/*******************************************/
/* class_board.cpp - BOARD class functions */
/*******************************************/
#include "fctsys.h"
#include "common.h"
#include "pcbnew.h"
#include "bitmaps.h"
/*****************/
/* Class BOARD: */
/*****************/
/* Constructor */
BOARD::BOARD( EDA_BaseStruct* parent, WinEDA_BasePcbFrame* frame ) :
EDA_BaseStruct( parent, TYPEPCB )
{
m_PcbFrame = frame;
m_Status_Pcb = 0; // Mot d'etat: Bit 1 = Chevelu calcule
m_NbNets = 0; // Nombre de nets (equipotentielles)
m_BoardSettings = &g_DesignSettings;
m_NbPads = 0; // nombre total de pads
m_NbNodes = 0; // nombre de pads connectes
m_NbLinks = 0; // nombre de chevelus (donc aussi nombre
// minimal de pistes a tracer
m_NbSegmTrack = 0; // nombre d'elements de type segments de piste
m_NbSegmZone = 0; // nombre d'elements de type segments de zone
m_NbNoconnect = 0; // nombre de chevelus actifs
m_NbLoclinks = 0; // nb ratsnest local
m_Drawings = NULL; // pointeur sur liste drawings
m_Modules = NULL; // pointeur sur liste zone modules
m_Equipots = NULL; // pointeur liste zone equipot
m_Track = NULL; // pointeur relatif zone piste
m_Zone = NULL; // pointeur tableau zone zones de cuivre
m_Pads = NULL; // pointeur liste d'acces aux pads
m_Ratsnest = NULL; // pointeur liste rats
m_LocalRatsnest = NULL; // pointeur liste rats local
m_CurrentLimitZone = NULL; // pointeur liste des EDEGE_ZONES
// de determination des contours de zone
}
/***************/
/* Destructeur */
/***************/
BOARD::~BOARD( void )
{
}
void BOARD::UnLink( void )
{
/* Modification du chainage arriere */
if( Pback )
{
if( Pback->m_StructType == TYPEPCB )
{
Pback->Pnext = Pnext;
}
else /* Le chainage arriere pointe sur la structure "Pere" */
{
// Pback-> = Pnext;
}
}
/* Modification du chainage avant */
if( Pnext )
Pnext->Pback = Pback;
Pnext = Pback = NULL;
}
/* Routines de calcul des nombres de segments pistes et zones */
int BOARD::GetNumSegmTrack( void )
{
TRACK* CurTrack = m_Track;
int ii = 0;
for( ; CurTrack != NULL; CurTrack = (TRACK*) CurTrack->Pnext )
ii++;
m_NbSegmTrack = ii;
return ii;
}
int BOARD::GetNumSegmZone( void )
{
TRACK* CurTrack = m_Zone;
int ii = 0;
for( ; CurTrack != NULL; CurTrack = (TRACK*) CurTrack->Pnext )
ii++;
m_NbSegmZone = ii;
return ii;
}
// retourne le nombre de connexions manquantes
int BOARD::GetNumNoconnect( void )
{
return m_NbNoconnect;
}
// retourne le nombre de chevelus
int BOARD::GetNumRatsnests( void )
{
return m_NbLinks;
}
// retourne le nombre de pads a netcode > 0
int BOARD::GetNumNodes( void )
{
return m_NbNodes;
}
/***********************************/
bool BOARD::ComputeBoundaryBox( void )
/***********************************/
/* Determine le rectangle d'encadrement du pcb
* Ce rectangle englobe les contours pcb, pads , vias et piste
* Sortie:
* m_PcbBox
*
* retourne:
* 0 si aucun element utile
* 1 sinon
*/
{
int rayon, cx, cy, d, xmin, ymin, xmax, ymax;
bool Has_Items = FALSE;
EDA_BaseStruct* PtStruct;
DRAWSEGMENT* ptr;
TRACK* Track;
xmin = ymin = 0x7FFFFFFFl;
xmax = ymax = -0x7FFFFFFFl;
/* Analyse des Contours PCB */
PtStruct = m_Drawings;
for( ; PtStruct != NULL; PtStruct = PtStruct->Pnext )
{
if( PtStruct->m_StructType != TYPEDRAWSEGMENT )
continue;
ptr = (DRAWSEGMENT*) PtStruct;
d = (ptr->m_Width / 2) + 1;
if( ptr->m_Shape == S_CIRCLE )
{
cx = ptr->m_Start.x; cy = ptr->m_Start.y;
