); } } const LINE NODE::AssembleLine( LINKED_ITEM* aSeg, int* aOriginSegmentIndex, bool aStopAtLockedJoints, bool aFollowLockedSegments ) { const int MaxVerts = 1024 * 16; std::array corners; std::array segs; std::array arcReversed; LINE pl; bool guardHit = false; int i_start = MaxVerts / 2; int i_end = i_start + 1; pl.SetWidth( aSeg->Width() ); pl.SetLayers( aSeg->Layers() ); pl.SetNet( aSeg->Net() ); pl.SetOwner( this ); followLine( aSeg, false, i_start, MaxVerts, corners.data(), segs.data(), arcReversed.data(), guardHit, aStopAtLockedJoints, aFollowLockedSegments ); if( !guardHit ) { followLine( aSeg, true, i_end, MaxVerts, corners.data(), segs.data(), arcReversed.data(), guardHit, aStopAtLockedJoints, aFollowLockedSegments ); } int n = 0; LINKED_ITEM* prev_seg = nullptr; bool originSet = false; SHAPE_LINE_CHAIN& line = pl.Line(); for( int i = i_start + 1; i < i_end; i++ ) { const VECTOR2I& p = corners[i]; LINKED_ITEM* li = segs[i]; if( !li || li->Kind() != ITEM::ARC_T ) line.Append( p ); if( li && prev_seg != li ) { if( li->Kind() == ITEM::ARC_T ) { const ARC* arc = static_cast( li ); const SHAPE_ARC* sa = static_cast( arc->Shape() ); int nSegs = line.PointCount(); VECTOR2I last = nSegs ? line.CPoint( -1 ) : VECTOR2I(); ssize_t lastShape = nSegs ? line.ArcIndex( static_cast( nSegs ) - 1 ) : -1; line.Append( arcReversed[i] ? sa->Reversed() : *sa ); } pl.Link( li ); // latter condition to avoid loops if( li == aSeg && aOriginSegmentIndex && !originSet ) { wxASSERT( n < line.SegmentCount() || ( n == line.SegmentCount() && li->Kind() == ITEM::SEGMENT_T ) ); *aOriginSegmentIndex = line.PointCount() - 1; originSet = true; } } prev_seg = li; } // Remove duplicate verts, but do NOT remove colinear segments here! pl.Line().Simplify( false ); // TODO: maintain actual segment index under simplification system if( aOriginSegmentIndex && *aOriginSegmentIndex >= pl.SegmentCount() ) *aOriginSegmentIndex = pl.SegmentCount() - 1; assert( pl.SegmentCount() != 0 ); return pl; } void NODE::FindLineEnds( const LINE& aLine, JOINT& aA, JOINT& aB ) { aA = *FindJoint( aLine.CPoint( 0 ), &aLine ); aB = *FindJoint( aLine.CPoint( -1 ), &aLine ); } int NODE::FindLinesBetweenJoints( const JOINT& aA, const JOINT& aB, std::vector& aLines ) { for( ITEM* item : aA.LinkList() ) { if( item->Kind() == ITEM::SEGMENT_T || item->Kind() == ITEM::ARC_T ) { LINKED_ITEM* li = static_cast( item ); LINE line = AssembleLine( li ); if( !line.Layers().Overlaps( aB.Layers() ) ) continue; JOINT j_start, j_end; FindLineEnds( line, j_start, j_end ); int id_start = line.CLine().Find( aA.Pos() ); int id_end = line.CLine().Find( aB.Pos() ); if( id_end < id_start ) std::swap( id_end, id_start ); if( id_start >= 0 && id_end >= 0 ) { line.ClipVertexRange( id_start, id_end ); aLines.push_back( line ); } } } return 0; } void NODE::FixupVirtualVias() { const SEGMENT* locked_seg = nullptr; std::vector vvias; for( auto& jointPair : m_joints ) { JOINT joint = jointPair.second; if( joint.Layers().IsMultilayer() ) continue; int n_seg = 0, n_solid = 