/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file class_pad.h * @brief Pad object description */ #ifndef PAD_H_ #define PAD_H_ #include "zones.h" #include #include #include #include #include #include class DRAWSEGMENT; class PARAM_CFG; enum CUST_PAD_SHAPE_IN_ZONE { CUST_PAD_SHAPE_IN_ZONE_OUTLINE, CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL }; class LINE_READER; class EDA_3D_CANVAS; class MODULE; class EDGE_MODULE; class TRACK; class MSG_PANEL_INFO; namespace KIGFX { class VIEW; } /** Helper class to handle a primitive (basic shape: polygon, segment, circle or arc) * to build a custom pad full shape from a set of primitives */ class PAD_CS_PRIMITIVE { public: STROKE_T m_Shape; /// S_SEGMENT, S_RECT, S_ARC, S_CIRCLE, S_POLYGON only (same as DRAWSEGMENT) int m_Thickness; /// thickness of segment or outline /// For filled S_CIRCLE shape, thickness = 0. // if thickness is not = 0 S_CIRCLE shape is a ring int m_Radius; /// radius of a circle double m_ArcAngle; /// angle of an arc, from its starting point, in 0.1 deg wxPoint m_Start; /// is also the center of the circle and arc wxPoint m_End; /// is also the start point of the arc wxPoint m_Ctrl1; /// Bezier Control point 1 wxPoint m_Ctrl2; /// Bezier Control point 2 std::vector m_Poly; PAD_CS_PRIMITIVE( STROKE_T aShape ): m_Shape( aShape ), m_Thickness( 0 ), m_Radius( 0 ), m_ArcAngle( 0 ) { } // Accessors (helpers for arc and circle shapes) wxPoint GetCenter() { return m_Start; } /// returns the center of a circle or arc wxPoint GetArcStart() { return m_End; } /// returns the start point of an arc // Geometric transform /** Move the primitive * @param aMoveVector is the deplacement vector */ void Move( wxPoint aMoveVector ); /** * Rotates the primitive about a point * @param aRotCentre center of rotation * @param aAngle angle in tenths of degree */ void Rotate( const wxPoint& aRotCentre, double aAngle ); /** Export the PAD_CS_PRIMITIVE parameters to a DRAWSEGMENT * useful to draw a primitive shape * @param aTarget is the DRAWSEGMENT to initialize */ void ExportTo( DRAWSEGMENT* aTarget ); /** Export the PAD_CS_PRIMITIVE parameters to a EDGE_MODULE * useful to convert a primitive shape to a EDGE_MODULE shape for editing in footprint editor * @param aTarget is the EDGE_MODULE to initialize */ void ExportTo( EDGE_MODULE* aTarget ); }; class D_PAD : public BOARD_CONNECTED_ITEM { public: static int m_PadSketchModePenSize; ///< Pen size used to draw pads in sketch mode ///< (mode used to print pads on silkscreen layer) public: D_PAD( MODULE* parent ); // Do not create a copy constructor & operator=. // The ones generated by the compiler are adequate. /* Default layers used for pads, according to the pad type. * this is default values only, they can be changed for a given pad */ static LSET StandardMask(); ///< layer set for a through hole pad static LSET SMDMask(); ///< layer set for a SMD pad on Front layer static LSET ConnSMDMask(); ///< layer set for a SMD pad on Front layer ///< used for edge board connectors static LSET UnplatedHoleMask(); ///< layer set for a mechanical unplated through hole pad static LSET ApertureMask(); ///< layer set for an aperture pad static inline bool ClassOf( const EDA_ITEM* aItem ) { return aItem && PCB_PAD_T == aItem->Type(); } bool IsType( const KICAD_T aScanTypes[] ) const override { if( BOARD_CONNECTED_ITEM::IsType( aScanTypes ) ) return true; for( const KICAD_T* p = aScanTypes; *p != EOT; ++p ) { if( m_Drill.x > 0 && m_Drill.y > 0 ) { if( *p == PCB_LOCATE_HOLE_T ) return true; else if( *p == PCB_LOCATE_PTH_T && m_Attribute != PAD_ATTRIB_HOLE_NOT_PLATED ) return true; else if( *p == PCB_LOCATE_NPTH_T && m_Attribute == PAD_ATTRIB_HOLE_NOT_PLATED ) return true; } } return false; } MODULE* GetParent() const { return (MODULE*) m_Parent; } /** * Imports the pad settings from aMasterPad. * The result is "this" has the same settinds (sizes, shapes ... ) * as aMasterPad * @param aMasterPad = the template pad */ void ImportSettingsFrom( const D_PAD& aMasterPad ); /** * @return true if the pad has a