/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include DRC_DRILLED_HOLE_TESTER::DRC_DRILLED_HOLE_TESTER( MARKER_HANDLER aMarkerHandler ) : DRC_TEST_PROVIDER( std::move( aMarkerHandler ) ), m_units( EDA_UNITS::MILLIMETRES ), m_board( nullptr ), m_largestRadius( 0 ) { } bool DRC_DRILLED_HOLE_TESTER::RunDRC( EDA_UNITS aUnits, BOARD& aBoard ) { bool success = true; // Test drilled holes to minimize drill bit breakage. // // Check pad & std. via circular holes for hole-to-hole-min (non-circular holes are milled) // Check pad & std. via holes for via-min-drill (minimum hole classification) // Check uvia holes for uvia-min-drill (laser drill classification) m_units = aUnits; m_board = &aBoard; m_holes.clear(); m_largestRadius = 0; for( MODULE* mod : aBoard.Modules() ) { for( D_PAD* pad : mod->Pads( ) ) success &= checkPad( pad ); } for( TRACK* track : aBoard.Tracks() ) { VIA* via = dynamic_cast( track ); if( via ) { if( via->GetViaType() == VIATYPE::MICROVIA ) success &= checkMicroVia( via ); else success &= checkVia( via ); } } success &= checkHoles(); return success; } bool DRC_DRILLED_HOLE_TESTER::checkPad( D_PAD* aPad ) { bool success = true; BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); // drilled holes go all the way through, so which layer we use shouldn't matter PCB_LAYER_ID layer = F_Cu; int holeSize = std::min( aPad->GetDrillSize().x, aPad->GetDrillSize().y ); if( holeSize == 0 ) return true; if( !bds.Ignore( DRCE_TOO_SMALL_DRILL ) ) { int minHole; const DRC_CONSTRAINT* constraint = GetConstraint( aPad, nullptr, DRC_RULE_ID_HOLE_SIZE, layer, &m_source ); if( constraint ) { minHole = constraint->m_Value.Min(); m_source = wxString::Format( _( "'%s' rule" ), m_source ); } else { minHole = bds.m_MinThroughDrill; m_source = _( "board minimum" ); } if( holeSize < minHole ) { std::shared_ptr drcItem = DRC_ITEM::Create( DRCE_TOO_SMALL_DRILL ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s %s; actual %s)" ), m_source, MessageTextFromValue( m_units, minHole, true ), MessageTextFromValue( m_units, holeSize, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( aPad ); HandleMarker( new MARKER_PCB( drcItem, aPad->GetPosition() ) ); success = false; } } if( !bds.Ignore( DRCE_DRILLED_HOLES_TOO_CLOSE ) && bds.m_HoleToHoleMin != 0 ) { if( aPad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) addHole( aPad->GetPosition(), aPad->GetDrillSize().x / 2, aPad ); } return success; } bool DRC_DRILLED_HOLE_TESTER::checkVia( VIA* via ) { bool success = true; BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); // drilled holes go all the way through, so which layer we use shouldn't matter PCB_LAYER_ID layer = F_Cu; if( !bds.Ignore( DRCE_TOO_SMALL_DRILL ) ) { int minHole; const DRC_CONSTRAINT* constraint = GetConstraint( via, nullptr, DRC_RULE_ID_HOLE_SIZE, layer, &m_source ); if( constraint ) { minHole = constraint->m_Value.Min(); m_source = wxString::Format( _( "'%s' rule" ), m_source ); } else { minHole = bds.m_MinThroughDrill; m_source = _( "board minimum" ); } if( via->GetDrillValue() < minHole ) { std::shared_ptr drcItem = DRC_ITEM::Create( DRCE_TOO_SMALL_DRILL ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s %s; actual %s)" ), m_source, MessageTextFromValue( m_units, minHole, true ), MessageTextFromValue( m_units, via->GetDrillValue(), true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( via ); HandleMarker( new MARKER_PCB( drcItem, via->GetPosition() ) ); success = false; } } if( !bds.Ignore( DRCE_DRILLED_HOLES_TOO_CLOSE ) && bds.m_HoleToHoleMin != 0 ) { addHole( via->GetPosition(), via->GetDrillValue() / 2, via ); } return success; } bool DRC_DRILLED_HOLE_TESTER::checkMicroVia( VIA* via ) { bool success = true; BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); // while microvia holes don't necessarily go all the way through, they can't be different // sizes on different layers so we should still be safe enough using a fixed layer. PCB_LAYER_ID layer = F_Cu; if( !bds.Ignore( DRCE_TOO_SMALL_MICROVIA_DRILL ) ) { int minHole; const DRC_CONSTRAINT* constraint = GetConstraint( via, nullptr, DRC_RULE_ID_HOLE_SIZE, layer, &m_source ); if( constraint ) { minHole = constraint->m_Value.Min(); m_source = wxString::Format( _( "'%s' rule" ), m_source ); } else { minHole = bds.m_MicroViasMinDrill; m_source = _( "board minimum" ); } if( via->GetDrillValue() < minHole ) { std::shared_ptr drcItem = DRC_ITEM::Create( DRCE_TOO_SMALL_MICROVIA_DRILL ); m_msg.Printf( drcItem->GetErrorText() + _( " (%s %s; actual %s)" ), m_source, MessageTextFromValue( m_units, minHole, true ), MessageTextFromValue( m_units, via->GetDrillValue(), true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( via ); HandleMarker( new MARKER_PCB( drcItem, via->GetPosition() ) ); success = false; } } return success; } void DRC_DRILLED_HOLE_TESTER::addHole( const wxPoint& aLocation, int aRadius, BOARD_ITEM* aOwner ) { DRILLED_HOLE hole; hole.m_location = aLocation; hole.m_drillRadius = aRadius; hole.m_owner = aOwner; m_largestRadius = std::max( m_largestRadius, aRadius ); m_holes.push_back( hole ); } bool DRC_DRILLED_HOLE_TESTER::checkHoles() { bool success = true; BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); // No need to check if we're ignoring DRCE_DRILLED_HOLES_TOO_CLOSE; if we are then we // won't have collected any holes to test. // Sort holes by X for performance. In the nested iteration we then need to look at // following holes only while they are within the refHole's neighborhood as defined by // the refHole radius + the minimum hole-to-hole clearance + the largest radius any of // the following holes can have. std::sort( m_holes.begin(), m_holes.end(), []( const DRILLED_HOLE& a, const DRILLED_HOLE& b ) { if( a.m_location.x == b.m_location.x ) return a.m_location.y < b.m_location.y; else return a.m_location.x < b.m_location.x; } ); for( size_t ii = 0; ii < m_holes.size(); ++ii ) { const DRILLED_HOLE& refHole = m_holes[ ii ]; int neighborhood = refHole.m_drillRadius + bds.m_HoleToHoleMin + m_largestRadius; for( size_t jj = ii + 1; jj < m_holes.size(); ++jj ) { const DRILLED_HOLE& checkHole = m_holes[ jj ]; if( refHole.m_location.x + neighborhood < checkHole.m_location.x ) break; // Holes with identical locations are allowable if( checkHole.m_location == refHole.m_location ) continue; int actual = KiROUND( GetLineLength( checkHole.m_location, refHole.m_location ) ); actual = std::max( 0, actual - checkHole.m_drillRadius - refHole.m_drillRadius ); if( actual < bds.m_HoleToHoleMin ) { std::shared_ptr drcItem = DRC_ITEM::Create( DRCE_DRILLED_HOLES_TOO_CLOSE ); m_msg.Printf( drcItem->GetErrorText() + _( " (board minimum %s; actual %s)" ), MessageTextFromValue( m_units, bds.m_HoleToHoleMin, true ), MessageTextFromValue( m_units, actual, true ) ); drcItem->SetErrorMessage( m_msg ); drcItem->SetItems( refHole.m_owner, checkHole.m_owner ); HandleMarker( new MARKER_PCB( drcItem, refHole.m_location ) ); success = false; } } } return success; }