rayon = (int) hypot( (double) (ptr->m_End.x - cx), (double) (ptr->m_End.y - cy) );
rayon += d;
xmin = min( xmin, cx - rayon );
ymin = min( ymin, cy - rayon );
xmax = max( xmax, cx + rayon );
ymax = max( ymax, cy + rayon );
Has_Items = TRUE;
}
else
{
cx = min( ptr->m_Start.x, ptr->m_End.x );
cy = min( ptr->m_Start.y, ptr->m_End.y );
xmin = min( xmin, cx - d );
ymin = min( ymin, cy - d );
cx = max( ptr->m_Start.x, ptr->m_End.x );
cy = max( ptr->m_Start.y, ptr->m_End.y );
xmax = max( xmax, cx + d );
ymax = max( ymax, cy + d );
Has_Items = TRUE;
}
}
/* Analyse des Modules */
MODULE* module = m_Modules;
for( ; module != NULL; module = (MODULE*) module->Pnext )
{
Has_Items = TRUE;
xmin = min( xmin, ( module->m_Pos.x + module->m_BoundaryBox.GetX() ) );
ymin = min( ymin, ( module->m_Pos.y + module->m_BoundaryBox.GetY() ) );
xmax = max( xmax, module->m_Pos.x + module->m_BoundaryBox.GetRight() );
ymax = max( ymax, module->m_Pos.y + module->m_BoundaryBox.GetBottom() );
D_PAD* pt_pad = module->m_Pads;
for( ; pt_pad != NULL; pt_pad = (D_PAD*) pt_pad->Pnext )
{
d = pt_pad->m_Rayon;
xmin = min( xmin, pt_pad->m_Pos.x - d );
ymin = min( ymin, pt_pad->m_Pos.y - d );
xmax = max( xmax, pt_pad->m_Pos.x + d );
ymax = max( ymax, pt_pad->m_Pos.y + d );
}
}
/* Analyse des segments de piste et zone*/
for( Track = m_Track; Track != NULL; Track = (TRACK*) Track->Pnext )
{
d = (Track->m_Width / 2) + 1;
cx = min( Track->m_Start.x, Track->m_End.x );
cy = min( Track->m_Start.y, Track->m_End.y );
xmin = min( xmin, cx - d );
ymin = min( ymin, cy - d );
cx = max( Track->m_Start.x, Track->m_End.x );
cy = max( Track->m_Start.y, Track->m_End.y );
xmax = max( xmax, cx + d );
ymax = max( ymax, cy + d );
Has_Items = TRUE;
}
for( Track = m_Zone; Track != NULL; Track = (TRACK*) Track->Pnext )
{
d = (Track->m_Width / 2) + 1;
cx = min( Track->m_Start.x, Track->m_End.x );
cy = min( Track->m_Start.y, Track->m_End.y );
xmin = min( xmin, cx - d );
ymin = min( ymin, cy - d );
cx = max( Track->m_Start.x, Track->m_End.x );
cy = max( Track->m_Start.y, Track->m_End.y );
xmax = max( xmax, cx + d );
ymax = max( ymax, cy + d );
Has_Items = TRUE;
}
if( !Has_Items && m_PcbFrame )
{
if( m_PcbFrame->m_Draw_Sheet_Ref )
{
xmin = ymin = 0;
xmax = m_PcbFrame->m_CurrentScreen->ReturnPageSize().x;
ymax = m_PcbFrame->m_CurrentScreen->ReturnPageSize().y;
}
else
{
xmin = -m_PcbFrame->m_CurrentScreen->ReturnPageSize().x / 2;
ymin = -m_PcbFrame->m_CurrentScreen->ReturnPageSize().y / 2;
xmax = m_PcbFrame->m_CurrentScreen->ReturnPageSize().x / 2;
ymax = m_PcbFrame->m_CurrentScreen->ReturnPageSize().y / 2;
}
}
m_BoundaryBox.SetX( xmin );
m_BoundaryBox.SetY( ymin );
m_BoundaryBox.SetWidth( xmax - xmin );
m_BoundaryBox.SetHeight( ymax - ymin );
return Has_Items;
}
// virtual, see pcbstruct.h
SEARCH_RESULT BOARD::Visit( INSPECTOR* inspector, const void* testData,
const KICAD_T scanTypes[] )
{
KICAD_T stype;
SEARCH_RESULT result = SEARCH_CONTINUE;
const KICAD_T* p = scanTypes;
while( (stype = *p++) != EOT )
{
switch( stype )
{
case TYPEPCB:
result = inspector->Inspect( this, testData ); // inspect me
break;
/* Instances of the requested KICAD_T live in a list, either one
that I manage, or that my modules manage. If it's a type managed
by class MODULE, then simply pass it on to each module's
MODULE::Visit() function by way of the
IterateForward( m_Modules, ... ) call.