footprint parent flipped * (on the back/bottom layer) */ bool IsFlipped() const; /** * Set the pad name (sometimes called pad number, although * it can be an array reference like AA12). */ void SetName( const wxString& aName ) { m_name = aName; } /** * Set the pad function (pin name in schematic) */ void SetPinFunction( const wxString& aName ) { m_pinFunction = aName; } /** * @return the pad name */ const wxString& GetName() const { return m_name; } /** * @return the pad function (pin name in schematic) */ const wxString& GetPinFunction() const { return m_pinFunction; } bool PadNameEqual( const D_PAD* other ) const { return m_name == other->m_name; // hide tricks behind sensible API } /** * Function GetShape * @return the shape of this pad. */ PAD_SHAPE_T GetShape() const { return m_padShape; } void SetShape( PAD_SHAPE_T aShape ) { m_padShape = aShape; m_boundingRadius = -1; } void SetPosition( const wxPoint& aPos ) override { m_Pos = aPos; } const wxPoint GetPosition() const override { return m_Pos; } /** * Function GetAnchorPadShape * @return the shape of the anchor pad shape, for custom shaped pads. */ PAD_SHAPE_T GetAnchorPadShape() const { return m_anchorPadShape; } /** * @return the option for the custom pad shape to use as clearance area * in copper zones */ CUST_PAD_SHAPE_IN_ZONE GetCustomShapeInZoneOpt() const { return m_customShapeClearanceArea; } /** * Set the option for the custom pad shape to use as clearance area * in copper zones * @param aOption is the clearance area shape CUST_PAD_SHAPE_IN_ZONE option */ void SetCustomShapeInZoneOpt( CUST_PAD_SHAPE_IN_ZONE aOption ) { m_customShapeClearanceArea = aOption; } /** * Function SetAnchorPadShape * Set the shape of the anchor pad for custm shped pads. * @param the shape of the anchor pad shape( currently, only * PAD_SHAPE_RECT or PAD_SHAPE_CIRCLE. */ void SetAnchorPadShape( PAD_SHAPE_T aShape ) { m_anchorPadShape = ( aShape == PAD_SHAPE_RECT ) ? PAD_SHAPE_RECT : PAD_SHAPE_CIRCLE; m_boundingRadius = -1; } /** * @return true if the pad is on any copper layer, false otherwise. * pads can be only on tech layers to build special pads. * they are therefore not always on a copper layer */ bool IsOnCopperLayer() const override { return ( GetLayerSet() & LSET::AllCuMask() ) != 0; } void SetY( int y ) { m_Pos.y = y; } void SetX( int x ) { m_Pos.x = x; } void SetPos0( const wxPoint& aPos ) { m_Pos0 = aPos; } const wxPoint& GetPos0() const { return m_Pos0; } void SetY0( int y ) { m_Pos0.y = y; } void SetX0( int x ) { m_Pos0.x = x; } void SetSize( const wxSize& aSize ) { m_Size = aSize; m_boundingRadius = -1; } const wxSize& GetSize() const { return m_Size; } void SetDelta( const wxSize& aSize ) { m_DeltaSize = aSize; m_boundingRadius = -1; } const wxSize& GetDelta() const { return m_DeltaSize; } void SetDrillSize( const wxSize& aSize ) { m_Drill = aSize; } const wxSize& GetDrillSize() const { return m_Drill; } void SetOffset( const wxPoint& aOffset ) { m_Offset = aOffset; } const wxPoint& GetOffset() const { return m_Offset; } /** * Has meaning only for free shape pads. * add a free shape to the shape list. * the shape can be * a polygon (outline can have a thickness) * a thick segment * a filled circle or ring ( if thickness == 0, this is a filled circle, else a ring) * a arc * a curve */ void AddPrimitivePoly( const SHAPE_POLY_SET& aPoly, int aThickness, bool aMergePrimitives = true ); void AddPrimitivePoly( const std::vector& aPoly, int aThickness, bool aMergePrimitives = true ); void AddPrimitiveSegment( const wxPoint& aStart, const wxPoint& aEnd, int aThickness, bool aMergePrimitives = true ); void AddPrimitiveCircle( const wxPoint& aCenter, int aRadius, int aThickness, bool aMergePrimitives = true ); ///< ring or circle basic shape void AddPrimitiveRect( const wxPoint& aStart, const wxPoint& aEnd, int aThickness, bool aMergePrimitives = true ); void AddPrimitiveArc( const wxPoint& aCenter, const wxPoint& aStart, int aArcAngle, int aThickness, bool aMergePrimitives = true ); void AddPrimitiveCurve( const wxPoint& aStart, const