/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2016-2018 CERN * Copyright (C) 2020 KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #ifdef PROFILE #include #endif bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem ) { markItemNetAsDirty( aItem ); switch( aItem->Type() ) { case PCB_FOOTPRINT_T: for( PAD* pad : static_cast( aItem )->Pads() ) { m_itemMap[pad].MarkItemsAsInvalid(); m_itemMap.erase( pad ); } m_itemList.SetDirty( true ); break; case PCB_PAD_T: m_itemMap[aItem].MarkItemsAsInvalid(); m_itemMap.erase( aItem ); m_itemList.SetDirty( true ); break; case PCB_TRACE_T: case PCB_ARC_T: m_itemMap[aItem].MarkItemsAsInvalid(); m_itemMap.erase( aItem ); m_itemList.SetDirty( true ); break; case PCB_VIA_T: m_itemMap[aItem].MarkItemsAsInvalid(); m_itemMap.erase( aItem ); m_itemList.SetDirty( true ); break; case PCB_ZONE_T: m_itemMap[aItem].MarkItemsAsInvalid(); m_itemMap.erase ( aItem ); m_itemList.SetDirty( true ); break; default: return false; } // Once we delete an item, it may connect between lists, so mark both as potentially invalid m_itemList.SetHasInvalid( true ); return true; } void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem ) { if( aItem->IsConnected() ) { auto citem = static_cast( aItem ); MarkNetAsDirty( citem->GetNetCode() ); } else { if( aItem->Type() == PCB_FOOTPRINT_T ) { const FOOTPRINT* footprint = static_cast( aItem ); for( PAD* pad : footprint->Pads() ) MarkNetAsDirty( pad->GetNetCode() ); } } } bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem ) { if( !aItem->IsOnCopperLayer() ) return false; markItemNetAsDirty ( aItem ); switch( aItem->Type() ) { case PCB_NETINFO_T: MarkNetAsDirty( static_cast( aItem )->GetNetCode() ); break; case PCB_FOOTPRINT_T: for( PAD* pad : static_cast( aItem )->Pads() ) { if( m_itemMap.find( pad ) != m_itemMap.end() ) return false; add( m_itemList, pad ); } break; case PCB_PAD_T: if( m_itemMap.find ( aItem ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_TRACE_T: if( m_itemMap.find( aItem ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_ARC_T: if( m_itemMap.find( aItem ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_VIA_T: if( m_itemMap.find( aItem ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_ZONE_T: { ZONE* zone = static_cast( aItem ); if( m_itemMap.find( aItem ) != m_itemMap.end() ) return false; m_itemMap[zone] = ITEM_MAP_ENTRY(); for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { for( CN_ITEM* zitem : m_itemList.Add( zone, layer ) ) m_itemMap[zone].Link( zitem ); } } break; default: return false; } return true; } void CN_CONNECTIVITY_ALGO::searchConnections() { #ifdef PROFILE PROF_COUNTER garbage_collection( "garbage-collection" ); #endif std::vector garbage; garbage.reserve( 1024 ); m_itemList.RemoveInvalidItems( garbage ); for( auto item : garbage ) delete item; #ifdef PROFILE garbage_collection.Show(); PROF_COUNTER search_basic( "search-basic" ); #endif std::vector dirtyItems; std::copy_if( m_itemList.begin(), m_itemList.end(), std::back_inserter( dirtyItems ), [] ( CN_ITEM* aItem ) { return aItem->Dirty(); } ); if( m_progressReporter ) { m_progressReporter->SetMaxProgress( dirtyItems.size() ); if( !m_progressReporter->KeepRefreshing() ) return; } if( m_itemList.IsDirty() ) { size_t parallelThreadCount = std::min( std::thread::hardware_concurrency(), ( dirtyItems.size() + 7 ) / 8 ); std::atomic nextItem( 0 ); std::vector> returns( parallelThreadCount ); auto conn_lambda = [&nextItem, &dirtyItems]( CN_LIST* aItemList, PROGRESS_REPORTER* aReporter) -> size_t { for( size_t i = nextItem++; i < dirtyItems.size(); i = nextItem++ ) { CN_VISITOR visitor( dirtyItems[i] ); aItemList->FindNearby( dirtyItems[i], visitor ); if( aReporter ) { if( aReporter->IsCancelled() ) break; else aReporter->AdvanceProgress(); } } return 1; }; if( parallelThreadCount <= 1 ) conn_lambda( &m_itemList, m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { