/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * * Copyright (C) 1992-2012 KiCad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ar_matrix.h" #include "ar_cell.h" #include "ar_autoplacer.h" #define AR_GAIN 16 #define AR_KEEPOUT_MARGIN 500 #define AR_ABORT_PLACEMENT -1 /* Penalty (cost) for CntRot90 and CntRot180: * CntRot90 and CntRot180 are from 0 (rotation allowed) to 10 (rotation not allowed) */ static const double OrientationPenalty[11] = { 2.0, // CntRot = 0 rotation prohibited 1.9, // CntRot = 1 1.8, // CntRot = 2 1.7, // CntRot = 3 1.6, // CntRot = 4 1.5, // CntRot = 5 1.4, // CntRot = 5 1.3, // CntRot = 7 1.2, // CntRot = 8 1.1, // CntRot = 9 1.0 // CntRot = 10 rotation authorized, no penalty }; AR_AUTOPLACER::AR_AUTOPLACER( BOARD* aBoard ) { m_board = aBoard; m_connectivity.reset( new CONNECTIVITY_DATA ); for( auto mod : m_board->Modules() ) m_connectivity->Add( mod ); m_gridSize = Millimeter2iu( 0.5 ); m_progressReporter = nullptr; m_refreshCallback = nullptr; } void AR_AUTOPLACER::placeModule( MODULE* aModule, bool aDoNotRecreateRatsnest, const wxPoint& aPos ) { if( !aModule ) return; aModule->SetPosition( aPos ); m_connectivity->Update( aModule ); } int AR_AUTOPLACER::genPlacementRoutingMatrix() { m_matrix.UnInitRoutingMatrix(); EDA_RECT bbox = m_board->GetBoardEdgesBoundingBox(); if( bbox.GetWidth() == 0 || bbox.GetHeight() == 0 ) { //DisplayError( NULL, _( "No PCB edge found, unknown board size!" ) ); // fixme: no wx here return 0; } m_matrix.ComputeMatrixSize( bbox ); int nbCells = m_matrix.m_Ncols * m_matrix.m_Nrows; // Choose the number of board sides. m_matrix.m_RoutingLayersCount = 2; m_matrix.InitRoutingMatrix(); m_matrix.m_routeLayerBottom = F_Cu; if( m_matrix.m_RoutingLayersCount > 1 ) m_matrix.m_routeLayerBottom = B_Cu; m_matrix.m_routeLayerTop = F_Cu; // Place the edge layer segments TRACK tmp( NULL ); tmp.SetLayer( UNDEFINED_LAYER ); tmp.SetNetCode( -1 ); tmp.SetWidth( m_matrix.m_GridRouting / 2 ); for( auto drawing : m_board->Drawings() ) { DRAWSEGMENT* DrawSegm; switch( drawing->Type() ) { case PCB_LINE_T: DrawSegm = (DRAWSEGMENT*) drawing; if( DrawSegm->GetLayer() != Edge_Cuts ) break; //printf("addSeg %p grid %d\n", DrawSegm, m_matrix.m_GridRouting ); m_matrix.TraceSegmentPcb( DrawSegm, CELL_IS_HOLE | CELL_IS_EDGE, m_matrix.m_GridRouting, AR_MATRIX::WRITE_CELL ); break; case PCB_TEXT_T: default: break; } } // Mark cells of the routing matrix to CELL_IS_ZONE // (i.e. availlable cell to place a module ) // Init a starting point of attachment to the area. m_matrix.OrCell( m_matrix.m_Nrows / 2, m_matrix.m_Ncols / 2, AR_SIDE_BOTTOM, CELL_IS_ZONE ); // find and mark all other availlable cells: for( int ii = 1; ii != 0; ) ii = propagate(); // Initialize top layer. to the same value as the bottom layer if( m_matrix.m_BoardSide[AR_SIDE_TOP] ) memcpy( m_matrix.m_BoardSide[AR_SIDE_TOP], m_matrix.m_BoardSide[AR_SIDE_BOTTOM], nbCells * sizeof(AR_MATRIX::MATRIX_CELL) ); return 1; } void AR_AUTOPLACER::rotateModule( MODULE* module, double angle, bool incremental ) { if( module == NULL ) return; if( incremental ) module->SetOrientation( module->GetOrientation() + angle ); else module->SetOrientation( angle ); m_board->GetConnectivity()->Update( module ); } /** * Function propagate * Used only in autoplace calculations * Uses the routing matrix to fill the cells within the zone * Search and mark cells within the zone, and agree with DRC options. * Requirements: * Start from an initial point, to fill zone * The zone must have no "copper island" * Algorithm: * If the current cell has a neighbor flagged as "cell in the zone", it * become a cell in the zone * The first point in the zone is the starting point * 4 searches within the matrix are made: * 1 - Left to right and top to bottom * 2 - Right to left and top to bottom * 3 - bottom to top and Right to left * 4 - bottom to top and Left to right * Given the current cell, for each search, we consider the 2 neighbor cells * the previous cell on the same line and the previous cell on the same column. * * This function can request some iterations * Iterations are made until no cell is added to the zone. * @return added cells count (i.e. which the attribute CELL_IS_ZONE is set) */ int AR_AUTOPLACER::propagate() { int row, col; long current_cell, old_cell_H; std::vector pt_cell_V; int nbpoints = 0; const uint32_t NO_CELL_ZONE = CELL_IS_HOLE | CELL_IS_EDGE | CELL_IS_ZONE; pt_cell_V.reserve( std::max( m_matrix.m_Nrows, m_matrix.m_Ncols ) ); fill( pt_cell_V.begin(), pt_cell_V.end(), 0 ); // Search from left to right and top to bottom. for( row = 0; row < m_matrix.m_Nrows; row++ ) { old_cell_H = 0; for( col = 0; col < m_matrix.m_Ncols; col++ ) { current_cell = m_matrix.GetCell( row, col, AR_SIDE_BOTTOM ) & NO_CELL_ZONE; if( current_cell == 0 ) // a free cell is found { if( (old_cell_H & CELL_IS_ZONE) || (pt_cell_V[col] & CELL_IS_ZONE) ) { m_matrix.OrCell( row, col, AR_SIDE_BOTTOM, CELL_IS_ZONE ); current_cell = CELL_IS_ZONE; nbpoints++; } } pt_cell_V[col] = old_cell_H = current_cell; } } // Search from right to left and top to bottom/ fill( pt_cell_V.begin(), pt_cell_V.end(), 0 ); for( row = 0; row < m_matrix.m_Nrows; row++ ) { old_cell_H = 0; for( col = m_matrix.m_Ncols - 1; col >= 0; col-- ) { current_cell = m_matrix.GetCell( row, col, AR_SIDE_BOTTOM ) & NO_CELL_ZONE; if( current_cell == 0 ) // a free cell is found { if( (old_cell_H & CELL_IS_ZONE) || (pt_cell_V[col] & CELL_IS_ZONE) ) { m_matrix.OrCell( row, col, AR_SIDE_BOTTOM, CELL_IS_ZONE ); current_cell = CELL_IS_ZONE; nbpoints++; } } pt_cell_V[col] = old_cell_H = current_cell; } } // Search from bottom to top and right to left. fill( pt_cell_V.begin(), pt_cell_V.end(), 0 ); for( col = m_matrix.m_Ncols - 1; col >= 0; col-- ) { old_cell_H = 0; for( row = m_matrix.m_Nrows - 1; row >= 0; row-- ) { current_cell = m_matrix.GetCell( row, col, AR_SIDE_BOTTOM ) & NO_CELL_ZONE; if( current_cell == 0 ) // a free cell is found { if( (old_cell_H & CELL_IS_ZONE) || (pt_cell_V[row] & CELL_IS_ZONE) ) { m_matrix.OrCell( row, col, AR_SIDE_BOTTOM, CELL_IS_ZONE ); current_cell = CELL_IS_ZONE; nbpoints++; } } pt_cell_V[row] = old_cell_H = current_cell; } } // Search from bottom to top and left to right. fill( pt_cell_V.begin(), pt_cell_V.end(), 0 ); for( col = 0; col < m_matrix.m_Ncols; col++ ) { old_cell_H = 0; for( row = m_matrix.m_Nrows - 1; row >= 0; row-- ) { current_cell = m_matrix.GetCell( row, col, AR_SIDE_BOTTOM ) & NO_CELL_ZONE; if( current_cell == 0 ) // a free cell is found { if( (old_cell_H & CELL_IS_ZONE) || (pt_cell_V[row] & CELL_IS_ZONE) ) { m_matrix.OrCell( row, col, AR_SIDE_BOTTOM, CELL_IS_ZONE ); current_cell = CELL_IS_ZONE; nbpoints++; } } pt_cell_V[row] = old_cell_H = current_cell; } } return nbpoints; } void AR_AUTOPLACER::genModuleOnRoutingMatrix( MODULE* Module ) { int ox, oy, fx, fy; LSET layerMask; EDA_RECT fpBBox = Module->GetBoundingBox(); fpBBox.Inflate( m_matrix.m_GridRouting / 2 ); ox = fpBBox.GetX(); fx = fpBBox.GetRight(); oy = fpBBox.GetY(); fy = fpBBox.GetBottom(); if( ox < m_matrix.m_BrdBox.GetX() ) ox = m_matrix.m_BrdBox.GetX(); if( ox > m_matrix.m_BrdBox.GetRight() ) ox = m_matrix.m_BrdBox.GetRight(); if( fx < m_matrix.m_BrdBox.GetX() ) fx = m_matrix.m_BrdBox.GetX(); if( fx > m_matrix.m_BrdBox.GetRight() ) fx = m_matrix.m_BrdBox.GetRight(); if( oy < m_matrix.m_BrdBox.GetY() ) oy = m_matrix.m_BrdBox.GetY(); if( oy > m_matrix.m_BrdBox.GetBottom() ) oy = m_matrix.m_BrdBox.GetBottom(); if( fy < m_matrix.m_BrdBox.GetY() ) fy = m_matrix.m_BrdBox.GetY(); if( fy > m_matrix.m_BrdBox.GetBottom() ) fy = m_matrix.m_BrdBox.GetBottom(); if( Module->GetLayer() == F_Cu ) layerMask.set( F_Cu ); if( Module->GetLayer() == B_Cu ) layerMask.set( B_Cu ); m_matrix.TraceFilledRectangle( ox, oy, fx, fy, layerMask, CELL_IS_MODULE, AR_MATRIX::WRITE_OR_CELL ); // Trace pads + clearance areas. for( auto pad : Module->Pads() ) { int margin = (m_matrix.m_GridRouting / 2) + pad->GetClearance(); m_matrix.PlacePad( pad, CELL_IS_MODULE, margin, AR_MATRIX::WRITE_OR_CELL ); } // Trace clearance. int margin = ( m_matrix.m_GridRouting * Module->GetPadCount() ) / AR_GAIN; m_matrix.CreateKeepOutRectangle( ox, oy, fx, fy, margin, AR_KEEPOUT_MARGIN , layerMask ); } /* Test if the rectangular area (ux, ux .. y0, y1): * - is a free zone (except OCCUPED_By_MODULE returns) * - is on the working surface of the board (otherwise returns OUT_OF_BOARD) * * Returns OUT_OF_BOARD, or OCCUPED_By_MODULE or FREE_CELL if OK */ int AR_AUTOPLACER::testRectangle( const EDA_RECT& aRect, int side ) { EDA_RECT rect = aRect; rect.Inflate( m_matrix.m_GridRouting / 2 ); wxPoint start = rect.GetOrigin(); wxPoint end = rect.GetEnd(); start -= m_matrix.m_BrdBox.GetOrigin(); end -= m_matrix.m_BrdBox.GetOrigin(); int row_min = start.y / m_matrix.m_GridRouting; int row_max = end.y / m_matrix.m_GridRouting; int col_min = start.x / m_matrix.m_GridRouting; int col_max = end.x / m_matrix.m_GridRouting; if( start.y > row_min * m_matrix.m_GridRouting ) row_min++; if( start.x > col_min * m_matrix.m_GridRouting ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= ( m_matrix.m_Nrows - 1 ) ) row_max = m_matrix.m_Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= ( m_matrix.m_Ncols - 1 ) ) col_max = m_matrix.m_Ncols - 1; for( int row = row_min; row <= row_max; row++ ) { for( int col = col_min; col <= col_max; col++ ) { unsigned int data = m_matrix.GetCell( row, col, side ); if( ( data & CELL_IS_ZONE ) == 0 ) return AR_OUT_OF_BOARD; if( (data & CELL_IS_MODULE) ) return AR_OCCUIPED_BY_MODULE; } } return AR_FREE_CELL; } /* Calculates and returns the clearance area of the rectangular surface * aRect): * (Sum of cells in terms of distance) */ unsigned int AR_AUTOPLACER::calculateKeepOutArea( const EDA_RECT& aRect, int side ) { wxPoint start = aRect.GetOrigin(); wxPoint end = aRect.GetEnd(); start -= m_matrix.m_BrdBox.GetOrigin(); end -= m_matrix.m_BrdBox.GetOrigin(); int