/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2009-2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2018 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /*** * @file board_items_to_polygon_shape_transform.cpp * @brief function to convert shapes of items ( pads, tracks... ) to polygons */ /* Function to convert pad and track shapes to polygons * Used to fill zones areas and in 3D viewer */ #include #include #include #include // for IU_PER_MM #include #include #include #include #include #include #include #include #include #include #include #include #include #include // A helper struct for the callback function // These variables are parameters used in addTextSegmToPoly. // But addTextSegmToPoly is a call-back function, // so we cannot send them as arguments. struct TSEGM_2_POLY_PRMS { int m_textWidth; int m_textCircle2SegmentCount; SHAPE_POLY_SET* m_cornerBuffer; }; TSEGM_2_POLY_PRMS prms; // The max error is the distance between the middle of a segment, and the circle // for circle/arc to segment approximation. // Warning: too small values can create very long calculation time in zone filling // 0.05 to 0.01 mm is a reasonable value double s_error_max = Millimeter2iu( 0.02 ); // This is a call back function, used by DrawGraphicText to draw the 3D text shape: static void addTextSegmToPoly( int x0, int y0, int xf, int yf, void* aData ) { TSEGM_2_POLY_PRMS* prm = static_cast( aData ); TransformRoundedEndsSegmentToPolygon( *prm->m_cornerBuffer, wxPoint( x0, y0), wxPoint( xf, yf ), prm->m_textCircle2SegmentCount, prm->m_textWidth ); } void BOARD::ConvertBrdLayerToPolygonalContours( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aOutlines ) { // Number of segments to convert a circle to a polygon const int segcountforcircle = ARC_APPROX_SEGMENTS_COUNT_HIGH_DEF; double correctionFactor = GetCircletoPolyCorrectionFactor( segcountforcircle ); // convert tracks and vias: for( TRACK* track = m_Track; track != NULL; track = track->Next() ) { if( !track->IsOnLayer( aLayer ) ) continue; track->TransformShapeWithClearanceToPolygon( aOutlines, 0, segcountforcircle, correctionFactor ); } // convert pads for( MODULE* module = m_Modules; module != NULL; module = module->Next() ) { module->TransformPadsShapesWithClearanceToPolygon( aLayer, aOutlines, 0, segcountforcircle, correctionFactor ); // Micro-wave modules may have items on copper layers module->TransformGraphicShapesWithClearanceToPolygonSet( aLayer, aOutlines, 0, segcountforcircle, correctionFactor ); } // convert copper zones for( int ii = 0; ii < GetAreaCount(); ii++ ) { ZONE_CONTAINER* zone = GetArea( ii ); PCB_LAYER_ID zonelayer = zone->GetLayer(); if( zonelayer == aLayer ) zone->TransformSolidAreasShapesToPolygonSet( aOutlines, segcountforcircle, correctionFactor ); } // convert graphic items on copper layers (texts) for( BOARD_ITEM* item = m_Drawings; item; item = item->Next() ) { if( !item->IsOnLayer( aLayer ) ) continue; switch( item->Type() ) { case PCB_LINE_T: // should not exist on copper layers ( (DRAWSEGMENT*) item )->TransformShapeWithClearanceToPolygon( aOutlines, 0, segcountforcircle, correctionFactor ); break; case PCB_TEXT_T: ( (TEXTE_PCB*) item )->TransformShapeWithClearanceToPolygonSet( aOutlines, 0, segcountforcircle, correctionFactor ); break; default: break; } } } void MODULE::TransformPadsShapesWithClearanceToPolygon( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aCornerBuffer, int aInflateValue, int aCircleToSegmentsCount, double aCorrectionFactor, bool aSkipNPTHPadsWihNoCopper ) const { D_PAD* pad = PadsList(); wxSize margin; for( ; pad != NULL; pad = pad->Next() ) { if( aLayer != UNDEFINED_LAYER && !pad->IsOnLayer(aLayer) ) continue; // NPTH pads are not drawn on layers if the shape size and pos is the same // as their hole: if( aSkipNPTHPadsWihNoCopper && pad->GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED ) { if( pad->GetDrillSize() == pad->GetSize() && pad->GetOffset() == wxPoint( 0, 0 ) ) { switch( pad->GetShape() ) { case PAD_SHAPE_CIRCLE: if( pad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) continue; break; case PAD_SHAPE_OVAL: if( pad->GetDrillShape() != PAD_DRILL_SHAPE_CIRCLE ) continue; break; default: break; } } } switch( aLayer ) { case F_Mask: case B_Mask: margin.x = margin.y = pad->GetSolderMaskMargin() + aInflateValue; break; case F_Paste: case B_Paste: margin = pad->GetSolderPasteMargin(); margin.x += aInflateValue; margin.y += aInflateValue; break; default: margin.x = margin.y = aInflateValue; break; } pad->BuildPadShapePolygon( aCornerBuffer, margin, aCircleToSegmentsCount, aCorrectionFactor ); } } /* generate shapes of graphic items (outlines) on layer aLayer as polygons, * and adds these polygons to aCornerBuffer * aCornerBuffer = the buffer to store polygons * aInflateValue = a value to inflate shapes * aCircleToSegmentsCount = number of segments to approximate a circle * aCorrectionFactor = the correction to apply to the circle radius * to generate the polygon. * if aCorrectionFactor = 1.0, the polygon is inside the circle * the radius of circle approximated by segments is * initial radius * aCorrectionFactor */ void MODULE::TransformGraphicShapesWithClearanceToPolygonSet( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aCornerBuffer, int aInflateValue, int aCircleToSegmentsCount, double aCorrectionFactor, int aCircleToSegmentsCountForTexts, bool aIncludeText ) const { std::vector texts; // List of TEXTE_MODULE to convert EDGE_MODULE* outline; for( EDA_ITEM* item = GraphicalItemsList(); item != NULL; item = item->Next() ) { switch( item->Type() ) { case PCB_MODULE_TEXT_T: { TEXTE_MODULE* text = static_cast( item ); if( ( aLayer != UNDEFINED_LAYER && text->GetLayer() == aLayer ) && text->IsVisible() ) texts.push_back( text ); break; } case PCB_MODULE_EDGE_T: outline = (EDGE_MODULE*) item; if( aLayer != UNDEFINED_LAYER && outline->GetLayer() != aLayer ) break; outline->TransformShapeWithClearanceToPolygon( aCornerBuffer, 0, aCircleToSegmentsCount, aCorrectionFactor ); break; default: break; } } if( !aIncludeText ) return; // Convert texts sur modules if( Reference().GetLayer() == aLayer && Reference().IsVisible() ) texts.push_back( &Reference() ); if( Value().GetLayer() == aLayer && Value().IsVisible() ) texts.push_back( &Value() ); prms.m_cornerBuffer = &aCornerBuffer; // To allow optimization of circles approximated by segments, // aCircleToSegmentsCountForTexts, when not 0, is used. // if 0 (default value) the aCircleToSegmentsCount is used prms.m_textCircle2SegmentCount = aCircleToSegmentsCountForTexts ? aCircleToSegmentsCountForTexts : aCircleToSegmentsCount; for( unsigned ii = 0; ii < texts.size(); ii++ ) { TEXTE_MODULE *textmod = texts[ii]; prms.m_textWidth = textmod->GetThickness() + ( 2 * aInflateValue ); wxSize size = textmod->GetTextSize(); if( textmod->IsMirrored() ) size.x = -size.x; DrawGraphicText( NULL, NULL, textmod->GetTextPos(), BLACK, textmod->GetShownText(), textmod->GetDrawRotation(), size, textmod->GetHorizJustify(), textmod->GetVertJustify(), textmod->GetThickness(), textmod->IsItalic(), true, addTextSegmToPoly, &prms ); } } // Same as function TransformGraphicShapesWithClearanceToPolygonSet but // this only render text void MODULE::TransformGraphicTextWithClearanceToPolygonSet( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aCornerBuffer, int aInflateValue, int aCircleToSegmentsCount, double aCorrectionFactor, int aCircleToSegmentsCountForTexts ) const { std::vector texts; // List of TEXTE_MODULE to convert for( EDA_ITEM* item = GraphicalItemsList(); item != NULL; item = item->Next() ) { switch( item->Type() ) { case PCB_MODULE_TEXT_T: { TEXTE_MODULE* text = static_cast( item ); if( text->GetLayer() == aLayer && text->IsVisible() ) texts.push_back( text ); break; } case PCB_MODULE_EDGE_T: // This function does not render this break; default: break; } } // Convert texts sur modules if( Reference().GetLayer() == aLayer && Reference().IsVisible() ) texts.push_back( &Reference() ); if( Value().GetLayer() == aLayer && Value().IsVisible() ) texts.push_back( &Value() ); prms.m_cornerBuffer = &aCornerBuffer; // To allow optimization of circles approximated by segments, // aCircleToSegmentsCountForTexts, when not 0, is used. // if 0 (default value) the aCircleToSegmentsCount is used prms.m_textCircle2SegmentCount = aCircleToSegmentsCountForTexts ? aCircleToSegmentsCountForTexts : aCircleToSegmentsCount; for( unsigned ii = 0; ii < texts.size(); ii++ ) { TEXTE_MODULE *textmod = texts[ii]; prms.m_textWidth = textmod->GetThickness() + ( 2 * aInflateValue ); wxSize size = textmod->GetTextSize(); if( textmod->IsMirrored() ) size.x = -size.x; DrawGraphicText( NULL, NULL, textmod->GetTextPos(), BLACK, textmod->GetShownText(), textmod->GetDrawRotation(), size, textmod->GetHorizJustify(), textmod->GetVertJustify(), textmod->GetThickness(), textmod->IsItalic(), true, addTextSegmToPoly, &prms ); } } /* Function TransformSolidAreasShapesToPolygonSet * Convert solid areas full shapes to polygon set * (the full shape is the polygon area with a thick outline) * Used in 3D view * Arcs (ends of segments) are approximated by segments * aCornerBuffer = a buffer to store the polygons * aCircleToSegmentsCount = the number of segments to approximate a circle * aCorrectionFactor = the correction to apply to arcs radius to roughly * keep arc radius when approximated by segments */ void ZONE_CONTAINER::TransformSolidAreasShapesToPolygonSet( SHAPE_POLY_SET& aCornerBuffer, int aCircleToSegmentsCount, double aCorrectionFactor ) const { if( GetFilledPolysList().IsEmpty() ) return; // add filled areas polygons aCornerBuffer.Append( m_FilledPolysList ); // add filled areas outlines, which are drawn with thick lines for( int i = 0; i < m_FilledPolysList.OutlineCount(); i++ ) { const SHAPE_LINE_CHAIN& path = m_FilledPolysList.COutline( i ); for( int j = 0; j < path.PointCount(); j++ ) { const VECTOR2I& a = path.CPoint( j ); const VECTOR2I& b = path.CPoint( j + 1 ); TransformRoundedEndsSegmentToPolygon( aCornerBuffer, wxPoint( a.x, a.y ), wxPoint( b.x, b.y ), aCircleToSegmentsCount, GetMinThickness() ); } } } /** * Function TransformBoundingBoxWithClearanceToPolygon * Convert the text bounding box to a rectangular