0, n_vias = 0; int prev_w = -1; int max_w = -1; bool is_width_change = false; bool is_locked = false; for( const ITEM* item : joint.LinkList() ) { if( item->OfKind( ITEM::VIA_T ) ) { n_vias++; } else if( item->OfKind( ITEM::SOLID_T ) ) { n_solid++; } else if( const auto t = dyn_cast( item ) ) { int w = t->Width(); if( prev_w >= 0 && w != prev_w ) { is_width_change = true; } max_w = std::max( w, max_w ); prev_w = w; is_locked = t->IsLocked(); locked_seg = t; } } if( ( is_width_change || n_seg >= 3 || is_locked ) && n_solid == 0 && n_vias == 0 ) { // fixme: the hull margin here is an ugly temporary workaround. The real fix // is to use octagons for via force propagation. vvias.push_back( new VVIA( joint.Pos(), joint.Layers().Start(), max_w + 2 * PNS_HULL_MARGIN, joint.Net() ) ); } if( is_locked ) { const VECTOR2I& secondPos = ( locked_seg->Seg().A == joint.Pos() ) ? locked_seg->Seg().B : locked_seg->Seg().A; vvias.push_back( new VVIA( secondPos, joint.Layers().Start(), max_w + 2 * PNS_HULL_MARGIN, joint.Net() ) ); } } for( auto vvia : vvias ) { Add( ItemCast( std::move( std::unique_ptr( vvia ) ) ) ); } } const JOINT* NODE::FindJoint( const VECTOR2I& aPos, int aLayer, int aNet ) const { JOINT::HASH_TAG tag; tag.net = aNet; tag.pos = aPos; JOINT_MAP::const_iterator f = m_joints.find( tag ), end = m_joints.end(); if( f == end && !isRoot() ) { end = m_root->m_joints.end(); f = m_root->m_joints.find( tag ); // m_root->FindJoint(aPos, aLayer, aNet); } if( f == end ) return nullptr; while( f != end ) { if( f->second.Layers().Overlaps( aLayer ) ) return &f->second; ++f; } return nullptr; } void NODE::LockJoint( const VECTOR2I& aPos, const ITEM* aItem, bool aLock ) { JOINT& jt = touchJoint( aPos, aItem->Layers(), aItem->Net() ); jt.Lock( aLock ); } JOINT& NODE::touchJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet ) { JOINT::HASH_TAG tag; tag.pos = aPos; tag.net = aNet; // try to find the joint in this node. JOINT_MAP::iterator f = m_joints.find( tag ); std::pair range; // not found and we are not root? find in the root and copy results here. if( f == m_joints.end() && !isRoot() ) { range = m_root->m_joints.equal_range( tag ); for( f = range.first; f != range.second; ++f ) m_joints.insert( *f ); } // now insert and combine overlapping joints JOINT jt( aPos, aLayers, aNet ); bool merged; do { merged = false; range = m_joints.equal_range( tag ); if( range.first == m_joints.end() ) break; for( f = range.first; f != range.second; ++f ) { if( aLayers.Overlaps( f->second.Layers() ) ) { jt.Merge( f->second ); m_joints.erase( f ); merged = true; break; } } } while( merged ); return m_joints.insert( TagJointPair( tag, jt ) )->second; } void JOINT::Dump() const { wxLogTrace( wxT( "PNS" ), wxT( "joint layers %d-%d, net %d, pos %s, links: %d" ), m_layers.Start(), m_layers.End(), m_tag.net, m_tag.pos.Format().c_str(), LinkCount() ); } void NODE::linkJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet, ITEM* aWhere ) { JOINT& jt = touchJoint( aPos, aLayers, aNet ); jt.Link( aWhere ); } void