/* * microstrip.cpp - microstrip class implementation * * Copyright (C) 2001 Gopal Narayanan * Copyright (C) 2002 Claudio Girardi * Copyright (C) 2005, 2006 Stefan Jahn * Modified for Kicad: 2018 Jean-Pierre Charras * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this package; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, * Boston, MA 02110-1301, USA. * */ /* microstrip.c - Puts up window for microstrip and * performs the associated calculations * Based on the original microstrip.c by Gopal Narayanan */ #include #include #include #include #include #include #include MICROSTRIP::MICROSTRIP() : TRANSLINE() { m_Name = "MicroStrip"; Init(); } /* * Z0_homogeneous() - compute the impedance for a stripline in a * homogeneous medium, without cover effects */ double MICROSTRIP::Z0_homogeneous( double u ) { double freq, Z0_value; freq = 6.0 + ( 2.0 * M_PI - 6.0 ) * exp( -pow( 30.666 / u, 0.7528 ) ); Z0_value = ( ZF0 / ( 2.0 * M_PI ) ) * log( freq / u + sqrt( 1.0 + 4.0 / ( u * u ) ) ); return Z0_value; } /* * delta_Z0_cover() - compute the cover effect on impedance for a * stripline in a homogeneous medium */ double MICROSTRIP::delta_Z0_cover( double u, double h2h ) { double P, Q; double h2hp1; h2hp1 = 1.0 + h2h; P = 270.0 * ( 1.0 - tanh( 1.192 + 0.706 * sqrt( h2hp1 ) - 1.389 / h2hp1 ) ); Q = 1.0109 - atanh( ( 0.012 * u + 0.177 * u * u - 0.027 * u * u * u ) / ( h2hp1 * h2hp1 ) ); return P * Q; } /* * filling_factor() - compute the filling factor for a microstrip * without cover and zero conductor thickness */ double MICROSTRIP::filling_factor( double u, double e_r ) { double a, b, q_inf; double u2, u3, u4; u2 = u * u; u3 = u2 * u; u4 = u3 * u; a = 1.0 + log( ( u4 + u2 / 2704 ) / ( u4 + 0.432 ) ) / 49.0 + log( 1.0 + u3 / 5929.741 ) / 18.7; b = 0.564 * pow( ( e_r - 0.9 ) / ( e_r + 3.0 ), 0.053 ); q_inf = pow( 1.0 + 10.0 / u, -a * b ); return q_inf; } /* * delta_q_cover() - compute the cover effect on filling factor */ double MICROSTRIP::delta_q_cover( double h2h ) { double q_c; q_c = tanh( 1.043 + 0.121 * h2h - 1.164 / h2h ); return q_c; } /* * delta_q_thickness() - compute the thickness effect on filling factor */ double MICROSTRIP::delta_q_thickness( double u, double t_h ) { double q_t; q_t = ( 2.0 * log( 2.0 ) / M_PI ) * ( t_h / sqrt( u ) ); return q_t; } /* * e_r_effective() - compute effective dielectric constant from * material e_r and filling factor */ double MICROSTRIP::e_r_effective( double e_r, double q ) { double e_r_eff; e_r_eff = 0.5 * ( e_r + 1.0 ) + 0.5 * q * ( e_r - 1.0 ); return e_r_eff; } /* * delta_u_thickness - compute the thickness effect on normalized width */ double MICROSTRIP::delta_u_thickness( double u, double t_h, double e_r ) { double delta_u; if( t_h > 0.0 ) { /* correction for thickness for a homogeneous microstrip */ delta_u = ( t_h / M_PI ) * log( 1.0 + ( 4.0 * M_E ) * pow( tanh( sqrt( 6.517 * u ) ), 2.0 ) / t_h ); /* correction for strip on a substrate with relative permettivity e_r */ delta_u = 0.5 * delta_u * ( 1.0 + 1.0 / cosh( sqrt( e_r - 1.0 ) ) ); } else { delta_u = 0.0; } return delta_u; } /* * microstrip_Z0() - compute microstrip static impedance */ void MICROSTRIP::microstrip_Z0() { double e_r, h2, h2h, u, t_h; double