row_min = start.y / m_matrix.m_GridRouting; int row_max = end.y / m_matrix.m_GridRouting; int col_min = start.x / m_matrix.m_GridRouting; int col_max = end.x / m_matrix.m_GridRouting; if( start.y > row_min * m_matrix.m_GridRouting ) row_min++; if( start.x > col_min * m_matrix.m_GridRouting ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= ( m_matrix.m_Nrows - 1 ) ) row_max = m_matrix.m_Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= ( m_matrix.m_Ncols - 1 ) ) col_max = m_matrix.m_Ncols - 1; unsigned int keepOutCost = 0; for( int row = row_min; row <= row_max; row++ ) { for( int col = col_min; col <= col_max; col++ ) { // m_matrix.GetDist returns the "cost" of the cell // at position (row, col) // in autoplace this is the cost of the cell, if it is // inside aRect keepOutCost += m_matrix.GetDist( row, col, side ); } } return keepOutCost; } /* Test if the module can be placed on the board. * Returns the value TstRectangle(). * Module is known by its bounding box */ int AR_AUTOPLACER::testModuleOnBoard( MODULE* aModule, bool TstOtherSide, const wxPoint& aOffset ) { int side = AR_SIDE_TOP; int otherside = AR_SIDE_BOTTOM; if( aModule->GetLayer() == B_Cu ) { side = AR_SIDE_BOTTOM; otherside = AR_SIDE_TOP; } EDA_RECT fpBBox = aModule->GetFootprintRect(); fpBBox.Move( -aOffset ); int diag = testRectangle( fpBBox, side ); if( diag != AR_FREE_CELL ) return diag; if( TstOtherSide ) { diag = testRectangle( fpBBox, otherside ); if( diag != AR_FREE_CELL ) return diag; } int marge = ( m_matrix.m_GridRouting * aModule->GetPadCount() ) / AR_GAIN; fpBBox.Inflate( marge ); return calculateKeepOutArea( fpBBox, side ); } int AR_AUTOPLACER::getOptimalModulePlacement(MODULE* aModule) { int error = 1; wxPoint LastPosOK; double min_cost, curr_cost, Score; bool TstOtherSide; aModule->CalculateBoundingBox(); LastPosOK = m_matrix.m_BrdBox.GetOrigin(); wxPoint mod_pos = aModule->GetPosition(); EDA_RECT fpBBox = aModule->GetFootprintRect(); // Move fpBBox to have the footprint position at (0,0) fpBBox.Move( -mod_pos ); wxPoint fpBBoxOrg = fpBBox.GetOrigin(); // Calculate the limit of the footprint position, relative // to the routing matrix area wxPoint xylimit = m_matrix.m_BrdBox.GetEnd() - fpBBox.GetEnd(); wxPoint initialPos = m_matrix.m_BrdBox.GetOrigin() - fpBBoxOrg; // Stay on grid. initialPos.x -= initialPos.x % m_matrix.m_GridRouting; initialPos.y -= initialPos.y % m_matrix.m_GridRouting; m_curPosition = initialPos; auto moduleOffset = mod_pos - m_curPosition; /* Examine pads, and set TstOtherSide to true if a footprint * has at least 1 pad through. */ TstOtherSide = false; if( m_matrix.m_RoutingLayersCount > 1 ) { LSET other( aModule->GetLayer() == B_Cu ? F_Cu : B_Cu ); for( auto pad : aModule->Pads() ) { if( !( pad->GetLayerSet() & other ).any() ) continue; TstOtherSide = true; break; } } fpBBox.SetOrigin( fpBBoxOrg + m_curPosition ); min_cost = -1.0; // m_frame->SetStatusText( wxT( "Score ??, pos ??" ) ); for( ; m_curPosition.x < xylimit.x; m_curPosition.x += m_matrix.m_GridRouting ) { if ( m_refreshCallback ) { if ( m_refreshCallback() == AR_ABORT_PLACEMENT ) return AR_ABORT_PLACEMENT; } m_curPosition.y = initialPos.y; for( ; m_curPosition.y < xylimit.y; m_curPosition.y += m_matrix.m_GridRouting ) { fpBBox.SetOrigin( fpBBoxOrg + m_curPosition ); moduleOffset = mod_pos - m_curPosition; int keepOutCost = testModuleOnBoard( aModule, TstOtherSide, moduleOffset ); if( keepOutCost >= 0 ) // i.e. if the module can be put here { error = 0; // m_frame->build_ratsnest_module( aModule ); // fixme curr_cost = computePlacementRatsnestCost( aModule, moduleOffset ); Score = curr_cost + keepOutCost; if( (min_cost >= Score ) || (min_cost < 0 ) ) { LastPosOK = m_curPosition; min_cost = Score; wxString msg; /* msg.Printf( wxT( "Score %g, pos %s, %s" ), min_cost, GetChars( ::CoordinateToString( LastPosOK.x ) ), GetChars( ::CoordinateToString( LastPosOK.y ) ) ); m_frame->SetStatusText( msg );*/ } } } } // Regeneration of the modified variable. m_curPosition = LastPosOK; m_minCost = min_cost; return error; } const D_PAD* AR_AUTOPLACER::nearestPad( MODULE *aRefModule, D_PAD* aRefPad, const wxPoint& aOffset) { const D_PAD* nearest = nullptr; int64_t nearestDist = INT64_MAX; for ( auto mod : m_board->Modules() ) { if ( mod == aRefModule ) continue; if( !m_matrix.m_BrdBox.Contains( mod->GetPosition() ) ) continue; for ( auto pad: mod->Pads() ) { if ( pad->GetNetCode() != aRefPad->GetNetCode() || pad->GetNetCode() <= 0 ) continue; auto dist = (VECTOR2I( aRefPad->GetPosition() - aOffset ) - VECTOR2I( pad->GetPosition() ) ).EuclideanNorm(); //printf("Dist %lld pad %p\n", dist, pad ); if ( dist < nearestDist ) { nearestDist = dist; nearest = pad; } } } return nearest; } double AR_AUTOPLACER::computePlacementRatsnestCost( MODULE *aModule, const wxPoint& aOffset ) { double curr_cost; VECTOR2I start; // start point of a ratsnest VECTOR2I end; // end point of a ratsnest int dx, dy; curr_cost = 0; for ( auto pad : aModule->Pads() ) { auto nearest = nearestPad( aModule, pad, aOffset ); if( !nearest ) continue; //printf("pad %s nearest %s\n", (const char *)aModule->GetReference().c_str(), (const char *)nearest->GetParent()->GetReference().c_str()); start = VECTOR2I( pad->GetPosition() ) - VECTOR2I(aOffset); end = VECTOR2I( nearest->GetPosition() ); //m_overlay->SetIsStroke( true ); //m_overlay->SetStrokeColor( COLOR4D(0.0, 1.0, 0.0, 1.0) ); //m_overlay->Line( start, end ); // Cost of the ratsnest. dx = end.x - start.x; dy = end.y - start.y; dx = abs( dx ); dy = abs( dy ); // ttry to have always dx >= dy to calculate the cost of the rastsnet if( dx < dy ) std::swap( dx, dy ); // Cost of the connection = length + penalty due to the slope // dx is the biggest length relative to the X or Y axis // the penalty is max for 45 degrees ratsnests, // and 0 for horizontal or vertical ratsnests. // For Horizontal and Vertical ratsnests, dy = 0; double conn_cost = hypot( dx, dy * 2.0 ); curr_cost += conn_cost; // Total cost = sum of costs of each connection } return curr_cost; } // Sort routines static bool sortFootprintsByComplexity( MODULE* ref, MODULE* compare ) { double ff1, ff2; ff1 = ref->GetArea() * ref->GetPadCount(); ff2 = compare->GetArea() * compare->GetPadCount(); return ff2 < ff1; } static bool sortFootprintsByRatsnestSize( MODULE* ref, MODULE* compare ) { double ff1, ff2; ff1 = ref->GetArea() * ref->GetFlag(); ff2 = compare->GetArea() * compare->GetFlag(); return ff2 < ff1; } /** * Function Module * find the "best" module place * The criteria are: * - Maximum ratsnest with modules already placed * - Max size, and number of pads max */ MODULE* AR_AUTOPLACER::pickModule( ) { MODULE* module; std::vector moduleList; for( auto m : m_board->Modules() ) { m->CalculateBoundingBox(); moduleList.push_back( m ); } sort( moduleList.begin(), moduleList.end(), sortFootprintsByComplexity ); for( unsigned kk = 0; kk < moduleList.size(); kk++ ) { module = moduleList[kk]; module->SetFlag( 0 ); if( !module->NeedsPlaced() ) continue; m_connectivity->Update( module ); } m_connectivity->RecalculateRatsnest(); for( unsigned kk = 0; kk < moduleList.size(); kk++ ) { module = moduleList[kk]; auto edges = m_connectivity->GetRatsnestForComponent( module, true ); module->SetFlag( edges.size() ) ; } sort( moduleList.begin(), moduleList.end(), sortFootprintsByRatsnestSize ); // Search for "best" module. MODULE* bestModule = nullptr; MODULE* altModule = nullptr; for( unsigned ii = 0; ii < moduleList.size(); ii++ ) { module = moduleList[ii]; if( !module->NeedsPlaced() ) continue; altModule = module; if( module->GetFlag() == 0 ) continue; bestModule = module; break; } if( bestModule ) return bestModule; else return altModule; } void AR_AUTOPLACER::drawPlacementRoutingMatrix( ) { int ii, jj; COLOR4D color; int ox, oy; AR_MATRIX::MATRIX_CELL top_state, bottom_state; for( ii = 0; ii < m_matrix.m_Nrows; ii++ ) { oy = m_matrix.m_BrdBox.GetY() + ( ii * m_matrix.m_GridRouting ); for( jj = 0; jj < m_matrix.m_Ncols; jj++ ) { ox = m_matrix.m_BrdBox.GetX() + (jj * m_matrix.m_GridRouting); color = COLOR4D::BLACK; top_state = m_matrix.GetCell( ii, jj, AR_SIDE_TOP ); bottom_state = m_matrix.GetCell( ii, jj, AR_SIDE_BOTTOM ); if(top_state || bottom_state) { // printf("[%d, %d] [%d, %d] TS %x BS %x\n",ii,jj, ox, oy, top_state, bottom_state ); } if( top_state & CELL_IS_ZONE ) color = COLOR4D( BLUE ); // obstacles if( ( top_state & CELL_IS_EDGE ) || ( bottom_state & CELL_IS_EDGE ) ) color = COLOR4D::WHITE; else if( top_state & ( CELL_IS_HOLE | CELL_IS_MODULE ) ) color = COLOR4D( LIGHTRED ); else if( bottom_state & ( CELL_IS_HOLE | CELL_IS_MODULE) ) color = COLOR4D( LIGHTGREEN ); else // Display the filling and keep out regions. { if( m_matrix.GetDist( ii, jj, AR_SIDE_TOP ) || m_matrix.GetDist( ii, jj, AR_SIDE_BOTTOM ) ) color = DARKGRAY; } m_overlay->SetIsFill(true); m_overlay->SetFillColor( color ); VECTOR2D p(ox, oy); m_overlay->Circle(p, m_matrix.m_GridRouting/4 ); } } } AR_RESULT AR_AUTOPLACER::AutoplaceModules( std::vector aModules, BOARD_COMMIT* aCommit, bool aPlaceOffboardModules ) { wxPoint PosOK; wxPoint memopos; int error; MODULE* module = nullptr; bool cancelled = false; memopos = m_curPosition; //printf("set grid: %d\n", m_gridSize); m_matrix.m_GridRouting = m_gridSize; //(int) m_frame->GetScreen()->GetGridSize().x; // Ensure Board.m_GridRouting has a reasonable value: if( m_matrix.m_GridRouting < Millimeter2iu( 0.25 ) ) m_matrix.m_GridRouting = Millimeter2iu( 0.25 ); // Compute module parameters used in auto place if( genPlacementRoutingMatrix( ) == 0 ) return AR_FAILURE; int moduleCount = 0; for ( auto m : m_board->Modules() ) { m->SetNeedsPlaced( false ); } std::vector offboardMods; if( aPlaceOffboardModules ) { for ( auto m : m_board->Modules() ) { if( !m_matrix.m_BrdBox.Contains( m->GetPosition() ) ) { offboardMods.push_back( m ); } } } for ( auto m : aModules ) { m->SetNeedsPlaced( true ); aCommit->Modify(m); } for ( auto m : offboardMods ) { m->SetNeedsPlaced( true ); aCommit->Modify(m); } for ( auto m : m_board->Modules() ) { if( m->NeedsPlaced() ) // Erase from screen { moduleCount++; } else { genModuleOnRoutingMatrix( m ); } } drawPlacementRoutingMatrix(); int cnt = 0; wxString msg; if( m_progressReporter ) { m_progressReporter->Report( _( "Autoplacing components..." ) ); m_progressReporter->SetMaxProgress( moduleCount ); } while( ( module = pickModule( ) ) != nullptr ) { // Display some info about activity, module placement can take a while: //printf( _( "Place footprint %d of %d [%s]\n" ), cnt, moduleCount, (const char *)module->GetReference().c_str() ); //m_frame->SetStatusText( msg ); double initialOrient = module->GetOrientation(); // Display fill area of interest, barriers, penalties. //drawPlacementRoutingMatrix( ); error = getOptimalModulePlacement( module ); double bestScore = m_minCost; double bestRotation = 0.0; int rotAllowed; PosOK = m_curPosition; if( error == AR_ABORT_PLACEMENT ) goto end_of_tst; // Try orientations 90, 180, 270 degrees from initial orientation rotAllowed = module->GetPlacementCost180(); //printf("rotAllowed %d\n", rotAllowed); if( rotAllowed != 0 ) { rotateModule( module, 1800.0, true ); error = getOptimalModulePlacement( module ); m_minCost *= OrientationPenalty[rotAllowed]; if( bestScore > m_minCost ) // This orientation is better. { PosOK = m_curPosition; bestScore = m_minCost; bestRotation = 1800.0; } else { rotateModule( module, initialOrient, false ); } if( error == AR_ABORT_PLACEMENT ) goto end_of_tst; } // Determine if the best orientation of a module is 90. rotAllowed = module->GetPlacementCost90(); if( rotAllowed != 0 ) { rotateModule( module, 900.0, true ); error = getOptimalModulePlacement( module ); m_minCost *= OrientationPenalty[rotAllowed]; if( bestScore > m_minCost ) // This orientation is better. { PosOK = m_curPosition; bestScore = m_minCost; bestRotation = 900.0; } else { rotateModule( module, initialOrient, false ); } if( error == AR_ABORT_PLACEMENT ) goto end_of_tst; } // Determine if the best orientation of a module is -90. if( rotAllowed != 0 ) { rotateModule( module, 2700.0, true ); error = getOptimalModulePlacement( module ); m_minCost *= OrientationPenalty[rotAllowed]; if( bestScore > m_minCost ) // This orientation is better. { PosOK = m_curPosition; bestScore = m_minCost; bestRotation = 2700.0; } else { rotateModule( module, initialOrient, false ); } if( error == AR_ABORT_PLACEMENT ) goto end_of_tst; } end_of_tst: if( error == AR_ABORT_PLACEMENT ) break; bestRotation += initialOrient; if( bestRotation != module->GetOrientation() ) { //printf("best rotation %d\n", bestRotation ); rotateModule( module, bestRotation, false ); } // Place module. placeModule( module, true, m_curPosition ); module->CalculateBoundingBox(); genModuleOnRoutingMatrix( module ); module->SetIsPlaced( true ); module->SetNeedsPlaced( false ); if( m_progressReporter ) { m_progressReporter->AdvanceProgress(); if ( !m_progressReporter->KeepRefreshing( false ) ) { cancelled = true; break; } } cnt++; } m_curPosition = memopos; m_matrix.UnInitRoutingMatrix(); for ( auto m : m_board->Modules() ) { m->CalculateBoundingBox(); } return cancelled ? AR_CANCELLED : AR_COMPLETED; }