returns[ii] = std::async( std::launch::async, conn_lambda, &m_itemList, m_progressReporter ); } for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } } if( m_progressReporter ) m_progressReporter->KeepRefreshing(); } #ifdef PROFILE search_basic.Show(); #endif m_itemList.ClearDirtyFlags(); } const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode ) { constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_ARC_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_T, PCB_FOOTPRINT_T, EOT }; constexpr KICAD_T no_zones[] = { PCB_TRACE_T, PCB_ARC_T, PCB_PAD_T, PCB_VIA_T, PCB_FOOTPRINT_T, EOT }; if( aMode == CSM_PROPAGATE ) return SearchClusters( aMode, no_zones, -1 ); else return SearchClusters( aMode, types, -1 ); } const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode, const KICAD_T aTypes[], int aSingleNet ) { bool withinAnyNet = ( aMode != CSM_PROPAGATE ); std::deque Q; std::set item_set; CLUSTERS clusters; if( m_itemList.IsDirty() ) searchConnections(); auto addToSearchList = [&item_set, withinAnyNet, aSingleNet, aTypes]( CN_ITEM *aItem ) { if( withinAnyNet && aItem->Net() <= 0 ) return; if( !aItem->Valid() ) return; if( aSingleNet >=0 && aItem->Net() != aSingleNet ) return; bool found = false; for( int i = 0; aTypes[i] != EOT; i++ ) { if( aItem->Parent()->Type() == aTypes[i] ) { found = true; break; } } if( !found ) return; aItem->SetVisited( false ); item_set.insert( aItem ); }; std::for_each( m_itemList.begin(), m_itemList.end(), addToSearchList ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return CLUSTERS(); while( !item_set.empty() ) { CN_CLUSTER_PTR cluster = std::make_shared(); CN_ITEM* root; auto it = item_set.begin(); while( it != item_set.end() && (*it)->Visited() ) it = item_set.erase( item_set.begin() ); if( it == item_set.end() ) break; root = *it; root->SetVisited( true ); Q.clear(); Q.push_back( root ); while( Q.size() ) { CN_ITEM* current = Q.front(); Q.pop_front(); cluster->Add( current ); for( auto n : current->ConnectedItems() ) { if( withinAnyNet && n->Net() != root->Net() ) continue; if( !n->Visited() && n->Valid() ) { n->SetVisited( true ); Q.push_back( n ); } } } clusters.push_back( cluster ); } if( m_progressReporter && m_progressReporter->IsCancelled() ) return CLUSTERS(); std::sort( clusters.begin(), clusters.end(), []( CN_CLUSTER_PTR a, CN_CLUSTER_PTR b ) { return a->OriginNet() < b->OriginNet(); } ); return clusters; } void reportProgress( PROGRESS_REPORTER* aReporter, int aCount, int aSize, int aDelta ) { if( aReporter && ( ( aCount % aDelta ) == 0 || aCount == aSize - 1 ) ) { aReporter->SetCurrentProgress( (double) aCount / (double) aSize ); aReporter->KeepRefreshing( false ); } } void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard, PROGRESS_REPORTER* aReporter ) { int delta = 100; // Number of additions between 2 calls to the progress bar int ii = 0; int size = 0; size += aBoard->Zones().size(); size += aBoard->Tracks().size(); for( FOOTPRINT* footprint : aBoard->Footprints() ) size += footprint->Pads().size(); size *= 2; // Our caller us gets the other half of the progress bar delta = std::max( delta, size / 50 ); for( ZONE* zone : aBoard->Zones() ) { Add( zone ); reportProgress( aReporter, ii++, size, delta ); } for( PCB_TRACK* tv : aBoard->Tracks() ) { Add( tv ); reportProgress( aReporter, ii++, size, delta ); } for( FOOTPRINT* footprint : aBoard->Footprints() ) { for( PAD* pad : footprint->Pads() ) { Add( pad ); reportProgress( aReporter, ii++, size, delta ); } } } void CN_CONNECTIVITY_ALGO::Build( const std::vector& aItems ) { for( auto item : aItems ) { switch( item->Type() ) { case PCB_TRACE_T: case PCB_ARC_T: case PCB_VIA_T: case PCB_PAD_T: Add( item ); break; case PCB_FOOTPRINT_T: for( PAD* pad : static_cast( item )->Pads() ) Add( pad ); break; default: break; } } } void