wxPoint& aEnd, const wxPoint& aCtrl1, const wxPoint& aCtrl2, int aThickness, bool aMergePrimitives = true ); bool GetBestAnchorPosition( VECTOR2I& aPos ); /** * Merge all basic shapes, converted to a polygon in one polygon, * in m_customShapeAsPolygon * @return true if OK, false in there is more than one polygon * in m_customShapeAsPolygon * @param aMergedPolygon = the SHAPE_POLY_SET to fill. * if NULL, m_customShapeAsPolygon is the target * @param aCircleToSegmentsCount = number of segment to approximate a circle * (default = 32) * Note: The corners coordinates are relative to the pad position, orientation 0, */ bool MergePrimitivesAsPolygon( SHAPE_POLY_SET* aMergedPolygon = NULL ); /** * clear the basic shapes list */ void DeletePrimitivesList(); /** * When created, the corners coordinates are relative to the pad position, orientation 0, * in m_customShapeAsPolygon * CustomShapeAsPolygonToBoardPosition transform these coordinates to actual * (board) coordinates * @param aMergedPolygon = the corners coordinates, relative to aPosition and * rotated by aRotation * @param aPosition = the position of the shape (usually the pad shape, but * not always, when moving the pad) * @param aRotation = the rotation of the shape (usually the pad rotation, but * not always, in DRC) */ void CustomShapeAsPolygonToBoardPosition( SHAPE_POLY_SET * aMergedPolygon, wxPoint aPosition, double aRotation ) const; /** * Accessor to the basic shape list */ const std::vector& GetPrimitives() const { return m_basicShapes; } /** * Accessor to the custom shape as one polygon */ const SHAPE_POLY_SET& GetCustomShapeAsPolygon() const { return m_customShapeAsPolygon; } void Flip( const wxPoint& aCentre, bool aFlipLeftRight ) override; /** * Flip the basic shapes, in custom pads */ void FlipPrimitives(); /** * Mirror the primitives about a coordinate * * @param aX the x coordinate about which to mirror */ void MirrorXPrimitives( int aX ); /** * Import to the basic shape list * @return true if OK, false if issues * (more than one polygon to build the polygon shape list) */ bool SetPrimitives( const std::vector& aPrimitivesList ); /** * Add to the basic shape list * @return true if OK, false if issues * (more than one polygon to build the polygon shape list) */ bool AddPrimitives( const std::vector& aPrimitivesList ); /** * Function SetOrientation * sets the rotation angle of the pad. * @param aAngle is tenths of degrees, but will soon be degrees. If it is * outside of 0 - 3600, then it will be normalized before being saved. */ void SetOrientation( double aAngle ); /** * Set orientation in degrees */ void SetOrientationDegrees( double aOrientation ) { SetOrientation( aOrientation*10.0 ); } /** * Function GetOrientation * returns the rotation angle of the pad in tenths of degrees, but soon degrees. */ double GetOrientation() const { return m_Orient; } double GetOrientationDegrees() const { return m_Orient/10.0; } double GetOrientationRadians() const { return m_Orient*M_PI/1800; } void SetDrillShape( PAD_DRILL_SHAPE_T aDrillShape ) { m_drillShape = aDrillShape; } PAD_DRILL_SHAPE_T GetDrillShape() const { return m_drillShape; } /** * Function GetOblongGeometry calculates the start point, end point and width of an * equivalent segment which have the same position and width as the pad (for circular * of oval pads) or hole * * NB: points returned are RELATIVE to the PAD POSITION. For board coordinates holes * will need to be offset by GetPosition() and pads by ShapePos(). * * @param aStartPoint = first point of the equivalent segment, relative to the pad position. * @param aEndPoint = second point of the equivalent segment, relative to the pad position. * @param aWidth = width equivalent segment. */ void GetOblongGeometry( const wxSize& aDrillOrPadSize, wxPoint* aStartPoint, wxPoint* aEndPoint, int* aWidth ) const; void SetLayerSet( LSET aLayerMask ) { m_layerMask = aLayerMask; } LSET GetLayerSet() const override { return m_layerMask; } void SetAttribute( PAD_ATTR_T aAttribute ); PAD_ATTR_T GetAttribute() const { return m_Attribute; } void