/****************************************************/ /* Gestion des composants specifiques aux microndes */ /* Generation d'une self */ /****************************************************/ /* Fichier GEN_SELF.H */ /* Fonctions locales */ static void Exit_Self(WinEDA_DrawPanel * Panel, wxDC *DC); static EDGE_MODULE * gen_arc(EDGE_MODULE * PtSegm, int cX, int cY, int angle); static void ShowCadreSelf(WinEDA_DrawPanel * panel, wxDC * DC, bool erase); /* structures locales */ class SELFPCB // Definition d'une self constituee par une piste { public: int forme; // Serpentin, spirale .. int orient; // 0..3600 int valeur; // Valeur de la self wxPoint m_Start; wxPoint m_End; // Coord du point de depart et d'arrivee wxSize m_Size; D_PAD * pt_pad_start, *pt_pad_end; // Pointeurs sur les pads d'extremite int lng; // Longueur de la piste constituant la self int m_Width; // m_Size.xur de la piste int nbrin; // Parametres de calcul: nombre de brins int lbrin; // longueur du brin int rayon; // Rayon des raccords entre brins int delta; // distance aux pads }; /* Variables locales */ static SELFPCB Mself; static int Self_On; static int Bl_X0, Bl_Y0 , Bl_Xf, Bl_Yf; // Coord du cadre insrcivant la self /*************************************************************************/ static void ShowCadreSelf(WinEDA_DrawPanel * panel, wxDC * DC, bool erase) /*************************************************************************/ /* Routine d'affichage a l'ecran du cadre de la self */ { int deltaX, deltaY; /* Calcul de l'orientation et de la taille de la fenetre: - orient = vert ou Horiz ( dimension max) - Size.x = Size.y / 2 */ GRSetDrawMode(DC, GR_XOR); if( erase)/* effacement du cadre */ { GRRect( & panel->m_ClipBox, DC, Bl_X0, Bl_Y0, Bl_Xf, Bl_Yf, YELLOW); } deltaX = (panel->GetScreen()->m_Curseur.x - Mself.m_Start.x) / 4; deltaY = (panel->GetScreen()->m_Curseur.y - Mself.m_Start.y) / 4; Mself.orient = 900; if( abs(deltaX) > abs(deltaY) ) Mself.orient = 0; if(Mself.orient == 0) { Bl_X0 = Mself.m_Start.x; Bl_Y0 = Mself.m_Start.y - deltaX; Bl_Xf = panel->GetScreen()->m_Curseur.x; Bl_Yf = Mself.m_Start.y + deltaX; } else { Bl_X0 = Mself.m_Start.x - deltaY; Bl_Y0 = Mself.m_Start.y; Bl_Xf = Mself.m_Start.x + deltaY; Bl_Yf = panel->GetScreen()->m_Curseur.y; } GRRect( & panel->m_ClipBox, DC, Bl_X0, Bl_Y0, Bl_Xf, Bl_Yf,YELLOW); } /*************************************************/ void Exit_Self(WinEDA_DrawPanel * Panel, wxDC *DC) /*************************************************/ /* Routine de fermeture de l'application : ferme les commandes en cours */ { if(Self_On) { Self_On = 0; Panel->ManageCurseur(Panel, DC, 0); /* efface cadre */ Panel->ManageCurseur = NULL; Panel->ForceCloseManageCurseur = NULL; } } /*******************************************/ void WinEDA_PcbFrame::Begin_Self( wxDC *DC) /*******************************************/ /* Routine d'initialisation d'un trace de self */ { if ( Self_On ) { Genere_Self(DC); return; } Mself.m_Start = GetScreen()->m_Curseur; Self_On = 1; /* Mise a jour de l'origine des coord relatives */ GetScreen()->m_O_Curseur = GetScreen()->m_Curseur; Affiche_Status_Box(); Bl_X0 = Mself.m_Start.x; Bl_Y0 = Mself.m_Start.y; Bl_Xf = Bl_X0; Bl_Yf = Bl_Y0; DrawPanel->ManageCurseur = ShowCadreSelf; DrawPanel->ForceCloseManageCurseur = Exit_Self; DrawPanel->ManageCurseur(DrawPanel, DC, 0); /* Affiche cadre */ } /**********************************************/ MODULE * WinEDA_PcbFrame::Genere_Self( wxDC *DC) /**********************************************/ /* Genere une self en forme de serpentin - longueur Mself.lng - Extremites Mself.m_Start et Mself.m_End - Contrainte: m_Start.x = m_End.x ( self verticale ) ou m_Start.y = m_End.y ( self horizontale ) On doit determiner: Mself.nbrin = nombre de segments perpendiculaires a la direction ( le serpention aura nbrin + 1 demicercles + 2 1/4 de cercle) Mself.lbrin = longueur d'un brin Mself.rayon = rayon des parties arrondies du serpentin Mself.delta = segments raccord entre extremites et le serpention lui meme Les equations sont Mself.m_Size.x = 2*Mself.rayon + Mself.lbrin Mself.m_Size.y = 2*Mself.delta + 2*Mself.nbrin*Mself.rayon Mself.lng = 2*Mself.delta // Raccords au serpentin + (Mself.nbrin-2) * Mself.lbrin //longueur des brins sauf 1er et dernier + (Mself.nbrin+1) * ( PI * Mself.rayon) // longueur des arrondis + Mself.lbrin/2 - Melf.rayon*2) // longueur du 1er et dernier brin Les contraintes sont: nbrin >= 2 Mself.rayon < Mself.m_Size.x Mself.m_Size.y = Mself.rayon*4 + 2*Mself.raccord Mself.lbrin > Mself.rayon *2 Le calcul est conduit de la facon suivante: Initialement: nbrin = 2 rayon = 4 * m_Size.x (valeur fixe arbitraire) puis: on augmente le nombre de brins jusqu'a la longueur desiree ( le rayon est diminue si necessaire ) */ { EDGE_MODULE * PtSegm, * LastSegm, *FirstSegm, * newedge; MODULE * Module; D_PAD * PtPad; int ii, ll, lextbrin; float fcoeff; bool abort = FALSE; wxString msg; DrawPanel->ManageCurseur(DrawPanel, DC, FALSE); /* efface cadre */ DrawPanel->ManageCurseur = NULL; DrawPanel->ForceCloseManageCurseur = NULL; if(Self_On == 0) { DisplayError(this, wxT("Starting point not init..")); return NULL; } Self_On = 0; Mself.m_End = m_CurrentScreen->m_Curseur; /* Agencement des parametres pour simplifier le calcul : */ /* le point de depart doit avoir la coord depart < celle du point de fin */ if(Mself.orient == 0) // Self horizontale { Mself.m_End.y = Mself.m_Start.y; if(Mself.m_Start.x > Mself.m_End.x) EXCHG(Mself.m_Start.x,Mself.m_End.x); Mself.m_Size.y = Mself.m_End.x - Mself.m_Start.x; Mself.lng = Mself.m_Size.y; } else // Self verticale { Mself.m_End.x = Mself.m_Start.x; if(Mself.m_Start.y > Mself.m_End.y) EXCHG(Mself.m_Start.y,Mself.m_End.y); Mself.m_Size.y = Mself.m_End.y - Mself.m_Start.y; Mself.lng = Mself.m_Size.y; } /* Entree de la vraie longueur desiree */ if( ! g_UnitMetric ) { fcoeff = 10000.0 ; msg.Printf( wxT("%1.4f"), Mself.lng /fcoeff); abort = Get_Message(_("Length(inch):"),msg, this); } else { fcoeff = 10000.0/25.4 ; msg.Printf( wxT("%2.3f"), Mself.lng /fcoeff); abort = Get_Message( _("Length(mm):"),msg, this); } if ( abort ) return NULL; double fval; if ( ! msg.ToDouble(&fval) ) { DisplayError(this, _("Incorrect number, abort")); return NULL; } Mself.lng = (int) round( fval * fcoeff ); /* Controle des valeurs ( ii = valeur minimale de la longueur */ if( Mself.lng < Mself.m_Size.y ) { DisplayError(this, _("Requested length < minimum length")); return NULL; } /* Generation du composant: calcul des elements de la self */ Mself.m_Width = g_DesignSettings.m_CurrentTrackWidth; Mself.m_Size.x = Mself.m_Size.y / 2 ; // Choix d'une Valeur de depart raisonnable pour le rayon des arcs de cercle Mself.rayon = min(Mself.m_Width * 5, Mself.m_Size.x/4); /* Calcul des parametres */ for ( Mself.nbrin = 2 ; ; Mself.nbrin++) { Mself.delta = (Mself.m_Size.y - ( Mself.rayon * 2 * Mself.nbrin ) ) / 2 ; if(Mself.delta < Mself.m_Size.y / 10) // C.a.d. si m_Size.yeur self > m_Size.yeur specifiee { // Reduction du rayon des arrondis Mself.delta = Mself.m_Size.y / 10; Mself.rayon = (Mself.m_Size.y - 2*Mself.delta) / ( 2 * Mself.nbrin) ; if(Mself.rayon < Mself.m_Width) { // Rayon vraiment trop petit... Affiche_Message(_("Unable to create line: Requested length is too big")); return