Z0_h_r; double delta_u_1, delta_u_r, q_inf, q_c, q_t, e_r_eff, e_r_eff_t, q; e_r = m_parameters[EPSILONR_PRM]; h2 = m_parameters[H_T_PRM]; h2h = h2 / m_parameters[H_PRM]; u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; t_h = m_parameters[T_PRM] / m_parameters[H_PRM]; /* compute normalized width correction for e_r = 1.0 */ delta_u_1 = delta_u_thickness( u, t_h, 1.0 ); /* compute homogeneous stripline impedance */ Z0_h_1 = Z0_homogeneous( u + delta_u_1 ); /* compute normalized width corection */ delta_u_r = delta_u_thickness( u, t_h, e_r ); u += delta_u_r; /* compute homogeneous stripline impedance */ Z0_h_r = Z0_homogeneous( u ); /* filling factor, with width corrected for thickness */ q_inf = filling_factor( u, e_r ); /* cover effect */ q_c = delta_q_cover( h2h ); /* thickness effect */ q_t = delta_q_thickness( u, t_h ); /* resultant filling factor */ q = ( q_inf - q_t ) * q_c; /* e_r corrected for thickness and non homogeneous material */ e_r_eff_t = e_r_effective( e_r, q ); /* effective dielectric constant */ e_r_eff = e_r_eff_t * pow( Z0_h_1 / Z0_h_r, 2.0 ); /* characteristic impedance, corrected for thickness, cover */ /* and non homogeneous material */ m_parameters[Z0_PRM] = Z0_h_r / sqrt( e_r_eff_t ); w_eff = u * m_parameters[H_PRM]; er_eff_0 = e_r_eff; Z0_0 = m_parameters[Z0_PRM]; } /* * e_r_dispersion() - computes the dispersion correction factor for * the effective permeability */ double MICROSTRIP::e_r_dispersion( double u, double e_r, double f_n ) { double P_1, P_2, P_3, P_4, P; P_1 = 0.27488 + u * ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) ) - 0.065683 * exp( -8.7513 * u ); P_2 = 0.33622 * ( 1.0 - exp( -0.03442 * e_r ) ); P_3 = 0.0363 * exp( -4.6 * u ) * ( 1.0 - exp( -pow( f_n / 38.7, 4.97 ) ) ); P_4 = 1.0 + 2.751 * ( 1.0 - exp( -pow( e_r / 15.916, 8.0 ) ) ); P = P_1 * P_2 * pow( ( P_3 * P_4 + 0.1844 ) * f_n, 1.5763 ); return P; } /* * Z0_dispersion() - computes the dispersion correction factor for the * characteristic impedance */ double MICROSTRIP::Z0_dispersion( double u, double e_r, double e_r_eff_0, double e_r_eff_f, double f_n ) { double R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_10, R_11, R_12, R_13, R_14, R_15, R_16, R_17, D, tmpf; R_1 = 0.03891 * pow( e_r, 1.4 ); R_2 = 0.267 * pow( u, 7.0 ); R_3 = 4.766 * exp( -3.228 * pow( u, 0.641 ) ); R_4 = 0.016 + pow( 0.0514 * e_r, 4.524 ); R_5 = pow( f_n / 28.843, 12.0 ); R_6 = 22.2 * pow( u, 1.92 ); R_7 = 1.206 - 0.3144 * exp( -R_1 ) * ( 1.0 - exp( -R_2 ) ); R_8 = 1.0 + 1.275 * ( 1.0 - exp( -0.004625 * R_3 * pow( e_r, 1.674 ) * pow( f_n / 18.365, 2.745 ) ) ); tmpf = pow( e_r - 1.0, 6.0 ); R_9 = 5.086 * R_4 * ( R_5 / ( 0.3838 + 0.386 * R_4 ) ) * ( exp( -R_6 ) / ( 1.0 + 1.2992 * R_5 ) ) * ( tmpf / ( 1.0 + 10.0 * tmpf ) ); R_10 = 0.00044 * pow( e_r, 2.136 ) + 0.0184; tmpf = pow( f_n / 19.47, 6.0 ); R_11 = tmpf / ( 1.0 + 0.0962 * tmpf ); R_12 = 1.0 / ( 1.0 + 0.00245 * u * u ); R_13 = 0.9408 * pow( e_r_eff_f, R_8 ) - 0.9603; R_14 = ( 0.9408 - R_9 ) * pow( e_r_eff_0, R_8 ) - 0.9603; R_15 = 0.707 * R_10 * pow( f_n / 12.3, 1.097 ); R_16 = 1.0 + 0.0503 * e_r * e_r * R_11 * ( 1.0 - exp( -pow( u / 15.0, 6.0 ) ) ); R_17 = R_7 * ( 1.0 - 1.1241 * ( R_12 / R_16 ) * exp( -0.026 * pow( f_n, 1.15656 ) - R_15 ) ); D = pow( R_13 / R_14, R_17 ); return D; } /* * dispersion() - compute frequency dependent parameters of * microstrip */ void MICROSTRIP::dispersion() { double e_r, e_r_eff_0; double u, f_n, P, e_r_eff_f, D, Z0_f; e_r = m_parameters[EPSILONR_PRM]; e_r_eff_0 = er_eff_0; u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalized frequency [GHz * mm] */ f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06; P = e_r_dispersion( u, e_r, f_n ); /* effective dielectric constant corrected for dispersion */ e_r_eff_f = e_r - ( e_r - e_r_eff_0 ) / ( 1.0 + P ); D = Z0_dispersion( u, e_r, e_r_eff_0, e_r_eff_f, f_n ); Z0_f = Z0_0 * D; er_eff = e_r_eff_f; m_parameters[Z0_PRM] = Z0_f; } /* * conductor_losses() - compute microstrip conductor losses per unit * length */ double MICROSTRIP::conductor_losses() { double e_r_eff_0, delta; double K, R_s, Q_c, alpha_c; e_r_eff_0 = er_eff_0; delta = m_parameters[SKIN_DEPTH_PRM]; if( m_parameters[FREQUENCY_PRM] > 0.0 ) { /* current distribution factor */ K = exp( -1.2 * pow( Z0_h_1 / ZF0, 0.7 ) ); /* skin resistance */ R_s = 1.0 / ( m_parameters[SIGMA_PRM] * delta ); /* correction for surface roughness */ R_s *= 1.0 + ( ( 2.0 / M_PI ) * atan( 1.40 * pow( ( m_parameters[ROUGH_PRM] / delta ), 2.0 ) ) ); /* strip inductive quality factor */ Q_c = ( M_PI * Z0_h_1 * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] ) / ( R_s * C0 * K ); alpha_c = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM] * sqrt( e_r_eff_0 ) / ( C0 * Q_c ); } else { alpha_c = 0.0; } return alpha_c; } /* * dielectric_losses() - compute microstrip dielectric losses per unit * length */ double MICROSTRIP::dielectric_losses() { double e_r, e_r_eff_0; double alpha_d; e_r = m_parameters[EPSILONR_PRM]; e_r_eff_0 = er_eff_0; alpha_d = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 ) * ( e_r / sqrt( e_r_eff_0 ) ) * ( ( e_r_eff_0 - 1.0 ) / ( e_r - 1.0 ) ) * m_parameters[TAND_PRM]; return alpha_d; } /* * attenuation() - compute attenuation of microstrip */ void MICROSTRIP::attenuation() { m_parameters[SKIN_DEPTH_PRM] = skin_depth(); atten_cond = conductor_losses() * m_parameters[PHYS_LEN_PRM]; atten_dielectric = dielectric_losses() * m_parameters[PHYS_LEN_PRM]; } /* * mur_eff_ms() - returns effective magnetic permeability */ void MICROSTRIP::mur_eff_ms() { double* mur = &m_parameters[MUR_PRM]; double* h = &m_parameters[H_PRM]; double* w = &m_parameters[PHYS_WIDTH_PRM]; mur_eff = ( 2.0 * *mur ) / ( ( 1.0 + *mur ) + ( ( 1.0 - *mur ) * pow( ( 1.0 + ( 10.0 * *h / *w ) ), -0.5 ) ) ); } // synth_width - calculate width given Z0 and e_r double MICROSTRIP::synth_width() { double e_r, a, b; double w_h, width; e_r = m_parameters[EPSILONR_PRM]; a = ( ( m_parameters[Z0_PRM] / ZF0 / 2 / M_PI ) * sqrt( ( e_r + 1 ) / 2. ) ) + ( ( e_r - 1 ) / ( e_r + 1 ) * ( 0.23 + ( 0.11 / e_r ) ) ); b = ZF0 / 2 * M_PI / ( m_parameters[Z0_PRM] * sqrt( e_r ) ); if( a > 1.52 ) { w_h = 8 * exp( a ) / ( exp( 2. * a ) - 2 ); } else { w_h = ( 2. / M_PI ) * ( b - 1. - log( ( 2 * b ) - 1. ) + ( ( e_r - 1 ) / ( 2 * e_r ) ) * ( log( b - 1. ) + 0.39 - 0.61 / e_r ) ); } if( m_parameters[H_PRM] > 0.0 ) width = w_h * m_parameters[H_PRM]; else width = 0; return