SetProperty( PAD_PROP_T aProperty ); PAD_PROP_T GetProperty() const { return m_Property; } // We don't currently have an attribute for APERTURE, and adding one will change the file // format, so for now just infer a copper-less pad to be an APERTURE pad. bool IsAperturePad() const { return ( m_layerMask & LSET::AllCuMask() ).none(); } void SetPadToDieLength( int aLength ) { m_LengthPadToDie = aLength; } int GetPadToDieLength() const { return m_LengthPadToDie; } int GetLocalSolderMaskMargin() const { return m_LocalSolderMaskMargin; } void SetLocalSolderMaskMargin( int aMargin ) { m_LocalSolderMaskMargin = aMargin; } int GetLocalClearance( wxString* aSource = nullptr ) const override; void SetLocalClearance( int aClearance ) { m_LocalClearance = aClearance; } int GetLocalSolderPasteMargin() const { return m_LocalSolderPasteMargin; } void SetLocalSolderPasteMargin( int aMargin ) { m_LocalSolderPasteMargin = aMargin; } double GetLocalSolderPasteMarginRatio() const { return m_LocalSolderPasteMarginRatio; } void SetLocalSolderPasteMarginRatio( double aRatio ) { m_LocalSolderPasteMarginRatio = aRatio; } /** * Function TransformShapeWithClearanceToPolygon * Convert the pad shape to a closed polygon * Used in filling zones calculations * Circles and arcs are approximated by segments * @param aCornerBuffer = a buffer to store the polygon * @param aClearanceValue = the clearance around the pad * @param aMaxError = Maximum error from true when converting arcs * @param ignoreLineWidth = used for edge cut items where the line width is only * for visualization */ void TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aClearanceValue, int aMaxError = ARC_HIGH_DEF, bool ignoreLineWidth = false ) const override; /** * Function GetLocalClearanceOverrides * returns any local clearance overrides set in the "classic" (ie: pre-rule) system. * @param aSource [out] optionally reports the source as a user-readable string * @return int - the clearance in internal units. */ int GetLocalClearanceOverrides( wxString* aSource = nullptr ) const override; // Mask margins handling: /** * Function GetSolderMaskMargin * @return the margin for the solder mask layer * usually > 0 (mask shape bigger than pad * For pads also on copper layers, the value (used to build a default shape) is * 1 - the local value * 2 - if 0, the parent footprint value * 3 - if 0, the global value * For pads NOT on copper layers, the value is the local value because there is * not default shape to build */ int GetSolderMaskMargin() const; /** * Function GetSolderPasteMargin * @return the margin for the solder mask layer * usually < 0 (mask shape smaller than pad) * because the margin can be dependent on the pad size, the margin has a x and a y value * * For pads also on copper layers, the value (used to build a default shape) is * 1 - the local value * 2 - if 0, the parent footprint value * 3 - if 0, the global value * * For pads NOT on copper layers, the value is the local value because there is * not default shape to build */ wxSize GetSolderPasteMargin() const; void SetZoneConnection( ZONE_CONNECTION aType ) { m_ZoneConnection = aType; } ZONE_CONNECTION GetZoneConnection() const; ZONE_CONNECTION GetLocalZoneConnection() const { return m_ZoneConnection; } void SetThermalWidth( int aWidth ) { m_ThermalWidth = aWidth; } int GetThermalWidth() const; void SetThermalGap( int aGap ) { m_ThermalGap = aGap; } int GetThermalGap() const; /** * Function BuildPadPolygon * Has meaning only for polygonal pads (trapezoid and rectangular) * Build the Corner list of the polygonal shape, * depending on shape, extra size (clearance ...) and orientation * @param aCoord = a buffer to fill (4 corners). * @param aInflateValue = wxSize: the clearance or margin value. value > 0: * inflate, < 0 deflate * @param aRotation = full rotation of the polygon */ void BuildPadPolygon( wxPoint aCoord[4], wxSize aInflateValue, double aRotation ) const; /** * Function GetRoundRectCornerRadius * Has meaning only for rounded rect pads * @return The radius of the rounded corners