/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2022 Mikolaj Wielgus * Copyright (C) 2023 KiCad Developers, see AUTHORS.TXT for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include void NGSPICE_MODEL_INFO_MAP::addMOS() { modelInfos[MODEL_TYPE::VDMOS] = { "VDMOS", "NCHAN", "PCHAN", { "D", "G", "S", "", "" }, "DMOS model based on Level 1 MOSFET model", {}, {} }; // Model parameters modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "type", 116, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::DC, "vdmosn", "vdmosp", "N-channel or P-channel MOS" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vto", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "3", "-3", "Threshold voltage" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vth0", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "kp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/V^2", SIM_MODEL::PARAM::CATEGORY::DC, "35", "15", "Transconductance parameter" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "phi", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.6", "0.6", "Surface potential" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "lambda", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Channel length modulation" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "theta", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Vgs dependence on mobility" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "rd_", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain ohmic resistance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "rs_", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source ohmic resistance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "rg", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate ohmic resistance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "tnom", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "Parameter measurement temperature" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "kf", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "Flicker noise coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "af", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker noise exponent" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vdmosn", 111, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "N type DMOSfet model" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vdmosp", 112, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "P type DMOSfet model" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vdmos", 117, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "DMOS transistor" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "rq", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Quasi saturation resistance fitting parameter" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vq", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Quasi saturation voltage fitting parameter" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "mtriode", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Conductance multiplier in triode region" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "tcvth", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Linear Vth0 temperature coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vtotc", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "mu", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "-1.5", "-1.5", "Exponent of gain temperature dependency" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "bex", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "-1.5", "-1.5", "n.a." ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "texp0", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1.5", "1.5", "Drain resistance rd0 temperature exponent" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "texp1", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0.3", "0.3", "Drain resistance rd1 temperature exponent" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "trd1", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Drain resistance linear temperature coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "trd2", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Drain resistance quadratic temperature coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "trg1", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Gate resistance linear temperature coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "trg2", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Gate resistance quadratic temperature coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "trs1", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Source resistance linear temperature coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "trs2", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Source resistance quadratic temperature coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "trb1", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Body resistance linear temperature coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "trb2", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Body resistance quadratic temperature coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "subshift", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Shift of weak inversion plot on the vgs axis" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "ksubthres", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Slope of weak inversion log current versus vgs" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "tksubthres1", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Linear temperature coefficient of ksubthres" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "tksubthres2", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Quadratic temperature coefficient of ksubthres" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "bv", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1e+99", "1e+99", "Vds breakdown voltage" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "ibv", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-10", "1e-10", "Current at Vds=bv" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "nbv", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Vds breakdown emission coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "rds", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "1e+15", "1e+15", "Drain-source shunt resistance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "rb", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Body diode ohmic resistance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "n", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Body diode emission coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "tt", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Body diode transit time" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "eg", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1.11", "1.11", "Body diode activation energy for temperature effect on Is" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "xti", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Body diode saturation current temperature exponent" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "is_", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-14", "1e-14", "Body diode saturation current" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vj", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.8", "0.8", "Body diode junction potential" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "cjo", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "5e-10", "5e-10", "Zero-bias body diode junction capacitance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "m_", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Body diode grading coefficient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "fc", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Body diode coefficient for forward-bias depletion capacitance formula" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "cgdmin", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "2e-11", "2e-11", "Minimum non-linear G-D capacitance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "cgdmax", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "2e-9", "2e-9", "Maximum non-linear G-D capacitance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "a", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Non-linear Cgd capacitance parameter" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "cgs_", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1.4e-9", "1.4e-9", "Gate-source capacitance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "rthjc", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1", "1", "Self-heating thermal resistance, junction-to-case" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "rthca", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1000", "1000", "Self-heating thermal resistance, case-to-ambient" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "cthj", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1e-05", "1e-05", "Self-heating thermal capacitance" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vgs_max", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage G-S branch" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vgd_max", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage G-D branch" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vds_max", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage D-S branch" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vgsr_max", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage G-S branch" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "vgdr_max", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage G-D branch" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "pd_max", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum device power dissipation" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "id_max", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "0", "0", "maximum drain/source current" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "idr_max", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum drain/source reverse current" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "te_max", 164, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg C", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum temperature" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "rth_ext", 165, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1000", "1000", "thermal resistance case to ambient, incl. heat sink" ); modelInfos[MODEL_TYPE::VDMOS].modelParams.emplace_back( "derating", 166, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "thermal derating for power" ); // Instance parameters modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "m", 9, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "0.5", "0.5", "Multiplier", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "off", 1, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::FLAGS, "", "", "Device initially off", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "icvds", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial D-S voltage", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "icvgs", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial G-S voltage", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "temp", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance temperature", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "dtemp", 10, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance temperature difference", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "ic", 2, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Vector of D-S, G-S voltages", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "thermal", 11, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::FLAGS, "", "", "Thermal model switch on/off", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "id", 214, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain current", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "is", 6, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-14", "1e-14", "Source current", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "ig", 5, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate current", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "vgs", 217, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source voltage", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "vds", 218, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source voltage", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "cgs", 201, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Gate-Source capacitance", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "cgd", 202, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain capacitance", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "cds", 203, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source capacitance", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "idio", 223, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Body diode current", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "dnode", 204, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of the drain node", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "gnode", 205, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of the gate node", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "snode", 206, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of the source node", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "tempnode", 207, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of temperature node", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "tcasenode", 208, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of 2nd temperature node", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "dnodeprime", 209, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of int. drain node", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "snodeprime", 210, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of int. source node", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "von", 213, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device on state voltage", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "rs", 224, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Source resistance", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "sourceconductance", 211, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance of source", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "rd", 225, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Drain conductance", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "drainconductance", 212, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance of drain", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "gm", 215, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "gds", 216, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source conductance", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "cqgs", 220, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-source charge storage", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "cqgd", 222, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-drain charge storage", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "qgs", 219, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source charge storage", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "qgd", 221, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain charge storage", true ); modelInfos[MODEL_TYPE::VDMOS].instanceParams.emplace_back( "p", 7, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instantaneous power", true ); modelInfos[MODEL_TYPE::MOS1] = { "Mos1", "NMOS", "PMOS", { "D", "G", "S", "B" }, "Level 1 MOSfet model with Meyer capacitance model", {}, {} }; // Model parameters modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "type", 133, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "nmos", "pmos", "N-channel or P-channel MOS" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "vto", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Threshold voltage" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "vt0", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "kp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/V²", SIM_MODEL::PARAM::CATEGORY::DC, "2e-05", "2e-05", "Transconductance parameter" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "gamma", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "sqrt V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bulk threshold parameter" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "phi", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.6", "0.6", "Surface potential" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "lambda", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Channel length modulation" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "rd_", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain ohmic resistance" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "rs_", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source ohmic resistance" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "cbd_", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "B-D junction capacitance" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "cbs_", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "B-S junction capacitance" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "is_", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-14", "1e-14", "Bulk junction sat. current" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "pb", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.8", "0.8", "Bulk junction potential" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "cgso", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate-source overlap cap." ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "cgdo", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate-drain overlap cap." ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "cgbo", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate-bulk overlap cap." ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "rsh", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω/m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Sheet resistance" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "cj", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bottom junction cap per area" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "mj", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Bottom grading coefficient" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "cjsw", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Side junction cap per area" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "mjsw", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Side grading coefficient" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "js", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/m²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bulk jct. sat. current density" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "tox", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Oxide thickness" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "ld", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Lateral diffusion" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "u0", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "cm²/V s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Surface mobility" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "uo", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "fc", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Forward bias jct. fit parm." ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "nmos", 128, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "N type MOSfet model" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "pmos", 129, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "P type MOSfet model" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "nsub", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/cm³", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate doping" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "tpg", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate type" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "nss", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/cm²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Surface state density" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "tnom", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "Parameter measurement temperature" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "kf", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "NaN", "NaN", "Flicker noise coefficient" ); modelInfos[MODEL_TYPE::MOS1].modelParams.emplace_back( "af", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "NaN", "NaN", "Flicker noise exponent" ); // Instance parameters modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "m", 21, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Multiplier", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "l", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Length", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "w", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Width", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "ad", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m²", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Drain area", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "as", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m²", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Source area", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "pd", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Drain perimeter", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "ps", 5, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Source perimeter", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "nrd", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Drain squares", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "nrs", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Source squares", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "off", 9, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "icvds", 12, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial D-S voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "icvgs", 13, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial G-S voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "icvbs", 11, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial B-S voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "temp", 20, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance temperature", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "dtemp", 22, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance temperature difference", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "ic", 10, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Vector of D-S, G-S, B-S voltages", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_l", 15, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "flag to request sensitivity WRT length", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_w", 14, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "flag to request sensitivity WRT width", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "id", 215, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain current", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "is", 18, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-14", "1e-14", "Source current", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "ig", 17, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate current", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "ib", 16, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk current", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "ibd", 217, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-D junction current", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "ibs", 216, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-S junction current", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "vgs", 231, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "vds", 232, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "vbs", 230, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "vbd", 229, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Drain voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "dnode", 203, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of the drain node", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "gnode", 204, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of the gate node", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "snode", 205, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of the source node", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "bnode", 206, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of the node", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "dnodeprime", 207, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of int. drain node", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "snodeprime", 208, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of int. source node", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "vdsat", 212, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Saturation drain voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sourcevcrit", 213, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Critical source voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "drainvcrit", 214, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Critical drain voltage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "rs", 258, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Source resistance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sourceconductance", 209, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance of source", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "rd", 259, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Drain conductance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "drainconductance", 210, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance of drain", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "gm", 219, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "gds", 220, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source conductance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "gmb", 218, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source transconductance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "gbd", 221, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Drain conductance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "gbs", 222, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source conductance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cbd", 223, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Bulk-Drain capacitance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cbs", 224, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Bulk-Source capacitance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cgs", 233, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source capacitance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cgd", 236, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain capacitance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cgb", 239, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Bulk capacitance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cqgs", 235, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-source charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cqgd", 238, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-drain charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cqgb", 241, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-bulk charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cqbd", 243, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to bulk-drain charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cqbs", 245, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to bulk-source charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cbd0", 225, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Zero-Bias B-D junction capacitance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "cbs0", 227, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Zero-Bias B-S junction capacitance", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "qgs", 234, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "qgd", 237, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "qgb", 240, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Bulk charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "qbd", 242, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Drain charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "qbs", 244, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source charge storage", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "p", 19, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instaneous power", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_l_dc", 256, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_l_real", 246, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "real part of ac sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_l_imag", 247, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "imag part of ac sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_l_mag", 248, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt l of ac magnitude", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_l_ph", 249, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt l of ac phase", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_l_cplx", 250, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_COMPLEX, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "ac sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_w_dc", 257, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_w_real", 251, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "real part of ac sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_w_imag", 252, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "imag part of ac sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_w_mag", 253, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt w of ac magnitude", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_w_ph", 254, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt w of ac phase", true ); modelInfos[MODEL_TYPE::MOS1].instanceParams.emplace_back( "sens_w_cplx", 255, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_COMPLEX, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "ac sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS2] = { "Mos2", "NMOS", "PMOS", { "D", "G", "S", "B" }, "Level 2 MOSfet model with Meyer capacitance model", {}, {} }; // Model parameters modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "type", 141, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "nmos", "pmos", "N-channel or P-channel MOS" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "vto", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Threshold voltage" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "vt0", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "kp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/V²", SIM_MODEL::PARAM::CATEGORY::DC, "2.07189e-05", "2.07189e-05", "Transconductance parameter" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "gamma", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "sqrt V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bulk threshold parameter" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "phi", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.6", "0.6", "Surface potential" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "lambda", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Channel length modulation" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "rd_", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain ohmic resistance" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "rs_", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source ohmic resistance" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "cbd_", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "B-D junction capacitance" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "cbs_", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "B-S junction capacitance" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "is_", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-14", "1e-14", "Bulk junction sat. current" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "pb", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.8", "0.8", "Bulk junction potential" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "cgso", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Gate-source overlap cap." ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "cgdo", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Gate-drain overlap cap." ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "cgbo", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Gate-bulk overlap cap." ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "rsh", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω/m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Sheet resistance" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "cj", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bottom junction cap per area" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "mj", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Bottom grading coefficient" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "cjsw", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Side junction cap per area" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "mjsw", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "Side grading coefficient" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "js", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/m²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bulk jct. sat. current density" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "tox", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "1e-07", "1e-07", "Oxide thickness" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "ld", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Lateral diffusion" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "u0", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "cm²/V s", SIM_MODEL::PARAM::CATEGORY::DC, "600", "600", "Surface mobility" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "uo", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "600", "600", "n.a." ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "fc", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Forward bias jct. fit parm." ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "nmos", 135, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "N type MOSfet model" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "pmos", 136, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "P type MOSfet model" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "nsub", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/cm³", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate doping" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "tpg", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate type" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "nss", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/cm²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Surface state density" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "delta", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Width effect on threshold" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "uexp", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Crit. field exp for mob. deg." ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "ucrit", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V/cm", SIM_MODEL::PARAM::CATEGORY::DC, "10000", "10000", "Crit. field for mob. degradation" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "vmax", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m/s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Maximum carrier drift velocity" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "xj", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Junction depth" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "neff", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Total channel charge coeff." ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "nfs", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/cm²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Fast surface state density" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "tnom", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "Parameter measurement temperature" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "kf", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker noise coefficient" ); modelInfos[MODEL_TYPE::MOS2].modelParams.emplace_back( "af", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "Flicker noise exponent" ); // Instance parameters modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "m", 80, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Multiplier", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "l", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Length", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "w", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Width", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "ad", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m²", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Drain area", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "as", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m²", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Source area", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "pd", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Drain perimeter", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "ps", 5, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Source perimeter", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "id", 34, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain current", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "ibd", 36, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-D junction current", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "ibs", 35, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-S junction current", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "is", 18, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-14", "1e-14", "Source current", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "ig", 17, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate current", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "ib", 16, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk current", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "vgs", 50, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "vds", 51, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "vbs", 49, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "vbd", 48, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Drain voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "nrd", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Drain squares", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "nrs", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Source squares", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "off", 9, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "icvds", 12, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial D-S voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "icvgs", 13, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial G-S voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "icvbs", 11, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial B-S voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "temp", 77, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance operating temperature", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "dtemp", 81, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance temperature difference", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "ic", 10, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Vector of D-S, G-S, B-S voltages", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_l", 15, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "flag to request sensitivity WRT length", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_w", 14, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "flag to request sensitivity WRT width", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "dnode", 22, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of drain node", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "gnode", 23, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of gate node", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "snode", 24, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of source node", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "bnode", 25, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of bulk node", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "dnodeprime", 26, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of internal drain node", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "snodeprime", 27, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of internal source node", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "vdsat", 31, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Saturation drain voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sourcevcrit", 32, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Critical source voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "drainvcrit", 33, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Critical drain voltage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "rs", 78, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Source resistance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sourceconductance", 28, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Source conductance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "rd", 79, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Drain resistance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "drainconductance", 29, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain conductance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "gm", 38, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "gds", 39, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source conductance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "gmb", 37, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source transconductance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "gbd", 40, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Drain conductance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "gbs", 41, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source conductance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cbd", 42, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Bulk-Drain capacitance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cbs", 43, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Bulk-Source capacitance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cgs", 52, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source capacitance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cgd", 55, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain capacitance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cgb", 58, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Bulk capacitance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cbd0", 44, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Zero-Bias B-D junction capacitance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cbs0", 46, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Zero-Bias B-S junction capacitance", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cqgs", 54, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-source charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cqgd", 57, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-drain charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cqgb", 60, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-bulk charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cqbd", 62, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to bulk-drain charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "cqbs", 64, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to bulk-source charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "qgs", 53, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "qgd", 56, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "qgb", 59, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Bulk charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "qbd", 61, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Drain charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "qbs", 63, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source charge storage", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "p", 19, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instantaneous power", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_l_dc", 75, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_l_real", 70, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "real part of ac sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_l_imag", 71, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "imag part of ac sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_l_cplx", 74, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_COMPLEX, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "ac sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_l_mag", 72, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt l of ac magnitude", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_l_ph", 73, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt l of ac phase", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_w_dc", 76, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_w_real", 65, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity and real part of ac sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_w_imag", 66, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "imag part of ac sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_w_mag", 67, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt w of ac magnitude", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_w_ph", 68, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt w of ac phase", true ); modelInfos[MODEL_TYPE::MOS2].instanceParams.emplace_back( "sens_w_cplx", 69, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_COMPLEX, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "ac sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS3] = { "Mos3", "NMOS", "PMOS", { "D", "G", "S", "B" }, "Level 3 MOSfet model with Meyer capacitance model", {}, {} }; // Model parameters modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "type", 144, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "nmos", "pmos", "N-channel or P-channel MOS" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "nmos", 133, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "N type MOSfet model" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "pmos", 134, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "P type MOSfet model" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "vto", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Threshold voltage" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "vt0", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "kp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/V²", SIM_MODEL::PARAM::CATEGORY::DC, "2.07189e-05", "2.07189e-05", "Transconductance parameter" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "gamma", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "sqrt V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bulk threshold parameter" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "phi", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.6", "0.6", "Surface potential" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "rd_", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain ohmic resistance" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "rs_", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source ohmic resistance" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "cbd_", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "B-D junction capacitance" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "cbs_", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "B-S junction capacitance" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "is_", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-14", "1e-14", "Bulk junction sat. current" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "pb", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.8", "0.8", "Bulk junction potential" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "cgso", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate-source overlap cap." ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "cgdo", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate-drain overlap cap." ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "cgbo", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate-bulk overlap cap." ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "rsh", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω/m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Sheet resistance" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "cj", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bottom junction cap per area" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "mj", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Bottom grading coefficient" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "cjsw", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Side junction cap per area" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "mjsw", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "Side grading coefficient" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "js", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/m²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bulk jct. sat. current density" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "tox", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "1e-07", "1e-07", "Oxide thickness" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "ld", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Lateral diffusion" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "xl", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Length mask adjustment" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "wd", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Width Narrowing (Diffusion)" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "xw", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Width mask adjustment" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "delvto", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Threshold voltage Adjust" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "delvt0", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Threshold voltage Adjust" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "u0", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "cm²/V s", SIM_MODEL::PARAM::CATEGORY::DC, "600", "600", "Surface mobility" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "uo", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "600", "600", "n.a." ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "fc", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Forward bias jct. fit parm." ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "nsub", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/cm³", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate doping" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "tpg", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate type" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "nss", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/cm²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Surface state density" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "vmax", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m/s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Maximum carrier drift velocity" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "xj", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Junction depth" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "nfs", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/cm²", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Fast surface state density" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "xd", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Depletion layer width" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "alpha", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Alpha" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "eta", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Vds dependence of threshold voltage" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "delta", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Width effect on threshold" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "theta", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Vgs dependence on mobility" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "kappa", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.2", "0.2", "Kappa" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "tnom", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "Parameter measurement temperature" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "kf", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker noise coefficient" ); modelInfos[MODEL_TYPE::MOS3].modelParams.emplace_back( "af", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "Flicker noise exponent" ); // Instance parameters modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "m", 80, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Multiplier", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "l", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Length", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "w", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Width", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "ad", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m²", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Drain area", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "as", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m²", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Source area", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "pd", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Drain perimeter", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "ps", 5, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Source perimeter", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "id", 34, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain current", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cd", 34, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain current", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "ibd", 36, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-D junction current", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "ibs", 35, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-S junction current", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "is", 18, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-14", "1e-14", "Source current", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "ig", 17, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate current", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "ib", 16, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk current", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "vgs", 50, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "vds", 51, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "vbs", 49, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "vbd", 48, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Drain voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "nrd", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Drain squares", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "nrs", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Source squares", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "off", 9, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "icvds", 12, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial D-S voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "icvgs", 13, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial G-S voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "icvbs", 11, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial B-S voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "ic", 10, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Vector of D-S, G-S, B-S voltages", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "temp", 77, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance operating temperature", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "dtemp", 81, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance temperature difference", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_l", 15, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "flag to request sensitivity WRT length", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_w", 14, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "flag to request sensitivity WRT width", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "dnode", 22, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of drain node", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "gnode", 23, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of gate node", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "snode", 24, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of source node", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "bnode", 25, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of bulk node", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "dnodeprime", 26, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of internal drain node", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "snodeprime", 27, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of internal source node", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "von", 30, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Turn-on voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "vdsat", 31, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Saturation drain voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sourcevcrit", 32, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Critical source voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "drainvcrit", 33, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Critical drain voltage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "rs", 78, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Source resistance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sourceconductance", 28, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Source conductance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "rd", 79, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Drain resistance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "drainconductance", 29, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain conductance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "gm", 38, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "gds", 39, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source conductance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "gmb", 37, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source transconductance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "gmbs", 37, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source transconductance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "gbd", 40, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Drain conductance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "gbs", 41, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source conductance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cbd", 42, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Bulk-Drain capacitance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cbs", 43, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Bulk-Source capacitance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cgs", 52, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source capacitance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cgd", 55, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain capacitance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cgb", 58, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Bulk capacitance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cqgs", 54, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-source charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cqgd", 57, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-drain charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cqgb", 60, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-bulk charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cqbd", 62, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to bulk-drain charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cqbs", 64, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to bulk-source charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cbd0", 44, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Zero-Bias B-D junction capacitance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cbdsw0", 45, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Zero-Bias B-D sidewall capacitance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cbs0", 46, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Zero-Bias B-S junction capacitance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "cbssw0", 47, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Zero-Bias B-S sidewall capacitance", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "qbs", 63, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Source charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "qgs", 53, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "qgd", 56, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "qgb", 59, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Bulk charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "qbd", 61, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Bulk-Drain charge storage", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "p", 19, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instantaneous power", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_l_dc", 76, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_l_real", 70, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "real part of ac sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_l_imag", 71, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "imag part of ac sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_l_cplx", 74, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_COMPLEX, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "ac sensitivity wrt length", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_l_mag", 72, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt l of ac magnitude", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_l_ph", 73, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt l of ac phase", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_w_dc", 75, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_w_real", 65, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "real part of ac sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_w_imag", 66, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "imag part of ac sensitivity wrt width", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_w_mag", 67, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt w of ac magnitude", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_w_ph", 68, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity wrt w of ac phase", true ); modelInfos[MODEL_TYPE::MOS3].instanceParams.emplace_back( "sens_w_cplx", 69, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_COMPLEX, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "ac sensitivity wrt width", true ); }