width; } /* * line_angle() - calculate microstrip length in radians */ void MICROSTRIP::line_angle() { double e_r_eff; double v, lambda_g; e_r_eff = er_eff; /* velocity */ v = C0 / sqrt( e_r_eff * mur_eff ); /* wavelength */ lambda_g = v / m_parameters[FREQUENCY_PRM]; /* electrical angles */ m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g; /* in radians */ } void MICROSTRIP::calcAnalyze() { /* effective permeability */ mur_eff_ms(); /* static impedance */ microstrip_Z0(); /* calculate freq dependence of er and Z0 */ dispersion(); /* calculate electrical lengths */ line_angle(); /* calculate losses */ attenuation(); } void MICROSTRIP::show_results() { setProperty( Z0_PRM, m_parameters[Z0_PRM] ); setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] ); setResult( 0, er_eff, "" ); setResult( 1, atten_cond, "dB" ); setResult( 2, atten_dielectric, "dB" ); setResult( 3, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" ); } void MICROSTRIP::showSynthesize() { setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] ); setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] ); // Check for errors if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || ( m_parameters[PHYS_LEN_PRM] < 0 ) ) setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR ); if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || ( m_parameters[PHYS_WIDTH_PRM] <= 0 ) ) setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR ); // Check for warnings if( !std::isfinite( m_parameters[Z0_PRM] ) || ( m_parameters[Z0_PRM] < 0 ) ) setErrorLevel( Z0_PRM, TRANSLINE_WARNING ); if( !std::isfinite( m_parameters[ANG_L_PRM] ) || ( m_parameters[ANG_L_PRM] < 0 ) ) setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING ); } void MICROSTRIP::showAnalyze() { setProperty( Z0_PRM, m_parameters[Z0_PRM] ); setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] ); // Check for errors if( !std::isfinite( m_parameters[Z0_PRM] ) || ( m_parameters[Z0_PRM] < 0 ) ) setErrorLevel( Z0_PRM, TRANSLINE_ERROR ); if( !std::isfinite( m_parameters[ANG_L_PRM] ) || ( m_parameters[ANG_L_PRM] < 0 ) ) setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR ); // Check for warnings if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || ( m_parameters[PHYS_LEN_PRM] < 0 ) ) setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING ); if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || ( m_parameters[PHYS_WIDTH_PRM] <= 0 ) ) setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING ); } /* * synthesis function */ void MICROSTRIP::calcSynthesize() { double angl_dest, z0_dest; z0_dest = m_parameters[Z0_PRM]; angl_dest = m_parameters[ANG_L_PRM]; /* calculate width and use for initial value in Newton's method */ m_parameters[PHYS_WIDTH_PRM] = synth_width(); minimizeZ0Error1D( &( m_parameters[PHYS_WIDTH_PRM] ) ); m_parameters[Z0_PRM] = z0_dest; m_parameters[ANG_L_PRM] = angl_dest; m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff * mur_eff ) * m_parameters[ANG_L_PRM] / 2.0 / M_PI; /* in m */ calcAnalyze(); m_parameters[Z0_PRM] = z0_dest; m_parameters[ANG_L_PRM] = angl_dest; m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff * mur_eff ) * m_parameters[ANG_L_PRM] / 2.0 / M_PI; /* in m */ }