for this pad. */ int GetRoundRectCornerRadius() const { return GetRoundRectCornerRadius( m_Size ); } /** * Helper function GetRoundRectCornerRadius * Has meaning only for rounded rect pads * Returns the radius of the rounded corners of a rectangle * size aSize, using others setting of the pad * @param aSize = size of the of the round rect. Usually the pad size * but can be the size of the pad on solder mask or solder paste * @return The radius of the rounded corners for this pad size. */ int GetRoundRectCornerRadius( const wxSize& aSize ) const; /** * Set the rounded rectangle radius ratio based on a given radius * @param aRadius = desired radius of curvature */ void SetRoundRectCornerRadius( double aRadius ); /** * Function BuildPadShapePolygon * Build the Corner list of the polygonal shape, * depending on shape, extra size (clearance ...) pad and orientation * This function is similar to TransformShapeWithClearanceToPolygon, * but the difference is BuildPadShapePolygon creates a polygon shape exactly * similar to pad shape, which a size inflated by aInflateValue * and TransformShapeWithClearanceToPolygon creates a more complex shape (for instance * a rectangular pad is converted in a rectangulr shape with ronded corners) * @param aCornerBuffer = a buffer to fill. * @param aInflateValue = the clearance or margin value. * value > 0: inflate, < 0 deflate, = 0 : no change * the clearance can have different values for x and y directions * (relative to the pad) * @param aError = Maximum deviation of an arc from the polygon segment */ void BuildPadShapePolygon( SHAPE_POLY_SET& aCornerBuffer, wxSize aInflateValue, int aError = ARC_HIGH_DEF ) const; /** * Function BuildPadDrillShapePolygon * Build the Corner list of the polygonal drill shape, * depending on shape pad hole and orientation * @param aCornerBuffer = a buffer to fill. * @param aInflateValue = the clearance or margin value. * value > 0: inflate, < 0 deflate, = 0 : no change * @param aError = Maximum deviation of an arc from the polygon approximation * @return false if the pad has no hole, true otherwise */ bool BuildPadDrillShapePolygon( SHAPE_POLY_SET& aCornerBuffer, int aInflateValue, int aError = ARC_HIGH_DEF ) const; /** * Function BuildSegmentFromOvalShape * Has meaning only for OVAL (and ROUND) pads * Build an equivalent segment having the same shape as the OVAL shape, * Useful in draw function and in DRC and HitTest functions, * because segments are already well handled by track tests * @param aSegStart = the starting point of the equivalent segment relative to the shape * position. * @param aSegEnd = the ending point of the equivalent segment, relative to the shape position * @param aRotation = full rotation of the segment * @param aRotation = full rotation of the segment * @param aMargin = a margin around the shape (for instance mask margin) * @return the width of the segment */ int BuildSegmentFromOvalShape( wxPoint& aSegStart, wxPoint& aSegEnd, double aRotation, const wxSize& aMargin ) const; /** * Function GetBoundingRadius * returns the radius of a minimum sized circle which fully encloses this pad. * The center is the pad position */ int GetBoundingRadius() const { // Any member function which would affect this calculation should set // m_boundingRadius to -1 to re-trigger the calculation from here. // Currently that is only m_Size, m_DeltaSize, and m_padShape accessors. if( m_boundingRadius == -1 ) { m_boundingRadius = boundingRadius(); } return m_boundingRadius; } wxPoint ShapePos() const; /** * has meaning only for rounded rect pads * @return the scaling factor between the smaller Y or Y size and the radius * of the rounded corners. * Cannot be > 0.5 * the normalized IPC-7351C value is 0.25 */ double GetRoundRectRadiusRatio() const { return m_padRoundRectRadiusScale; } /** * has meaning only for rounded rect pads * Set the scaling factor between the smaller Y or Y size and the radius * of the rounded corners. * Cannot be < 0.5 and obviously must be > 0 * the normalized IPC-7351C value is 0.25 */ void