NODE::unlinkJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet, ITEM* aWhere ) { // fixme: remove dangling joints JOINT& jt = touchJoint( aPos, aLayers, aNet ); jt.Unlink( aWhere ); } void NODE::Dump( bool aLong ) { #if 0 std::unordered_set all_segs; SHAPE_INDEX_LIST::iterator i; for( i = m_items.begin(); i != m_items.end(); i++ ) { if( (*i)->GetKind() == ITEM::SEGMENT_T ) all_segs.insert( static_cast( *i ) ); } if( !isRoot() ) { for( i = m_root->m_items.begin(); i != m_root->m_items.end(); i++ ) { if( (*i)->GetKind() == ITEM::SEGMENT_T && !overrides( *i ) ) all_segs.insert( static_cast(*i) ); } } JOINT_MAP::iterator j; if( aLong ) { for( j = m_joints.begin(); j != m_joints.end(); ++j ) { wxLogTrace( wxT( "PNS" ), wxT( "joint : %s, links : %d\n" ), j->second.GetPos().Format().c_str(), j->second.LinkCount() ); JOINT::LINKED_ITEMS::const_iterator k; for( k = j->second.GetLinkList().begin(); k != j->second.GetLinkList().end(); ++k ) { const ITEM* m_item = *k; switch( m_item->GetKind() ) { case ITEM::SEGMENT_T: { const SEGMENT* seg = static_cast( m_item ); wxLogTrace( wxT( "PNS" ), wxT( " -> seg %s %s\n" ), seg->GetSeg().A.Format().c_str(), seg->GetSeg().B.Format().c_str() ); break; } default: break; } } } } int lines_count = 0; while( !all_segs.empty() ) { SEGMENT* s = *all_segs.begin(); LINE* l = AssembleLine( s ); LINE::LinkedSegments* seg_refs = l->GetLinkedSegments(); if( aLong ) { wxLogTrace( wxT( "PNS" ), wxT( "Line: %s, net %d " ), l->GetLine().Format().c_str(), l->GetNet() ); } for( std::vector::iterator j = seg_refs->begin(); j != seg_refs->end(); ++j ) { wxLogTrace( wxT( "PNS" ), wxT( "%s " ), (*j)->GetSeg().A.Format().c_str() ); if( j + 1 == seg_refs->end() ) wxLogTrace( wxT( "PNS" ), wxT( "%s\n" ), (*j)->GetSeg().B.Format().c_str() ); all_segs.erase( *j ); } lines_count++; } wxLogTrace( wxT( "PNS" ), wxT( "Local joints: %d, lines : %d \n" ), m_joints.size(), lines_count ); #endif } void NODE::GetUpdatedItems( ITEM_VECTOR& aRemoved, ITEM_VECTOR& aAdded ) { if( isRoot() ) return; if( m_override.size() ) aRemoved.reserve( m_override.size() ); if( m_index->Size() ) aAdded.reserve( m_index->Size() ); for( ITEM* item : m_override ) aRemoved.push_back( item ); for( ITEM* item : *m_index ) aAdded.push_back( item ); } void NODE::releaseChildren() { // copy the kids as the NODE destructor erases the item from the parent node. std::set kids = m_children; for( NODE* node : kids ) { node->releaseChildren(); delete node; } } void NODE::releaseGarbage() { if( !isRoot() ) return; for( ITEM* item : m_garbageItems ) { if( !item->BelongsTo( this ) ) delete item; } m_garbageItems.clear(); } void NODE::Commit( NODE* aNode ) { if( aNode->isRoot() ) return; for( ITEM* item : aNode->m_override ) Remove( item ); for( ITEM* item : *aNode->m_index ) { item->SetRank( -1 ); item->Unmark(); add( item ); } releaseChildren(); releaseGarbage(); } void NODE::KillChildren() { releaseChildren(); } void NODE::AllItemsInNet( int aNet, std::set& aItems, int aKindMask ) { INDEX::NET_ITEMS_LIST* l_cur = m_index->GetItemsForNet( aNet ); if( l_cur ) { for( ITEM* item : *l_cur ) { if( item->OfKind( aKindMask ) && item->IsRoutable() ) aItems.insert( item ); } } if( !isRoot() ) { INDEX::NET_ITEMS_LIST* l_root = m_root->m_index->GetItemsForNet( aNet ); if( l_root ) { for( ITEM* item : *l_root ) { if( !Overrides( item ) && item->OfKind( aKindMask ) && item->IsRoutable() ) aItems.insert( item ); } } } } void NODE::ClearRanks( int aMarkerMask ) { for( ITEM* item : *m_index ) { item->SetRank( -1 ); item->Mark( item->Marker() & ~aMarkerMask ); } } void NODE::RemoveByMarker( int aMarker ) { std::vector garbage; for( ITEM* item : *m_index ) { if( item->Marker() & aMarker ) garbage.emplace_back( item ); } for( ITEM* item : garbage ) Remove( item ); } SEGMENT* NODE::findRedundantSegment( const VECTOR2I& A, const VECTOR2I& B, const LAYER_RANGE& lr, int aNet ) { const JOINT* jtStart = FindJoint( A, lr.Start(), aNet ); if( !jtStart ) return nullptr; for( ITEM* item : jtStart->LinkList() ) { if( item->OfKind( ITEM::SEGMENT_T ) ) { SEGMENT* seg2 = (SEGMENT*)item; const VECTOR2I a2( seg2->Seg().A ); const VECTOR2I b2( seg2->Seg().B ); if( seg2->Layers().Start() == lr.Start() && ( ( A == a2 && B == b2 ) || ( A == b2 && B == a2 ) ) ) { return seg2; } } } return nullptr; } SEGMENT* NODE::findRedundantSegment( SEGMENT* aSeg ) { return findRedundantSegment( aSeg->Seg().A, aSeg->Seg().B, aSeg->Layers(), aSeg->Net() ); } ARC* NODE::findRedundantArc( const VECTOR2I& A, const VECTOR2I& B, const LAYER_RANGE& lr, int aNet ) { const JOINT* jtStart = FindJoint( A, lr.Start(), aNet ); if( !jtStart ) return nullptr; for( ITEM* item : jtStart->LinkList() ) { if( item->OfKind( ITEM::ARC_T ) ) { ARC* seg2 = static_cast( item ); const VECTOR2I a2( seg2->Anchor( 0 ) ); const VECTOR2I b2( seg2->Anchor( 1 ) ); if( seg2->Layers().Start() == lr.Start() && ( ( A == a2 && B == b2 ) || ( A == b2 && B == a2 ) ) ) { return seg2; } } } return nullptr; } ARC* NODE::findRedundantArc( ARC* aArc ) { return findRedundantArc( aArc->Anchor( 0 ), aArc->Anchor( 1 ), aArc->Layers(), aArc->Net() ); } int NODE::QueryJoints( const BOX2I& aBox, std::vector& aJoints, LAYER_RANGE aLayerMask, int aKindMask ) { int n = 0; aJoints.clear(); for( JOINT_MAP::value_type& j : m_joints ) { if( !j.second.Layers().Overlaps( aLayerMask ) ) continue; if( aBox.Contains( j.second.Pos() ) && j.second.LinkCount( aKindMask ) ) { aJoints.push_back( &j.second ); n++; } } if( isRoot() ) return n; for( JOINT_MAP::value_type& j : m_root->m_joints ) { if( !Overrides( &j.second ) && j.second.Layers().Overlaps( aLayerMask ) ) { if( aBox.Contains( j.second.Pos() ) && j.second.LinkCount( aKindMask ) ) { aJoints.push_back( &j.second ); n++; } } } return n; } ITEM *NODE::FindItemByParent( const BOARD_ITEM* aParent ) { if( aParent->IsConnected() ) { const BOARD_CONNECTED_ITEM* cItem = static_cast( aParent ); INDEX::NET_ITEMS_LIST* l_cur = m_index->GetItemsForNet( cItem->GetNetCode() ); if( l_cur ) { for( ITEM* item : *l_cur ) { if( item->Parent() == aParent ) return item; } } } return nullptr; } }