CN_CONNECTIVITY_ALGO::propagateConnections( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode ) { bool skipConflicts = ( aMode == PROPAGATE_MODE::SKIP_CONFLICTS ); wxLogTrace( "CN", "propagateConnections: propagate skip conflicts? %d", skipConflicts ); for( const auto& cluster : m_connClusters ) { if( skipConflicts && cluster->IsConflicting() ) { wxLogTrace( "CN", "Conflicting nets in cluster %p; skipping update", cluster.get() ); } else if( cluster->IsOrphaned() ) { wxLogTrace( "CN", "Skipping orphaned cluster %p [net: %s]", cluster.get(), (const char*) cluster->OriginNetName().c_str() ); } else if( cluster->HasValidNet() ) { if( cluster->IsConflicting() ) { wxLogTrace( "CN", "Conflicting nets in cluster %p; chose %d (%s)", cluster.get(), cluster->OriginNet(), cluster->OriginNetName() ); } // normal cluster: just propagate from the pads int n_changed = 0; for( auto item : *cluster ) { if( item->CanChangeNet() ) { if( item->Valid() && item->Parent()->GetNetCode() != cluster->OriginNet() ) { MarkNetAsDirty( item->Parent()->GetNetCode() ); MarkNetAsDirty( cluster->OriginNet() ); if( aCommit ) aCommit->Modify( item->Parent() ); item->Parent()->SetNetCode( cluster->OriginNet() ); n_changed++; } } } if( n_changed ) { wxLogTrace( "CN", "Cluster %p : net : %d %s", cluster.get(), cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() ); } else wxLogTrace( "CN", "Cluster %p : nothing to propagate", cluster.get() ); } else { wxLogTrace( "CN", "Cluster %p : connected to unused net", cluster.get() ); } } } void CN_CONNECTIVITY_ALGO::PropagateNets( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode ) { m_connClusters = SearchClusters( CSM_PROPAGATE ); propagateConnections( aCommit, aMode ); } void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE* aZone, PCB_LAYER_ID aLayer, std::vector& aIslands ) { if( aZone->GetFilledPolysList( aLayer ).IsEmpty() ) return; aIslands.clear(); Remove( aZone ); Add( aZone ); m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK ); for( const auto& cluster : m_connClusters ) { if( cluster->Contains( aZone ) && cluster->IsOrphaned() ) { for( auto z : *cluster ) { if( z->Parent() == aZone && z->Layer() == aLayer ) { aIslands.push_back( static_cast(z)->SubpolyIndex() ); } } } } wxLogTrace( "CN", "Found %u isolated islands\n", (unsigned)aIslands.size() ); } void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( std::vector& aZones ) { for( auto& z : aZones ) { Remove( z.m_zone ); Add( z.m_zone ); } m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK ); for( CN_ZONE_ISOLATED_ISLAND_LIST& zone : aZones ) { for( PCB_LAYER_ID layer : zone.m_zone->GetLayerSet().Seq() ) { if( zone.m_zone->GetFilledPolysList( layer ).IsEmpty() ) continue; for( const CN_CLUSTER_PTR& cluster : m_connClusters ) { if( cluster->Contains( zone.m_zone ) && cluster->IsOrphaned() ) { for( CN_ITEM* z : *cluster ) { if( z->Parent() == zone.m_zone && z->Layer() == layer ) { zone.m_islands[layer].push_back( static_cast( z )->SubpolyIndex() ); } } } } } } } const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters() { m_ratsnestClusters = SearchClusters( CSM_RATSNEST ); return m_ratsnestClusters; } void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet ) { if( aNet < 0 ) return; if( (int) m_dirtyNets.size() <= aNet ) { int lastNet = m_dirtyNets.size() - 1; if( lastNet < 0 ) lastNet = 0; m_dirtyNets.resize( aNet + 1 ); for( int i = lastNet; i < aNet + 1; i++ ) m_dirtyNets[i] = true; } m_dirtyNets[aNet] = true; } void CN_VISITOR::checkZoneItemConnection( CN_ZONE_LAYER* aZoneLayer, CN_ITEM* aItem ) { if( aZoneLayer->Net() != aItem->Net() && !aItem->CanChangeNet() ) return; if( !aZoneLayer->BBox().Intersects( aItem->BBox() ) ) return; int accuracy = 0; if( aItem->Parent()->Type() == PCB_VIA_T || aItem->Parent()->Type() == PCB_TRACE_T || aItem->Parent()->Type() == PCB_ARC_T ) { accuracy = ( static_cast( aItem->Parent() )->GetWidth() + 