SetRoundRectRadiusRatio( double aRadiusScale ) { if( aRadiusScale < 0.0 ) aRadiusScale = 0.0; m_padRoundRectRadiusScale = std::min( aRadiusScale, 0.5 ); } /** * has meaning only for chamfered rect pads * @return the ratio between the smaller Y or Y size and the radius * of the rounded corners. * Cannot be > 0.5 */ double GetChamferRectRatio() const { return m_padChamferRectScale; } /** * has meaning only for chamfered rect pads * Set the ratio between the smaller Y or Y size and the radius * of the rounded corners. * Cannot be < 0.5 and obviously must be > 0 */ void SetChamferRectRatio( double aChamferScale ) { if( aChamferScale < 0.0 ) aChamferScale = 0.0; m_padChamferRectScale = std::min( aChamferScale, 0.5 ); } /** * has meaning only for chamfered rect pads * @return the position of the chamfer for a 0 orientation */ int GetChamferPositions() const { return m_chamferPositions; } /** * has meaning only for chamfered rect pads * set the position of the chamfer for a 0 orientation, one of * RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT, * RECT_CHAMFER_BOTTOM_LEFT, RECT_CHAMFER_BOTTOM_RIGHT */ void SetChamferPositions( int aChamferPositions ) { m_chamferPositions = aChamferPositions; } /** * Function GetSubRatsnest * @return int - the netcode */ int GetSubRatsnest() const { return m_SubRatsnest; } void SetSubRatsnest( int aSubRatsnest ) { m_SubRatsnest = aSubRatsnest; } void GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) override; bool IsOnLayer( PCB_LAYER_ID aLayer ) const override { return m_layerMask[aLayer]; } bool HitTest( const wxPoint& aPosition, int aAccuracy = 0 ) const override; bool HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy = 0 ) const override; wxString GetClass() const override { return wxT( "PAD" ); } // Virtual function: const EDA_RECT GetBoundingBox() const override; ///> Set absolute coordinates. void SetDrawCoord(); //todo: Remove SetLocalCoord along with m_pos ///> Set relative coordinates. void SetLocalCoord(); /** * Function Compare * compares two pads and return 0 if they are equal. * @return int - <0 if left less than right, 0 if equal, >0 if left greater than right. */ static int Compare( const D_PAD* padref, const D_PAD* padcmp ); void Move( const wxPoint& aMoveVector ) override { m_Pos += aMoveVector; SetLocalCoord(); } void Rotate( const wxPoint& aRotCentre, double aAngle ) override; wxString GetSelectMenuText( EDA_UNITS aUnits ) const override; BITMAP_DEF GetMenuImage() const override; /** * Function ShowPadShape * @return the name of the shape */ wxString ShowPadShape() const; /** * Function ShowPadAttr * @return the name of the pad type (attribute) : STD, SMD ... */ wxString ShowPadAttr() const; /** * Function AppendConfigs * appends to @a aResult the configuration setting accessors which will later * allow reading or writing of configuration file information directly into * this object. */ void AppendConfigs( std::vector* aResult ); EDA_ITEM* Clone() const override; /** * same as Clone, but returns a D_PAD item. * Useful mainly for python scripts, because Clone returns an EDA_ITEM. */ D_PAD* ClonePad() const { return (D_PAD*) Clone(); } /** * A pad whose hole is the same size as the pad is a NPTH. However, if the user * fails to mark this correctly then the pad will become invisible on the board. * This check allows us to special-case this error-condition. */ bool PadShouldBeNPTH() const; virtual void ViewGetLayers( int aLayers[], int& aCount ) const override; virtual unsigned int ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const override; virtual const BOX2I ViewBBox() const override; virtual void SwapData( BOARD_ITEM* aImage ) override; #if defined(DEBUG) virtual void Show( int nestLevel, std::ostream& os ) const override { ShowDummy( os ); } #endif private: /** * Function boundingRadius * returns a calculated radius of a bounding circle for this pad. */ int boundingRadius() const; bool buildCustomPadPolygon( SHAPE_POLY_SET* aMergedPolygon, int aError ); private: // Private variable members: // Actually computed and cached on