/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016-2020 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "pns_via.h" #include "pns_node.h" #include "pns_utils.h" #include "pns_router.h" #include "pns_debug_decorator.h" #include <geometry/shape_rect.h> #include <math/box2.h> namespace PNS { bool VIA::PushoutForce( NODE* aNode, const ITEM* aOther, VECTOR2I& aForce ) { int clearance = aNode->GetClearance( this, aOther ); VECTOR2I elementForces[4], force; size_t nf = 0; if( aNode->GetCollisionQueryScope() == NODE::CQS_ALL_RULES ) { int holeClearance = aNode->GetHoleClearance( this, aOther ); int hole2holeClearance = aNode->GetHoleToHoleClearance( this, aOther ); if( aOther->Hole() ) { aOther->Hole()->Collide( Shape(), holeClearance, &elementForces[nf++] ); aOther->Hole()->Collide( Hole(), hole2holeClearance, &elementForces[nf++] ); } aOther->Shape()->Collide( Hole(), holeClearance, &elementForces[nf++] ); } aOther->Shape()->Collide( Shape(), clearance, &elementForces[nf++] ); for( size_t i = 0; i < nf; i++ ) { if( elementForces[i].SquaredEuclideanNorm() > force.SquaredEuclideanNorm() ) force = elementForces[i]; } aForce = force; return ( force != VECTOR2I( 0, 0 ) ); } bool VIA::PushoutForce( NODE* aNode, const VECTOR2I& aDirection, VECTOR2I& aForce, int aCollisionMask, int aMaxIterations ) { int iter = 0; VIA mv( *this ); VECTOR2I totalForce; auto dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator(); PNS_DBG( dbg, AddPoint, Pos(), YELLOW, 100000, wxString::Format( "via-force-init-pos, iter %d", aMaxIterations ) ); while( iter < aMaxIterations ) { NODE::OPT_OBSTACLE obs = aNode->CheckColliding( &mv, aCollisionMask ); if( !obs ) break; VECTOR2I force; bool collFound = mv.PushoutForce( aNode, obs->m_item, force ); if( !collFound ) { if( obs ) { // might happen (although rarely) that we see a collision, but the MTV // is zero... Assume force propagation has failed in such case. return false; } PNS_DBG( dbg, Message, wxString::Format( "no-coll %d", iter ) ); break; } const int threshold = Diameter() / 4; // another stupid heuristic. const int forceMag = force.EuclideanNorm(); // We've been through a lot of iterations already and our pushout force is still too big? // Perhaps the barycentric force goes in the wrong direction, let's try to move along // the 'lead' vector instead (usually backwards to the cursor) if( iter > aMaxIterations / 2 && forceMag > threshold ) { VECTOR2I l = aDirection.Resize( threshold ); totalForce += l; SHAPE_LINE_CHAIN ff; ff.Append( mv.Pos() ); ff.Append( mv.Pos() + l ); mv.SetPos( mv.Pos() + l ); PNS_DBG( dbg, AddShape, &ff, YELLOW, 100000, "via-force-lead" ); } else if( collFound ) // push along the minmum translation vector { // Limit the force magnitude to, say, 25% of the via diameter // This adds a few iterations for large areas (e.g. keepouts) // But makes the algorithm more predictable and less 'jumpy' if( forceMag > threshold ) { force.Resize( threshold ); } totalForce += force; SHAPE_LINE_CHAIN ff; ff.Append( mv.Pos() ); ff.Append( mv.Pos() + force ); mv.SetPos( mv.Pos() + force ); PNS_DBG( dbg, AddShape, &ff, WHITE, 100000, "via-force-coll" ); } iter++; } if( iter == aMaxIterations ) return false; PNS_DBG( dbg, AddPoint, ( Pos() + totalForce ), WHITE, 1000000, "via-force-new" ); aForce = totalForce; return true; } const SHAPE_LINE_CHAIN VIA::Hull( int aClearance, int aWalkaroundThickness, int aLayer ) const { int cl = ( aClearance + aWalkaroundThickness / 2 ); int width = m_diameter; if( !ROUTER::GetInstance()->GetInterface()->IsFlashedOnLayer( this, aLayer ) ) width = m_hole.GetRadius() * 2; // Chamfer = width * ( 1 - sqrt(2)/2 ) for equilateral octagon return OctagonalHull( m_pos - VECTOR2I( width / 2, width / 2 ), VECTOR2I( width, width ), cl, ( 2 * cl + width ) * ( 1.0 - M_SQRT1_2 ) ); } const SHAPE_LINE_CHAIN VIA::HoleHull( int aClearance, int aWalkaroundThickness, int aLayer ) const { int cl = ( aClearance + aWalkaroundThickness / 2 ); int width = m_hole.GetRadius() * 2; // Chamfer = width * ( 1 - sqrt(2)/2 ) for equilateral octagon return OctagonalHull( m_pos - VECTOR2I( width / 2, width / 2 ), VECTOR2I( width, width ), cl, ( 2 * cl + width ) * ( 1.0 - M_SQRT1_2 ) ); } VIA* VIA::Clone() const { VIA* v = new VIA(); v->SetNet( Net() ); v->SetLayers( Layers() ); v->m_pos = m_pos; v->m_diameter = m_diameter; v->m_drill = m_drill; v->m_shape = SHAPE_CIRCLE( m_pos, m_diameter / 2 ); v->m_hole = SHAPE_CIRCLE( m_pos, m_drill / 2 ); v->m_rank = m_rank; v->m_marker = m_marker; v->m_viaType = m_viaType; v->m_parent = m_parent; v->m_isFree = m_isFree; v->m_isVirtual = m_isVirtual; return v; } OPT_BOX2I VIA::ChangedArea( const VIA* aOther ) const { if ( aOther->Pos() != Pos() ) { BOX2I tmp = Shape()->BBox(); tmp.Merge( aOther->Shape()->BBox() ); return tmp; } return OPT_BOX2I(); } const VIA_HANDLE VIA::MakeHandle() const { VIA_HANDLE h; h.pos = Pos(); h.layers = Layers(); h.net = Net(); h.valid = true; return h; } const std::string VIA::Format( ) const { std::stringstream ss; ss << ITEM::Format() << " drill " << m_drill << " "; ss << m_shape.Format( false ); return ss.str(); } }