polygon * Used in filling zones calculations * Circles and arcs are approximated by segments * @param aCornerBuffer = a buffer to store the polygon * @param aClearanceValue = the clearance around the text bounding box */ void EDA_TEXT::TransformBoundingBoxWithClearanceToPolygon( SHAPE_POLY_SET* aCornerBuffer, int aClearanceValue ) const { // Oh dear. When in UTF-8 mode, wxString puts string iterators in a linked list, and // that linked list is not thread-safe. std::lock_guard guard( m_mutex ); if( GetText().Length() == 0 ) return; wxPoint corners[4]; // Buffer of polygon corners EDA_RECT rect = GetTextBox( -1 ); rect.Inflate( aClearanceValue ); corners[0].x = rect.GetOrigin().x; corners[0].y = rect.GetOrigin().y; corners[1].y = corners[0].y; corners[1].x = rect.GetRight(); corners[2].x = corners[1].x; corners[2].y = rect.GetBottom(); corners[3].y = corners[2].y; corners[3].x = corners[0].x; aCornerBuffer->NewOutline(); for( int ii = 0; ii < 4; ii++ ) { // Rotate polygon RotatePoint( &corners[ii].x, &corners[ii].y, GetTextPos().x, GetTextPos().y, GetTextAngle() ); aCornerBuffer->Append( corners[ii].x, corners[ii].y ); } } /* Function TransformShapeWithClearanceToPolygonSet * Convert the text shape to a set of polygons (one by segment) * Used in filling zones calculations and 3D view * Circles and arcs are approximated by segments * aCornerBuffer = SHAPE_POLY_SET to store the polygon corners * aClearanceValue = the clearance around the text * aCircleToSegmentsCount = the number of segments to approximate a circle * aCorrectionFactor = the correction to apply to circles radius to keep * clearance when the circle is approximated by segment bigger or equal * to the real clearance value (usually near from 1.0) */ void TEXTE_PCB::TransformShapeWithClearanceToPolygonSet( SHAPE_POLY_SET& aCornerBuffer, int aClearanceValue, int aCircleToSegmentsCount, double aCorrectionFactor ) const { wxSize size = GetTextSize(); if( IsMirrored() ) size.x = -size.x; prms.m_cornerBuffer = &aCornerBuffer; prms.m_textWidth = GetThickness() + ( 2 * aClearanceValue ); prms.m_textCircle2SegmentCount = aCircleToSegmentsCount; COLOR4D color = COLOR4D::BLACK; // not actually used, but needed by DrawGraphicText if( IsMultilineAllowed() ) { wxArrayString strings_list; wxStringSplit( GetShownText(), strings_list, '\n' ); std::vector positions; positions.reserve( strings_list.Count() ); GetPositionsOfLinesOfMultilineText( positions, strings_list.Count() ); for( unsigned ii = 0; ii < strings_list.Count(); ii++ ) { wxString txt = strings_list.Item( ii ); DrawGraphicText( NULL, NULL, positions[ii], color, txt, GetTextAngle(), size, GetHorizJustify(), GetVertJustify(), GetThickness(), IsItalic(), true, addTextSegmToPoly, &prms ); } } else { DrawGraphicText( NULL, NULL, GetTextPos(), color, GetShownText(), GetTextAngle(), size, GetHorizJustify(), GetVertJustify(), GetThickness(), IsItalic(), true, addTextSegmToPoly, &prms ); } } /** * Function TransformShapeWithClearanceToPolygon * Convert the track shape to a closed polygon * Used in filling zones calculations * Circles and arcs are approximated by segments * @param aCornerBuffer = a buffer to store the polygon * @param aClearanceValue = the clearance around the pad * @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCorrectionFactor = the correction to apply to circles radius to keep * clearance when the circle is approxiamted by segment bigger or equal * to the real clearance value (usually near from 1.0) * @param ignoreLineWidth = used for edge cut items where the line width is only * for visualization */ void DRAWSEGMENT::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aClearanceValue, int aCircleToSegmentsCount, double aCorrectionFactor, bool ignoreLineWidth ) const { // The full width of the lines to create: int linewidth = ignoreLineWidth ? 0 : m_Width; linewidth += 2 * aClearanceValue; // Creating a reliable clearance shape for circles and arcs is not so easy, due to // the error created by segment approximation. // for a cicle this is not so hard: create a polygon from a circle slightly bigger: // thickness = linewidth + s_error_max, and radius = initial radius + s_error_max/2 // giving a shape with a suitable internal radius and external radius // For an arc this is more tricky: TODO if( m_Shape == S_CIRCLE || m_Shape == S_ARC ) { int segCount = GetArcToSegmentCount( GetRadius(), s_error_max, 360.0 ); if( segCount > aCircleToSegmentsCount ) aCircleToSegmentsCount = segCount; } switch( m_Shape ) { case S_CIRCLE: TransformRingToPolygon( aCornerBuffer, GetCenter(), GetRadius() + (s_error_max/2), aCircleToSegmentsCount, linewidth + s_error_max ) ; break; case S_ARC: TransformArcToPolygon( aCornerBuffer, GetCenter(), GetArcStart(), m_Angle, aCircleToSegmentsCount, linewidth ); break; case S_SEGMENT: TransformOvalClearanceToPolygon( aCornerBuffer, m_Start, m_End, linewidth, aCircleToSegmentsCount, aCorrectionFactor ); break; case S_POLYGON: if( IsPolyShapeValid() ) { // The polygon is expected to be a simple polygon // not self intersecting, no hole. MODULE* module = GetParentModule(); // NULL for items