*/
case TYPEMODULE:
case TYPEPAD:
case TYPETEXTEMODULE:
case TYPEEDGEMODULE:
// this calls MODULE::Visit() on each module.
result = IterateForward( m_Modules, inspector, testData, scanTypes );
break;
case TYPEDRAWSEGMENT:
case TYPETEXTE:
case TYPEMARQUEUR:
case TYPECOTATION:
case TYPEMIRE:
result = IterateForward( m_Drawings, inspector, testData, scanTypes );
break;
case TYPEVIA:
case TYPETRACK:
result = IterateForward( m_Track, inspector, testData, scanTypes );
break;
case PCB_EQUIPOT_STRUCT_TYPE:
result = IterateForward( m_Equipots, inspector, testData, scanTypes );
break;
case TYPEZONE:
result = IterateForward( m_Zone, inspector, testData, scanTypes );
break;
case TYPEEDGEZONE:
result = IterateForward( m_CurrentLimitZone, inspector, testData, scanTypes );
break;
default:
break;
}
if( result == SEARCH_QUIT )
break;
}
return result;
}
// see pcbstruct.h
EDA_BaseStruct* BOARD::FindPadOrModule( const wxPoint& refPos, int layer )
{
class PadOrModule : public INSPECTOR
{
public:
EDA_BaseStruct* found;
int layer;
PadOrModule( int alayer ) :
found(0), layer(alayer)
{}
SEARCH_RESULT Inspect( EDA_BaseStruct* testItem, const void* testData )
{
const wxPoint& refPos = *(const wxPoint*) testData;
if( testItem->m_StructType == TYPEPAD )
{
if( testItem->HitTest( refPos ) )
{
found = testItem;
return SEARCH_QUIT;
}
}
else if( testItem->m_StructType == TYPEMODULE )
{
int mlayer = ((MODULE*)testItem)->m_Layer;
// consider only visible modules
if( IsModuleLayerVisible( mlayer ) )
{
if( testItem->HitTest( refPos ) )
{
if( layer == mlayer )
{
found = testItem;
return SEARCH_QUIT;
}
// layer mismatch, save in case we don't find a
// future layer match hit.
if( !found )
found = testItem;
}
}
}
return SEARCH_CONTINUE;
}
};
PadOrModule inspector( layer );
// search only for PADs first, then MODULES, and preferably a layer match
static const KICAD_T scanTypes[] = { TYPEPAD, TYPEMODULE, EOT };
IterateForward( m_Modules, &inspector, &refPos, scanTypes );
return inspector.found;
}
#if defined(DEBUG)
/**
* Function Show
* is used to output the object tree, currently for debugging only.
* @param nestLevel An aid to prettier tree indenting, and is the level
* of nesting of this object within the overall tree.
* @param os The ostream& to output to.
*/
void BOARD::Show( int nestLevel, std::ostream& os )
{
EDA_BaseStruct* p;
// for now, make it look like XML:
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << ">\n";
// specialization of the output:
NestedSpace( nestLevel+1, os ) << "\n";
p = m_Modules;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "\n";
NestedSpace( nestLevel+1, os ) << "\n";
p = m_Drawings;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "\n";
NestedSpace( nestLevel+1, os ) << "\n";
p = m_Equipots;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "\n";
NestedSpace( nestLevel+1, os ) << "\n";
p = m_Track;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "\n";
NestedSpace( nestLevel+1, os ) << "\n";
p = m_Zone;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "\n";
NestedSpace( nestLevel+1, os ) << "\n";
p = m_CurrentLimitZone;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "\n";
p = m_Son;
for( ; p; p = p->Pnext )
{
p->Show( nestLevel+1, os );
}
NestedSpace( nestLevel, os ) << "" << GetClass().Lower().mb_str() << ">\n";
}
#endif