demand by the accessor mutable int m_boundingRadius; ///< radius of the circle containing the pad shape wxString m_name; ///< pad name (pin number in schematic) wxString m_pinFunction; ///< pin function in schematic // TODO: Remove m_Pos from Pad or make private. View positions calculated from m_Pos0 wxPoint m_Pos; ///< pad Position on board PAD_SHAPE_T m_padShape; ///< Shape: PAD_SHAPE_CIRCLE, PAD_SHAPE_RECT, ///< PAD_SHAPE_OVAL, PAD_SHAPE_TRAPEZOID, ///< PAD_SHAPE_ROUNDRECT, PAD_SHAPE_POLYGON /** for free shape pads: a list of basic shapes, * in local coordinates, orient 0, coordinates relative to m_Pos * They are expected to define only one copper area. */ std::vector m_basicShapes; /** for free shape pads: the set of basic shapes, merged as one polygon, * in local coordinates, orient 0, coordinates relative to m_Pos */ SHAPE_POLY_SET m_customShapeAsPolygon; /** * How to build the custom shape in zone, to create the clearance area: * CUST_PAD_SHAPE_IN_ZONE_OUTLINE = use pad shape * CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL = use the convex hull of the pad shape * other values are currently reserved */ CUST_PAD_SHAPE_IN_ZONE m_customShapeClearanceArea; int m_SubRatsnest; ///< variable used in rats nest computations ///< handle subnet (block) number in ratsnest connection wxSize m_Drill; ///< Drill diam (drill shape = PAD_CIRCLE) or drill size ///< (shape = OVAL) for drill shape = PAD_CIRCLE, drill ///< diam = m_Drill.x wxSize m_Size; ///< X and Y size ( relative to orient 0) PAD_DRILL_SHAPE_T m_drillShape; ///< PAD_DRILL_SHAPE_CIRCLE, PAD_DRILL_SHAPE_OBLONG double m_padRoundRectRadiusScale; ///< scaling factor from smallest m_Size coord ///< to corner radius, default 0.25 double m_padChamferRectScale; ///< scaling factor from smallest m_Size coord ///< to chamfer value, default 0.25 int m_chamferPositions; ///< the positions of the chamfered position for a 0 orientation PAD_SHAPE_T m_anchorPadShape; ///< for custom shaped pads: shape of pad anchor, ///< PAD_SHAPE_RECT, PAD_SHAPE_CIRCLE /** * m_Offset is useful only for oblong and rect pads (it can be used for other * shapes, but without any interest). * This is the offset between the pad hole and the pad shape (you must * understand here pad shape = copper area around the hole) * Most of cases, the hole is the center of the shape (m_Offset = 0). * But some board designers use oblong/rect pads with a hole moved to one of the * oblong/rect pad shape ends. * In all cases the pad position is the pad hole. * The physical shape position (used to draw it for instance) is pad * position (m_Pos) + m_Offset. * D_PAD::ShapePos() returns the physical shape position according to * the offset and the pad rotation. */ wxPoint m_Offset; LSET m_layerMask; ///< Bitwise layer :1= copper layer, 15= cmp, ///< 2..14 = internal layers ///< 16 .. 31 = technical layers wxSize m_DeltaSize; ///< delta on rectangular shapes wxPoint m_Pos0; ///< Initial Pad position (i.e. pad position relative to the ///< module anchor, orientation 0) PAD_ATTR_T m_Attribute; ///< PAD_ATTRIB_NORMAL, PAD_ATTRIB_SMD, ///< PAD_ATTRIB_CONN, PAD_ATTRIB_HOLE_NOT_PLATED PAD_PROP_T m_Property; ///< property in fab files (BGA, FIDUCIAL, TEST POINT, CASTELLATED) double m_Orient; ///< in 1/10 degrees int m_LengthPadToDie; ///< Length net from pad to die, inside the package /// Local clearance. When null, the module default value is used. /// when the module default value is null, the netclass value is used /// Usually the local clearance is null int m_LocalClearance; /// Local mask margins: when 0, the parent footprint design values are used int m_LocalSolderMaskMargin; ///< Local solder mask margin int m_LocalSolderPasteMargin; ///< Local solder paste margin absolute value double m_LocalSolderPasteMarginRatio; ///< Local solder mask margin ratio value of pad size ///< The final margin is the sum of these 2 values /// how the connection to zone is made: no connection, thermal relief ... ZONE_CONNECTION m_ZoneConnection; int m_ThermalWidth; int m_ThermalGap; }; #endif // PAD_H_