not in footprints double orientation = module ? module->GetOrientation() : 0.0; wxPoint offset; if( module ) offset = module->GetPosition(); // Build the polygon with the actual position and orientation: std::vector< wxPoint> poly; poly = BuildPolyPointsList(); for( unsigned ii = 0; ii < poly.size(); ii++ ) { RotatePoint( &poly[ii], orientation ); poly[ii] += offset; } // If the polygon is not filled, treat it as a closed set of lines if( !IsPolygonFilled() ) { for( size_t ii = 1; ii < poly.size(); ii++ ) { TransformOvalClearanceToPolygon( aCornerBuffer, poly[ii - 1], poly[ii], linewidth, aCircleToSegmentsCount, aCorrectionFactor ); } TransformOvalClearanceToPolygon( aCornerBuffer, poly.back(), poly.front(), linewidth, aCircleToSegmentsCount, aCorrectionFactor ); break; } // Generate polygons for the outline + clearance // This code is compatible with a polygon with holes linked to external outline // by overlapping segments. // Insert the initial polygon: aCornerBuffer.NewOutline(); for( unsigned ii = 0; ii < poly.size(); ii++ ) aCornerBuffer.Append( poly[ii].x, poly[ii].y ); if( linewidth ) // Add thick outlines { wxPoint corner1( poly[poly.size()-1] ); for( unsigned ii = 0; ii < poly.size(); ii++ ) { wxPoint corner2( poly[ii] ); if( corner2 != corner1 ) { TransformRoundedEndsSegmentToPolygon( aCornerBuffer, corner1, corner2, aCircleToSegmentsCount, linewidth ); } corner1 = corner2; } } } break; case S_CURVE: // Bezier curve { std::vector ctrlPoints = { m_Start, m_BezierC1, m_BezierC2, m_End }; BEZIER_POLY converter( ctrlPoints ); std::vector< wxPoint> poly; converter.GetPoly( poly, m_Width ); for( unsigned ii = 1; ii < poly.size(); ii++ ) { TransformRoundedEndsSegmentToPolygon( aCornerBuffer, poly[ii-1], poly[ii], aCircleToSegmentsCount, linewidth ); } } break; default: break; } } /** * Function TransformShapeWithClearanceToPolygon * Convert the track shape to a closed polygon * Used in filling zones calculations * Circles (vias) and arcs (ends of tracks) are approximated by segments * @param aCornerBuffer = a buffer to store the polygon * @param aClearanceValue = the clearance around the pad * @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCorrectionFactor = the correction to apply to circles radius to keep * clearance when the circle is approximated by segment bigger or equal * to the real clearance value (usually near from 1.0) * @param ignoreLineWidth = used for edge cut items where the line width is only * for visualization */ void TRACK::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aClearanceValue, int aCircleToSegmentsCount, double aCorrectionFactor, bool ignoreLineWidth ) const { wxASSERT_MSG( !ignoreLineWidth, "IgnoreLineWidth has no meaning for tracks." ); switch( Type() ) { case PCB_VIA_T: { int radius = (m_Width / 2) + aClearanceValue; radius = KiROUND( radius * aCorrectionFactor ); TransformCircleToPolygon( aCornerBuffer, m_Start, radius, aCircleToSegmentsCount ); } break; default: TransformOvalClearanceToPolygon( aCornerBuffer, m_Start, m_End, m_Width + ( 2 * aClearanceValue), aCircleToSegmentsCount, aCorrectionFactor ); break; } } /* Function TransformShapeWithClearanceToPolygon * Convert the pad shape to a closed polygon * Used in filling zones calculations and 3D view generation * Circles and arcs are approximated by segments * aCornerBuffer = a SHAPE_POLY_SET to store the polygon corners * aClearanceValue = the clearance around the pad * aCircleToSegmentsCount = the number of segments to approximate a circle * aCorrectionFactor = the correction to apply to circles radius to keep * clearance when the circle is approximated by segment bigger or equal * to the real clearance value (usually near from 1.0) * @param ignoreLineWidth = used for edge cut items where the line width is only * for visualization */ void D_PAD::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aClearanceValue, int aCircleToSegmentsCount, double aCorrectionFactor, bool ignoreLineWidth ) const { wxASSERT_MSG( !ignoreLineWidth, "IgnoreLineWidth has no meaning for pads." ); double angle = m_Orient; int dx = (m_Size.x / 2) + aClearanceValue; int dy = (m_Size.y / 2) + aClearanceValue; wxPoint padShapePos = ShapePos(); /* Note: for pad having a shape offset, * the pad position is NOT the shape position */ switch( GetShape() ) { case PAD_SHAPE_CIRCLE: dx = KiROUND( dx * aCorrectionFactor ); TransformCircleToPolygon( aCornerBuffer, padShapePos, dx, aCircleToSegmentsCount ); break; case PAD_SHAPE_OVAL: // An oval pad has the same shape as a segment with rounded ends // If the oval is actually a circle (same x/y size), treat it the same if( dx == dy ) { dx = KiROUND( dx * aCorrectionFactor ); TransformCircleToPolygon( aCornerBuffer, padShapePos, dx, aCircleToSegmentsCount ); } else { int width; wxPoint shape_offset; if( dy > dx ) // Oval pad X/Y ratio for choosing translation axis { shape_offset.y = dy - dx; width = dx * 2; } else //if( dy <= dx ) { shape_offset.x = dy - dx; width = dy * 2; } RotatePoint( &shape_offset, angle ); wxPoint start = padShapePos - shape_offset; wxPoint end = padShapePos + shape_offset; TransformOvalClearanceToPolygon( aCornerBuffer, start, end, width, aCircleToSegmentsCount, aCorrectionFactor ); } break; case PAD_SHAPE_TRAPEZOID: case PAD_SHAPE_RECT: { wxPoint corners[4]; BuildPadPolygon( corners, wxSize( 0, 0 ), angle ); SHAPE_POLY_SET outline; outline.NewOutline(); for( int ii = 0; ii < 4; ii++ ) { corners[ii] += padShapePos; outline.Append( corners[ii].x, corners[ii].y ); } int rounding_radius = int( aClearanceValue * aCorrectionFactor ); outline.Inflate( rounding_radius, aCircleToSegmentsCount ); aCornerBuffer.Append( outline ); } break; case PAD_SHAPE_ROUNDRECT: { SHAPE_POLY_SET outline; int pad_radius = GetRoundRectCornerRadius(); int clearance = int( aClearanceValue * aCorrectionFactor ); int rounding_radius = pad_radius + clearance; wxSize shapesize( m_Size ); shapesize.x += clearance*2; shapesize.y += clearance*2; TransformRoundRectToPolygon( outline, padShapePos, shapesize, angle, rounding_radius, aCircleToSegmentsCount ); aCornerBuffer.Append( outline ); } break; case PAD_SHAPE_CUSTOM: { int clearance = KiROUND( aClearanceValue * aCorrectionFactor ); SHAPE_POLY_SET outline; // Will contain the corners in board coordinates outline.Append( m_customShapeAsPolygon ); CustomShapeAsPolygonToBoardPosition( &outline, GetPosition(), GetOrientation() ); outline.Simplify( SHAPE_POLY_SET::PM_FAST ); outline.Inflate( clearance, aCircleToSegmentsCount ); outline.Fracture( SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( outline ); } break; } } /* * Function BuildPadShapePolygon * Build the Corner list of the polygonal shape, * depending on shape, extra size (clearance ...) pad and orientation * Note: for Round and oval pads this function is equivalent to * TransformShapeWithClearanceToPolygon, but not for other shapes */ void D_PAD::BuildPadShapePolygon( SHAPE_POLY_SET& aCornerBuffer, wxSize aInflateValue, int aSegmentsPerCircle, double aCorrectionFactor ) const { wxPoint corners[4]; wxPoint padShapePos = ShapePos(); /* Note: for pad having a shape offset, * the pad position is NOT the shape position */ switch( GetShape() ) { case PAD_SHAPE_CIRCLE: case PAD_SHAPE_OVAL: case PAD_SHAPE_ROUNDRECT: { // We are using TransformShapeWithClearanceToPolygon to build the shape. // Currently, this method uses only the same inflate value for X and Y dirs. // so because here this is not the case, we use a inflated dummy pad to build // the polygonal shape // TODO: remove this dummy pad when TransformShapeWithClearanceToPolygon will use // a wxSize to inflate the pad size D_PAD dummy( *this ); dummy.SetSize( GetSize() + aInflateValue + aInflateValue ); dummy.TransformShapeWithClearanceToPolygon( aCornerBuffer, 0, aSegmentsPerCircle, aCorrectionFactor ); } break; case PAD_SHAPE_TRAPEZOID: case PAD_SHAPE_RECT: aCornerBuffer.NewOutline(); BuildPadPolygon( corners, aInflateValue, m_Orient ); for( int ii = 0; ii < 4; ii++ ) { corners[ii] += padShapePos; // Shift origin to position aCornerBuffer.Append( corners[ii].x, corners[ii].y ); } break; case PAD_SHAPE_CUSTOM: // for a custom shape, that is in fact a polygon (with holes), we can use only a inflate value. // so use ( aInflateValue.x + aInflateValue.y ) / 2 as polygon inflate value. // (different values for aInflateValue.x and aInflateValue.y has no sense for a custom pad) TransformShapeWithClearanceToPolygon( aCornerBuffer, ( aInflateValue.x + aInflateValue.y ) / 2, aSegmentsPerCircle, aCorrectionFactor ); break; } } /* * Function BuildPadDrillShapePolygon * Build the Corner list of the polygonal drill shape, * depending on shape pad hole and orientation * return false if the pad has no hole, true otherwise */ bool D_PAD::BuildPadDrillShapePolygon( SHAPE_POLY_SET& aCornerBuffer, int aInflateValue, int aSegmentsPerCircle ) const { wxSize drillsize = GetDrillSize(); if( !drillsize.x || !drillsize.y ) return false; if( drillsize.x == drillsize.y ) // usual round hole { TransformCircleToPolygon( aCornerBuffer, GetPosition(), (drillsize.x / 2) + aInflateValue, aSegmentsPerCircle ); } else // Oblong hole { wxPoint start, end; int width; GetOblongDrillGeometry( start, end, width ); width += aInflateValue * 2; TransformRoundedEndsSegmentToPolygon( aCornerBuffer, GetPosition() + start, GetPosition() + end, aSegmentsPerCircle, width ); } return true; } /** * Function CreateThermalReliefPadPolygon * Add holes around a pad to create a thermal relief * copper thickness is min (dx/2, aCopperWitdh) or min (dy/2, aCopperWitdh) * @param aCornerBuffer = a buffer to store the polygon * @param aPad = the current pad used to create the thermal shape * @param aThermalGap = gap in thermal shape * @param aCopperThickness = stubs thickness in thermal shape * @param aMinThicknessValue = min copper thickness allowed * @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCorrectionFactor = the correction to apply to circles radius to keep * @param aThermalRot = for rond pads the rotation of thermal stubs (450 usually for 45 deg.) */ /* thermal reliefs are created as 4 polygons. * each corner of a polygon if calculated for a pad at position 0, 0, orient 0, * and then moved and rotated acroding to the pad