NULL; } } Mself.lbrin = Mself.m_Size.x - (Mself.rayon * 2); lextbrin = (Mself.lbrin/2) - Mself.rayon; ll = 2 * lextbrin ; // Longueur du 1er et dernier brin ll += 2 * Mself.delta ; // Longueur des raccord au serpentin ll += Mself.nbrin * (Mself.lbrin - 2); // longueur des autres brins ll += ((Mself.nbrin+1) * 314 * Mself.rayon) /100 ; msg.Printf( _("Segm count = %d, Lenght = "), Mself.nbrin); wxString stlen; valeur_param(ll, stlen); msg += stlen; Affiche_Message(msg); if ( ll >= Mself.lng) break; } /* Generation du composant : le calcul est fait self Verticale */ if( Create_1_Module(DC, wxEmptyString) == NULL ) return NULL; Module = m_Pcb->m_Modules; Module->m_LibRef = wxT("MuSelf"); Module->m_Attributs = MOD_VIRTUAL | MOD_CMS; Module->m_Flags = 0; Module->Draw(DrawPanel, DC, wxPoint(0,0), GR_XOR); /* Generation des elements speciaux: drawsegments */ LastSegm = (EDGE_MODULE*) Module->m_Drawings; if( LastSegm ) while( LastSegm->Pnext) LastSegm = (EDGE_MODULE*)LastSegm->Pnext; FirstSegm = PtSegm = new EDGE_MODULE(Module); if (LastSegm ) { LastSegm->Pnext = PtSegm; PtSegm->Pback = LastSegm; } else { Module->m_Drawings = PtSegm; PtSegm->Pback = Module; } PtSegm->m_Start = Mself.m_Start; PtSegm->m_End.x = Mself.m_Start.x; PtSegm->m_End.y = PtSegm->m_Start.y + Mself.delta; PtSegm->m_Width = Mself.m_Width; PtSegm->m_Layer = Module->m_Layer; PtSegm->m_Shape = S_SEGMENT; newedge = new EDGE_MODULE(Module); newedge->Copy(PtSegm); newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start = PtSegm->m_End; PtSegm = gen_arc(PtSegm,PtSegm->m_End.x - Mself.rayon, PtSegm->m_End.y, -900); if(lextbrin) { newedge = new EDGE_MODULE(Module); newedge->Copy(PtSegm); newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start = PtSegm->m_End; PtSegm->m_End.x -= lextbrin; } /* Trace du serpentin */ for (ii = 1 ; ii < Mself.nbrin; ii++) { int arc_angle; newedge = new EDGE_MODULE(Module); newedge->Copy(PtSegm); newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start = PtSegm->m_End; if( ii & 1) /* brin d'ordre impair : cercles de sens > 0 */ arc_angle = 1800; else arc_angle = -1800; PtSegm = gen_arc(PtSegm, PtSegm->m_End.x, PtSegm->m_End.y + Mself.rayon, arc_angle); if( ii < Mself.nbrin-1) { newedge = new EDGE_MODULE(Module); newedge->Copy(PtSegm); newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start = PtSegm->m_End; if( ii & 1) PtSegm->m_End.x += Mself.lbrin; else PtSegm->m_End.x -= Mself.lbrin; } } /* Trace du point final */ if( ii & 1) /* brin final de sens > 0 */ { if(lextbrin) { newedge = new EDGE_MODULE(Module); newedge->Copy(PtSegm); newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start = PtSegm->m_End; PtSegm->m_End.x -= lextbrin; } newedge = new EDGE_MODULE(Module); newedge->Copy(PtSegm); newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start.x = PtSegm->m_End.x; PtSegm->m_Start.y = PtSegm->m_End.y; PtSegm = gen_arc(PtSegm, PtSegm->m_End.x, PtSegm->m_End.y + Mself.rayon, 900); } else { if(lextbrin) { newedge = new EDGE_MODULE(Module); newedge->Copy(PtSegm); newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start = PtSegm->m_End; PtSegm->m_End.x += lextbrin; } newedge = new EDGE_MODULE(Module); newedge->Copy(PtSegm); newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start = PtSegm->m_End; PtSegm = gen_arc(PtSegm, PtSegm->m_End.x, PtSegm->m_End.y + Mself.rayon, -900); } newedge = new EDGE_MODULE(Module); newedge->Copy(PtSegm); newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start = PtSegm->m_End; PtSegm->m_End = Mself.m_End; PtSegm->Pnext = NULL; /* Rotation de la self si le trace doit etre horizontal : */ LastSegm = PtSegm; if ( Mself.orient == 