1 ) / 2; } for( int i = 0; i < aItem->AnchorCount(); ++i ) { if( aZoneLayer->ContainsPoint( aItem->GetAnchor( i ), accuracy ) ) { aZoneLayer->Connect( aItem ); aItem->Connect( aZoneLayer ); return; } } } void CN_VISITOR::checkZoneZoneConnection( CN_ZONE_LAYER* aZoneLayerA, CN_ZONE_LAYER* aZoneLayerB ) { const ZONE* zoneA = static_cast( aZoneLayerA->Parent() ); const ZONE* zoneB = static_cast( aZoneLayerB->Parent() ); if( aZoneLayerA->Layer() != aZoneLayerB->Layer() ) return; if( aZoneLayerB->Net() != aZoneLayerA->Net() ) return; // we only test zones belonging to the same net const BOX2I& boxA = aZoneLayerA->BBox(); const BOX2I& boxB = aZoneLayerB->BBox(); int radiusA = 0; int radiusB = 0; if( zoneA->GetFilledPolysUseThickness() ) radiusA = ( zoneA->GetMinThickness() + 1 ) / 2; if( zoneB->GetFilledPolysUseThickness() ) radiusB = ( zoneB->GetMinThickness() + 1 ) / 2; PCB_LAYER_ID layer = static_cast( aZoneLayerA->Layer() ); const SHAPE_LINE_CHAIN& outline = zoneA->GetFilledPolysList( layer ).COutline( aZoneLayerA->SubpolyIndex() ); for( int i = 0; i < outline.PointCount(); i++ ) { if( !boxB.Contains( outline.CPoint( i ) ) ) continue; if( aZoneLayerB->ContainsPoint( outline.CPoint( i ), radiusA ) ) { aZoneLayerA->Connect( aZoneLayerB ); aZoneLayerB->Connect( aZoneLayerA ); return; } } const SHAPE_LINE_CHAIN& outline2 = zoneB->GetFilledPolysList( layer ).COutline( aZoneLayerB->SubpolyIndex() ); for( int i = 0; i < outline2.PointCount(); i++ ) { if( !boxA.Contains( outline2.CPoint( i ) ) ) continue; if( aZoneLayerA->ContainsPoint( outline2.CPoint( i ), radiusB ) ) { aZoneLayerA->Connect( aZoneLayerB ); aZoneLayerB->Connect( aZoneLayerA ); return; } } } bool CN_VISITOR::operator()( CN_ITEM* aCandidate ) { const BOARD_CONNECTED_ITEM* parentA = aCandidate->Parent(); const BOARD_CONNECTED_ITEM* parentB = m_item->Parent(); if( !aCandidate->Valid() || !m_item->Valid() ) return true; if( parentA == parentB ) return true; if( !( parentA->GetLayerSet() & parentB->GetLayerSet() ).any() ) return true; // If both m_item and aCandidate are marked dirty, they will both be searched // Since we are reciprocal in our connection, we arbitrarily pick one of the connections // to conduct the expensive search if( aCandidate->Dirty() && aCandidate < m_item ) return true; // We should handle zone-zone connection separately if ( parentA->Type() == PCB_ZONE_T && parentB->Type() == PCB_ZONE_T ) { checkZoneZoneConnection( static_cast( m_item ), static_cast( aCandidate ) ); return true; } if( parentA->Type() == PCB_ZONE_T ) { checkZoneItemConnection( static_cast( aCandidate ), m_item ); return true; } if( parentB->Type() == PCB_ZONE_T ) { checkZoneItemConnection( static_cast( m_item ), aCandidate ); return true; } int accuracyA = 0; int accuracyB = 0; if( parentA->Type() == PCB_VIA_T || parentA->Type() == PCB_TRACE_T || parentA->Type() == PCB_ARC_T) accuracyA = ( static_cast( parentA )->GetWidth() + 1 ) / 2; if( parentB->Type() == PCB_VIA_T || parentB->Type() == PCB_TRACE_T || parentB->Type() == PCB_ARC_T ) accuracyB = ( static_cast( parentB )->GetWidth() + 1 ) / 2; // Items do not necessarily have reciprocity as we only check for anchors // therefore, we check HitTest both directions A->B & B->A for( int i = 0; i < aCandidate->AnchorCount(); ++i ) { if( parentB->HitTest( wxPoint( aCandidate->GetAnchor( i ) ), accuracyA ) ) { m_item->Connect( aCandidate ); aCandidate->Connect( m_item ); return true; } } for( int i = 0; i < m_item->AnchorCount(); ++i ) { if( parentA->HitTest( wxPoint( m_item->GetAnchor( i ) ), accuracyB ) ) { m_item->Connect( aCandidate ); aCandidate->Connect( m_item ); return true; } } return true; }; void CN_CONNECTIVITY_ALGO::Clear() { m_ratsnestClusters.clear(); m_connClusters.clear(); m_itemMap.clear(); m_itemList.Clear(); } void CN_CONNECTIVITY_ALGO::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; }