position and orientation */ /* * Note 1: polygons are drawm using outlines witk a thickness = aMinThicknessValue * so shapes must take in account this outline thickness * * Note 2: * Trapezoidal pads are not considered here because they are very special case * and are used in microwave applications and they *DO NOT* have a thermal relief that * change the shape by creating stubs and destroy their properties. */ void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer, const D_PAD& aPad, int aThermalGap, int aCopperThickness, int aMinThicknessValue, int aCircleToSegmentsCount, double aCorrectionFactor, double aThermalRot ) { wxPoint corner, corner_end; wxPoint padShapePos = aPad.ShapePos(); // Note: for pad having a shape offset, // the pad position is NOT the shape position wxSize copper_thickness; double delta = 3600.0 / aCircleToSegmentsCount; // rot angle in 0.1 degree /* Keep in account the polygon outline thickness * aThermalGap must be increased by aMinThicknessValue/2 because drawing external outline * with a thickness of aMinThicknessValue will reduce gap by aMinThicknessValue/2 */ aThermalGap += aMinThicknessValue / 2; /* Keep in account the polygon outline thickness * copper_thickness must be decreased by aMinThicknessValue because drawing outlines * with a thickness of aMinThicknessValue will increase real thickness by aMinThicknessValue */ int dx = aPad.GetSize().x / 2; int dy = aPad.GetSize().y / 2; copper_thickness.x = std::min( aPad.GetSize().x, aCopperThickness ) - aMinThicknessValue; copper_thickness.y = std::min( aPad.GetSize().y, aCopperThickness ) - aMinThicknessValue; if( copper_thickness.x < 0 ) copper_thickness.x = 0; if( copper_thickness.y < 0 ) copper_thickness.y = 0; switch( aPad.GetShape() ) { case PAD_SHAPE_CIRCLE: // Add 4 similar holes { /* we create 4 copper holes and put them in position 1, 2, 3 and 4 * here is the area of the rectangular pad + its thermal gap * the 4 copper holes remove the copper in order to create the thermal gap * 4 ------ 1 * | | * | | * | | * | | * 3 ------ 2 * holes 2, 3, 4 are the same as hole 1, rotated 90, 180, 270 deg */ // Build the hole pattern, for the hole in the X >0, Y > 0 plane: // The pattern roughtly is a 90 deg arc pie std::vector corners_buffer; // Radius of outer arcs of the shape corrected for arc approximation by lines int outer_radius = KiROUND( (dx + aThermalGap) * aCorrectionFactor ); // Crosspoint of thermal spoke sides, the first point of polygon buffer corners_buffer.push_back( wxPoint( copper_thickness.x / 2, copper_thickness.y / 2 ) ); // Add an intermediate point on spoke sides, to allow a > 90 deg angle between side // and first seg of arc approx corner.x = copper_thickness.x / 2; int y = outer_radius - (aThermalGap / 4); corner.y = KiROUND( sqrt( ( (double) y * y - (double) corner.x * corner.x ) ) ); if( aThermalRot != 0 ) corners_buffer.push_back( corner ); // calculate the starting point of the outter arc corner.x = copper_thickness.x / 2; corner.y = KiROUND( sqrt( ( (double) outer_radius * outer_radius ) - ( (double) corner.x * corner.x ) ) ); RotatePoint( &corner, 90 ); // 9 degrees is the spoke fillet size // calculate the ending point of the outter arc corner_end.x = corner.y; corner_end.y = corner.x; // calculate intermediate points (y coordinate from corner.y to corner_end.y while( (corner.y > corner_end.y) && (corner.x < corner_end.x) ) { corners_buffer.push_back( corner ); RotatePoint( &corner, delta ); } corners_buffer.push_back( corner_end ); /* add an intermediate point, to avoid angles < 90 deg between last arc approx line * and radius line */ corner.x = corners_buffer[1].y; corner.y = corners_buffer[1].x; corners_buffer.push_back( corner ); // Now, add the 4 holes ( each is the pattern, rotated by 0, 90, 180 and 270 deg // aThermalRot = 450 (45.0 degrees orientation) work fine. double angle_pad = aPad.GetOrientation(); // Pad orientation double th_angle = aThermalRot; for( unsigned ihole = 0; ihole < 4; ihole++ ) { aCornerBuffer.NewOutline(); for( unsigned ii = 0; ii < corners_buffer.size(); ii++ ) { corner = corners_buffer[ii]; RotatePoint( &corner, th_angle + angle_pad ); // Rotate by segment angle and pad orientation corner += padShapePos; aCornerBuffer.Append( corner.x, corner.y ); } th_angle += 900; // Note: th_angle in in 0.1 deg. } } break; case PAD_SHAPE_OVAL: { // Oval pad support along the lines of round and rectangular pads std::vector corners_buffer; // Polygon buffer as vector dx = (aPad.GetSize().x / 2) + aThermalGap; // Cutout radius x dy = (aPad.GetSize().y / 2) + aThermalGap; // Cutout radius y wxPoint shape_offset; // We want to calculate an oval shape with dx > dy. // if this is not the case, exchange dx and dy, and rotate the shape 90 deg. int supp_angle = 0; if( dx < dy ) { std::swap( dx, dy ); supp_angle = 900; std::swap( copper_thickness.x, copper_thickness.y ); } int deltasize = dx - dy; // = distance between shape position and the 2 demi-circle ends centre // here we have dx > dy // Radius of outer arcs of the shape: int outer_radius = dy; // The radius of the outer arc is radius end + aThermalGap // Some coordinate fiddling, depending on the shape offset direction shape_offset = wxPoint( deltasize, 0 ); // Crosspoint of thermal spoke sides, the first point of polygon buffer corner.x = copper_thickness.x / 2; corner.y = copper_thickness.y / 2; corners_buffer.push_back( corner ); // Arc start point calculation, the intersecting point of cutout arc and thermal spoke edge // If copper thickness is more than shape offset, we need to calculate arc intercept point. if( copper_thickness.x > deltasize ) { corner.x = copper_thickness.x / 2; corner.y = KiROUND( sqrt( ( (double) outer_radius * outer_radius ) - ( (double) ( corner.x - delta ) * ( corner.x - deltasize ) ) ) ); corner.x -= deltasize; /* creates an intermediate point, to have a > 90 deg angle * between the side and the first segment of arc approximation */ wxPoint intpoint = corner; intpoint.y -= aThermalGap / 4; corners_buffer.push_back( intpoint + shape_offset ); RotatePoint( &corner, 90 ); // 9 degrees of thermal fillet } else { corner.x = copper_thickness.x / 2; corner.y = outer_radius; corners_buffer.push_back( corner ); } // Add an intermediate point on spoke sides, to allow a > 90 deg angle between side // and first seg of arc approx wxPoint last_corner; last_corner.y = copper_thickness.y / 2; int px = outer_radius - (aThermalGap / 4); last_corner.x = KiROUND( sqrt( ( ( (double) px * px ) - (double) last_corner.y * last_corner.y ) ) ); // Arc stop point calculation, the intersecting point of cutout arc and thermal spoke edge corner_end.y = copper_thickness.y / 2; corner_end.x = KiROUND( sqrt( ( (double) outer_radius * outer_radius ) - ( (double) corner_end.y * corner_end.y ) ) ); RotatePoint( &corner_end, -90 ); // 9 degrees of thermal fillet // calculate intermediate arc points till limit is reached while( (corner.y > corner_end.y) && (corner.x < corner_end.x) ) { corners_buffer.push_back( corner + shape_offset ); RotatePoint( &corner, delta ); } //corners_buffer.push_back(corner + shape_offset); // TODO: about one mil geometry error forms somewhere. corners_buffer.push_back( corner_end + shape_offset ); corners_buffer.push_back( last_corner + shape_offset ); // Enabling the line above shows intersection point. /* Create 2 holes, rotated by pad rotation. */ double angle = aPad.GetOrientation() + supp_angle; for( int irect = 0; irect < 2; irect++ ) { aCornerBuffer.NewOutline(); for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint cpos = corners_buffer[ic]; RotatePoint( &cpos, angle ); cpos += padShapePos; aCornerBuffer.Append( cpos.x, cpos.y ); } angle = AddAngles( angle, 1800 ); // this is calculate hole 3 } // Create holes, that are the mirrored from the previous holes for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint swap = corners_buffer[ic]; swap.x = -swap.x; corners_buffer[ic] = swap; } // Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg angle = aPad.GetOrientation() + supp_angle; for( int irect = 0; irect < 2; irect++ ) { aCornerBuffer.NewOutline(); for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint cpos = corners_buffer[ic]; RotatePoint( &cpos, angle ); cpos += padShapePos; aCornerBuffer.Append( cpos.x, cpos.y ); } angle = AddAngles( angle, 1800 ); } } break; case PAD_SHAPE_ROUNDRECT: // thermal shape is the same for round rect and rect. case PAD_SHAPE_RECT: { /* we create 4 copper holes and put them in position 1, 2, 3 and 4 * here is the area of the rectangular pad + its thermal gap * the 4 copper holes remove the copper in order to create the thermal gap * 1 ------ 4 * | | * | | * | | * | | * 2 ------ 3 * hole 3 is the same as hole 1, rotated 180 deg * hole 4 is the same as hole 2, rotated 180 deg and is the same as hole 1, mirrored */ // First, create a rectangular hole for position 1 : // 2 ------- 3 // | | // | | // | | // 1 -------4 // Modified rectangles with one corner rounded. TODO: merging with oval thermals // and possibly round too. std::vector corners_buffer; // Polygon buffer as vector dx = (aPad.GetSize().x / 2) + aThermalGap; // Cutout radius x dy = (aPad.GetSize().y / 2) + aThermalGap; // Cutout radius y // calculation is optimized for pad shape with dy >= dx (vertical rectangle). // if it is not the case, just rotate this shape 90 degrees: double angle = aPad.GetOrientation(); wxPoint corner_origin_pos( -aPad.GetSize().x / 2, -aPad.GetSize().y / 2 ); if( dy < dx ) { std::swap( dx, dy ); std::swap( copper_thickness.x, copper_thickness.y ); std::swap( corner_origin_pos.x, corner_origin_pos.y ); angle += 900.0; } // Now calculate the hole pattern in position 1 ( top left pad corner ) // The first point of polygon buffer is left lower corner, second the crosspoint of // thermal spoke sides, the third is upper right corner and the rest are rounding // vertices going anticlockwise. Note the inverted Y-axis in corners_buffer y coordinates. wxPoint arc_end_point( -dx, -(aThermalGap / 4 + copper_thickness.y / 2) ); corners_buffer.push_back( arc_end_point ); // Adds small miters to zone corners_buffer.push_back( wxPoint( -(dx - aThermalGap / 4), -copper_thickness.y / 2 ) ); // fill and spoke corner corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -copper_thickness.y / 2 ) ); corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -(dy - aThermalGap / 4) ) ); // The first point to build the rounded corner: wxPoint arc_start_point( -(aThermalGap / 4 + copper_thickness.x / 2) , -dy ); corners_buffer.push_back( arc_start_point ); int rounding_radius = KiROUND( aThermalGap * aCorrectionFactor ); // Corner rounding radius // Calculate arc angle parameters. // the start angle id near 900 decidegrees, the final angle is near 1800.0 decidegrees. double arc_increment = 3600.0 / aCircleToSegmentsCount; // the arc_angle_start is 900.0 or slighly more, depending on the actual arc starting point double arc_angle_start = atan2( -arc_start_point.y -corner_origin_pos.y, arc_start_point.x - corner_origin_pos.x ) * 1800/M_PI; if( arc_angle_start < 900.0 ) arc_angle_start = 900.0; bool first_point = true; for( double curr_angle = arc_angle_start; ; curr_angle += arc_increment ) { wxPoint corner_position = wxPoint( rounding_radius, 0 ); RotatePoint( &corner_position, curr_angle ); // Rounding vector rotation corner_position += corner_origin_pos; // Rounding vector + Pad corner offset // The arc angle is <= 90 degrees, therefore the arc is finished if the x coordinate // decrease or the y coordinate is smaller than the y end point if( !first_point && ( corner_position.x >= corners_buffer.back().x || corner_position.y > arc_end_point.y ) ) break; first_point = false; // Note: for hole in position 1, arc x coordinate is always < x starting point // and arc y coordinate is always <= y ending point if( corner_position != corners_buffer.back() // avoid duplicate corners. && corner_position.x <= arc_start_point.x ) // skip current point at the right of the starting point corners_buffer.push_back( corner_position ); } for( int irect = 0; irect < 2; irect++ ) { aCornerBuffer.NewOutline(); for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint cpos = corners_buffer[ic]; RotatePoint( &cpos, angle ); // Rotate according to module orientation cpos += padShapePos; // Shift origin to position aCornerBuffer.Append( cpos.x, cpos.y ); } angle = AddAngles( angle, 1800 ); // this is calculate hole 3 } // Create holes, that are the mirrored from the previous holes for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint swap = corners_buffer[ic]; swap.x = -swap.x; corners_buffer[ic] = swap; } // Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg for( int irect = 0; irect < 2; irect++ ) { aCornerBuffer.NewOutline(); for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) { wxPoint cpos = corners_buffer[ic]; RotatePoint( &cpos, angle ); cpos += padShapePos; aCornerBuffer.Append( cpos.x, cpos.y ); } angle = AddAngles( angle, 1800 ); } } break; case PAD_SHAPE_TRAPEZOID: { SHAPE_POLY_SET antipad; // The full antipad area // We need a length to build the stubs of the thermal reliefs // the value is not very important. The pad bounding box gives a reasonable value EDA_RECT bbox = aPad.GetBoundingBox(); int stub_len = std::max( bbox.GetWidth(), bbox.GetHeight() ); aPad.TransformShapeWithClearanceToPolygon( antipad, aThermalGap, aCircleToSegmentsCount, aCorrectionFactor ); SHAPE_POLY_SET stub; // A basic stub ( a rectangle) SHAPE_POLY_SET stubs; // the full stubs shape // We now substract the stubs (connections to the copper zone) //ClipperLib::Clipper clip_engine; // Prepare a clipping transform //clip_engine.AddPath( antipad, ClipperLib::ptSubject, true ); // Create stubs and add them to clipper engine wxPoint stubBuffer[4]; stubBuffer[0].x = stub_len; stubBuffer[0].y = copper_thickness.y/2; stubBuffer[1] = stubBuffer[0]; stubBuffer[1].y = -copper_thickness.y/2; stubBuffer[2] = stubBuffer[1]; stubBuffer[2].x = -stub_len; stubBuffer[3] = stubBuffer[2]; stubBuffer[3].y = copper_thickness.y/2; stub.NewOutline(); for( unsigned ii = 0; ii < arrayDim( stubBuffer ); ii++ ) { wxPoint cpos = stubBuffer[ii]; RotatePoint( &cpos, aPad.GetOrientation() ); cpos += padShapePos; stub.Append( cpos.x, cpos.y ); } stubs.Append( stub ); stubBuffer[0].y = stub_len; stubBuffer[0].x = copper_thickness.x/2; stubBuffer[1] = stubBuffer[0]; stubBuffer[1].x = -copper_thickness.x/2; stubBuffer[2] = stubBuffer[1]; stubBuffer[2].y = -stub_len; stubBuffer[3] = stubBuffer[2]; stubBuffer[3].x = copper_thickness.x/2; stub.RemoveAllContours(); stub.NewOutline(); for( unsigned ii = 0; ii < arrayDim( stubBuffer ); ii++ ) { wxPoint cpos = stubBuffer[ii]; RotatePoint( &cpos, aPad.GetOrientation() ); cpos += padShapePos; stub.Append( cpos.x, cpos.y ); } stubs.Append( stub ); stubs.Simplify( SHAPE_POLY_SET::PM_FAST ); antipad.BooleanSubtract( stubs, SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( antipad ); break; } default: ; } } void ZONE_CONTAINER::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aClearanceValue, int aCircleToSegmentsCount, double aCorrectionFactor, bool ignoreLineWidth ) const { wxASSERT_MSG( !ignoreLineWidth, "IgnoreLineWidth has no meaning for zones." ); aCornerBuffer = m_FilledPolysList; aCornerBuffer.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); }