/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2015 CERN * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "pns_line.h" #include "pns_segment.h" #include "pns_node.h" #include "pns_joint.h" #include "pns_solid.h" #include "pns_router.h" #include "pns_utils.h" #include "pns_diff_pair.h" #include "pns_topology.h" #include bool PNS_TOPOLOGY::SimplifyLine( PNS_LINE* aLine ) { if( !aLine->LinkedSegments() || !aLine->SegmentCount() ) return false; PNS_SEGMENT* root = ( *aLine->LinkedSegments() )[0]; std::auto_ptr l( m_world->AssembleLine( root ) ); SHAPE_LINE_CHAIN simplified( l->CLine() ); simplified.Simplify(); if( simplified.PointCount() != l->PointCount() ) { std::auto_ptr lnew( l->Clone() ); m_world->Remove( l.get() ); lnew->SetShape( simplified ); m_world->Add( lnew.get() ); return true; } return false; } const PNS_TOPOLOGY::JOINT_SET PNS_TOPOLOGY::ConnectedJoints( PNS_JOINT* aStart ) { std::deque searchQueue; JOINT_SET processed; searchQueue.push_back( aStart ); processed.insert( aStart ); while( !searchQueue.empty() ) { PNS_JOINT* current = searchQueue.front(); searchQueue.pop_front(); BOOST_FOREACH( PNS_ITEM* item, current->LinkList() ) { if( item->OfKind( PNS_ITEM::SEGMENT ) ) { PNS_SEGMENT* seg = static_cast( item ); PNS_JOINT* a = m_world->FindJoint( seg->Seg().A, seg ); PNS_JOINT* b = m_world->FindJoint( seg->Seg().B, seg ); PNS_JOINT* next = ( *a == *current ) ? b : a; if( processed.find( next ) == processed.end() ) { processed.insert( next ); searchQueue.push_back( next ); } } } } return processed; } bool PNS_TOPOLOGY::LeadingRatLine( const PNS_LINE* aTrack, SHAPE_LINE_CHAIN& aRatLine ) { PNS_LINE track( *aTrack ); VECTOR2I end; if( !track.PointCount() ) return false; std::auto_ptr tmpNode( m_world->Branch() ); tmpNode->Add( &track ); PNS_JOINT* jt = tmpNode->FindJoint( track.CPoint( -1 ), &track ); if( !jt ) return false; if( ( !track.EndsWithVia() && jt->LinkCount() >= 2 ) || ( track.EndsWithVia() && jt->LinkCount() >= 3 ) ) // we got something connected { end = jt->Pos(); } else { int anchor; PNS_TOPOLOGY topo( tmpNode.get() ); PNS_ITEM* it = topo.NearestUnconnectedItem( jt, &anchor ); if( !it ) return false; end = it->Anchor( anchor ); } aRatLine.Clear(); aRatLine.Append( track.CPoint( -1 ) ); aRatLine.Append( end ); return true; } PNS_ITEM* PNS_TOPOLOGY::NearestUnconnectedItem( PNS_JOINT* aStart, int* aAnchor, int aKindMask ) { std::set disconnected; m_world->AllItemsInNet( aStart->Net(), disconnected ); BOOST_FOREACH( const PNS_JOINT* jt, ConnectedJoints( aStart ) ) { BOOST_FOREACH( PNS_ITEM* link, jt->LinkList() ) { if( disconnected.find( link ) != disconnected.end() ) disconnected.erase( link ); } } int best_dist = INT_MAX; PNS_ITEM* best = NULL; BOOST_FOREACH( PNS_ITEM* item, disconnected ) { if( item->OfKind( aKindMask ) ) { for(int i = 0; i < item->AnchorCount(); i++) { VECTOR2I p = item->Anchor( i ); int d = ( p - aStart->Pos() ).EuclideanNorm(); if( d < best_dist ) { best_dist = d; best = item; if( aAnchor ) *aAnchor = i; } } } } return best; } bool PNS_TOPOLOGY::followTrivialPath( PNS_LINE* aLine, bool aLeft, PNS_ITEMSET& aSet, std::set& aVisited ) { VECTOR2I anchor = aLeft ? aLine->CPoint( 0 ) : aLine->CPoint( -1 ); PNS_SEGMENT* last = aLeft ? aLine->LinkedSegments()->front() : aLine->LinkedSegments()->back(); PNS_JOINT* jt = m_world->FindJoint( anchor, aLine ); assert( jt != NULL ); aVisited.insert( last ); if( jt->IsNonFanoutVia() ) { PNS_ITEM* via = NULL; PNS_SEGMENT* next_seg = NULL; BOOST_FOREACH( PNS_ITEM* link, jt->Links().Items() ) { if( link->OfKind( PNS_ITEM::VIA ) ) via = link; else if( aVisited.find( link ) == aVisited.end() ) next_seg = static_cast( link ); } if( !next_seg ) return false; PNS_LINE* l = m_world->AssembleLine( next_seg ); VECTOR2I nextAnchor = ( aLeft ? l->CLine().CPoint( -1 ) : l->CLine().CPoint( 0 ) ); if( nextAnchor != anchor ) { l->Reverse(); } if( aLeft ) { aSet.Prepend( via ); aSet.Prepend( l ); } else { aSet.Add( via ); aSet.Add( l ); } return followTrivialPath( l, aLeft, aSet, aVisited ); } return false; } const PNS_ITEMSET PNS_TOPOLOGY::AssembleTrivialPath( PNS_SEGMENT* aStart ) { PNS_ITEMSET path; std::set visited; PNS_LINE* l = m_world->AssembleLine( aStart ); path.Add( l ); followTrivialPath( l, false, path, visited ); followTrivialPath( l, true, path, visited ); return path; } const PNS_ITEMSET PNS_TOPOLOGY::ConnectedItems( PNS_JOINT* aStart, int aKindMask ) { return PNS_ITEMSET(); } const PNS_ITEMSET PNS_TOPOLOGY::ConnectedItems( PNS_ITEM* aStart, int aKindMask ) { return PNS_ITEMSET(); } int PNS_TOPOLOGY::MatchDpSuffix( wxString aNetName, wxString& aComplementNet, wxString& aBaseDpName ) { int rv = 0; if( aNetName.EndsWith( "+" ) ) { aComplementNet = "-"; rv = 1; } else if( aNetName.EndsWith( "_P" ) ) { aComplementNet = "_N"; rv = 1; } else if( aNetName.EndsWith( "-" ) ) { aComplementNet = "+"; rv = -1; } else if( aNetName.EndsWith( "_N" ) ) { aComplementNet = "_P"; rv = -1; } if( rv != 0 ) { aBaseDpName = aNetName.Left( aNetName.Length() - aComplementNet.Length() ); aComplementNet = aBaseDpName + aComplementNet; } return rv; } int PNS_TOPOLOGY::DpCoupledNet( int aNet ) { BOARD* brd = PNS_ROUTER::GetInstance()->GetBoard(); wxString refName = brd->FindNet( aNet )->GetNetname(); wxString dummy, coupledNetName; if( MatchDpSuffix( refName, coupledNetName, dummy ) ) { NETINFO_ITEM* net = brd->FindNet( coupledNetName ); if( !net ) return -1; return net->GetNet(); } return -1; } int PNS_TOPOLOGY::DpNetPolarity( int aNet ) { BOARD* brd = PNS_ROUTER::GetInstance()->GetBoard(); wxString refName = brd->FindNet( aNet )->GetNetname(); wxString dummy1, dummy2; return MatchDpSuffix( refName, dummy1, dummy2 ); } bool commonParallelProjection( SEG n, SEG p, SEG &pClip, SEG& nClip ); bool PNS_TOPOLOGY::AssembleDiffPair( PNS_ITEM* aStart, PNS_DIFF_PAIR& aPair ) { int refNet = aStart->Net(); int coupledNet = DpCoupledNet( refNet ); if( coupledNet < 0 ) return false; std::set coupledItems; m_world->AllItemsInNet( coupledNet, coupledItems ); PNS_SEGMENT* coupledSeg = NULL, *refSeg; int minDist = std::numeric_limits::max(); if( ( refSeg = dyn_cast( aStart ) ) != NULL ) { BOOST_FOREACH( PNS_ITEM* item, coupledItems ) { if( PNS_SEGMENT* s = dyn_cast( item ) ) { if( s->Layers().Start() == refSeg->Layers().Start() && s->Width() == refSeg->Width() ) { int dist = s->Seg().Distance( refSeg->Seg() ); bool isParallel = refSeg->Seg().ApproxParallel( s->Seg() ); SEG p_clip, n_clip; bool isCoupled = commonParallelProjection( refSeg->Seg(), s->Seg(), p_clip, n_clip ); if( isParallel && isCoupled && dist < minDist ) { minDist = dist; coupledSeg = s; } } } } } else return false; if( !coupledSeg ) return false; std::auto_ptr lp( m_world->AssembleLine( refSeg ) ); std::auto_ptr ln( m_world->AssembleLine( coupledSeg ) ); if( DpNetPolarity( refNet ) < 0 ) { std::swap( lp, ln ); } int gap = -1 ; if( refSeg->Seg().ApproxParallel( coupledSeg->Seg() ) ) { // Segments are parallel -> compute pair gap const VECTOR2I refDir = refSeg->Anchor( 1 ) - refSeg->Anchor( 0 ); const VECTOR2I displacement = refSeg->Anchor( 1 ) - coupledSeg->Anchor( 1 ); gap = (int) abs( refDir.Cross( displacement ) / refDir.EuclideanNorm() ) - lp->Width(); } aPair = PNS_DIFF_PAIR( *lp, *ln ); aPair.SetWidth( lp->Width() ); aPair.SetLayers( lp->Layers() ); aPair.SetGap( gap ); return true; }