0) { for( PtSegm = FirstSegm; PtSegm != NULL; PtSegm = (EDGE_MODULE*) PtSegm->Pnext ) { RotatePoint(&PtSegm->m_Start.x, &PtSegm->m_Start.y, FirstSegm->m_Start.x, FirstSegm->m_Start.y, 900 ); if( PtSegm != LastSegm ) RotatePoint(&PtSegm->m_End.x, &PtSegm->m_End.y, FirstSegm->m_Start.x, FirstSegm->m_Start.y, 900 ); } } /* Modif position ancre */ Module->m_Pos.x = LastSegm->m_End.x; Module->m_Pos.y = LastSegm->m_End.y; /* Placement des 2 pads sur extremite */ PtPad = new D_PAD(Module); Module->m_Pads = PtPad; PtPad->Pback = Module; PtPad->SetPadName( wxT("1") ); PtPad->m_Pos.x = LastSegm->m_End.x; PtPad->m_Pos.y = LastSegm->m_End.y; PtPad->m_Pos0.x = PtPad->m_Pos.x - Module->m_Pos.x; PtPad->m_Pos0.y = PtPad->m_Pos.y - Module->m_Pos.y; PtPad->m_Size.x = PtPad->m_Size.y = LastSegm->m_Width; PtPad->m_Masque_Layer = g_TabOneLayerMask[LastSegm->m_Layer]; PtPad->m_Attribut = SMD; PtPad->m_PadShape = CIRCLE; PtPad->m_Rayon = PtPad->m_Size.x / 2; D_PAD * newpad = new D_PAD(Module); newpad->Copy(PtPad); newpad->AddToChain(PtPad); PtPad = newpad; PtPad->SetPadName( wxT("2") ); PtPad->m_Pos.x = FirstSegm->m_Start.x; PtPad->m_Pos.y = FirstSegm->m_Start.y; PtPad->m_Pos0.x = PtPad->m_Pos.x - Module->m_Pos.x; PtPad->m_Pos0.y = PtPad->m_Pos.y - Module->m_Pos.y; /* Modif des positions textes */ Module->Display_Infos(this); Module->m_Value->m_Pos.x = Module->m_Reference->m_Pos.x = ( FirstSegm->m_Start.x + LastSegm->m_End.x ) /2 ; Module->m_Value->m_Pos.y = Module->m_Reference->m_Pos.y = ( FirstSegm->m_Start.y + LastSegm->m_End.y ) /2 ; Module->m_Reference->m_Pos.y -= Module->m_Reference->m_Size.y; Module->m_Value->m_Pos.y += Module->m_Value->m_Size.y; Module->m_Reference->m_Pos0.x = Module->m_Reference->m_Pos.x - Module->m_Pos.x; Module->m_Reference->m_Pos0.y = Module->m_Reference->m_Pos.y - Module->m_Pos.y; Module->m_Value->m_Pos0.x = Module->m_Value->m_Pos.x - Module->m_Pos.x; Module->m_Value->m_Pos0.y = Module->m_Value->m_Pos.y - Module->m_Pos.y; /* Init des Coord locales des segments */ for( PtSegm = FirstSegm; PtSegm != NULL; PtSegm = (EDGE_MODULE*) PtSegm->Pnext ) { PtSegm->m_Start0.x = PtSegm->m_Start.x - Module->m_Pos.x; PtSegm->m_Start0.y = PtSegm->m_Start.y - Module->m_Pos.y; PtSegm->m_End0.x = PtSegm->m_End.x - Module->m_Pos.x; PtSegm->m_End0.y = PtSegm->m_End.y - Module->m_Pos.y; } Module->Set_Rectangle_Encadrement(); Module->Draw(DrawPanel, DC, wxPoint(0,0), GR_OR); return Module; } /**************************************************************************/ static EDGE_MODULE * gen_arc(EDGE_MODULE * PtSegm, int cX, int cY, int angle) /**************************************************************************/ /* Genere un arc de EDGE_MODULE : de centre cX,cY d'angle "angle" de point de depart donne dans la structure pointee par PtSegm, qui doit entre a jour (type,net..) Retourne un pointeur sur la derniere structure EDGE_MODULE generee */ { int ii, nb_seg; float alpha, beta, fsin, fcos; int x0, xr0, y0, yr0; EDGE_MODULE * newedge; angle = -angle; y0 = PtSegm->m_Start.x - cX; x0 = PtSegm->m_Start.y - cY; nb_seg = (abs(angle)) / 225 ; if(nb_seg == 0) nb_seg = 1 ; alpha = ( (float)angle * 3.14159 / 1800 ) / nb_seg; for ( ii = 1 ; ii <= nb_seg ; ii++ ) { if( ii > 1) { newedge = new EDGE_MODULE( (MODULE*) NULL); newedge->Copy(PtSegm); newedge->m_Parent = PtSegm->m_Parent; newedge->AddToChain(PtSegm); PtSegm = newedge; PtSegm->m_Start.x = PtSegm->m_End.x; PtSegm->m_Start.y = PtSegm->m_End.y; } beta = (alpha * ii); fcos = cos(beta); fsin = sin(beta); xr0 = (int)(x0 * fcos + y0 * fsin); yr0 = (int)(y0 * fcos - x0 * fsin); PtSegm->m_End.x = cX + yr0; PtSegm->m_End.y = cY + xr0 ; } return( PtSegm ); }