/* EDITEUR de PCB: AUTOROUTAGE: routines "graphiques" */ /******************************************************/ /* Fichier BOARD.CC */ #include "fctsys.h" #include "gr_basic.h" #include "common.h" #include "pcbnew.h" #include "autorout.h" #include "trigo.h" #include "cell.h" /* Routines externes */ /* routines internes */ void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color ); void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logique ); void DrawHVSegment( int ux0, int uy0, int ux1, int uy1, int demi_largeur, int layer, int color, int op_logique ); void TraceFilledCercle( BOARD* Pcb, int cx, int cy, int rayon, int masque_layer, int color, int op_logique ); void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logique ); void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer, int color, int op_logique ); /* Macro d'appel de mise a jour de cellules */ #define OP_CELL( layer, dy, dx ) { if( layer < 0 ) \ { \ WriteCell( dy, dx, BOTTOM, color ); \ if( Nb_Sides ) \ WriteCell( dy, dx, TOP, color );\ } \ else { \ if( layer == Route_Layer_BOTTOM ) \ WriteCell( dy, dx, BOTTOM, color );\ if( Nb_Sides ) \ if( layer == Route_Layer_TOP ) \ WriteCell( dy, dx, TOP, color );\ } } /******************************************************************************/ void Place_1_Pad_Board( BOARD* Pcb, D_PAD* pt_pad, int color, int marge, int op_logique ) /******************************************************************************/ /* Initialise a la valeur color, les cellules du Board comprises dans la * surface du pad pointe par pt_pad, avec la marge reservee pour l'isolement * et la demi largeur de la piste * Parametres: * pt_pad : pointeur sur la description du pad * color : masque a ecrire dans les cellules * marge : valeur a ajouter au rayon ou demi cote du pad * op_logique: type d'ecriture dans la cellule ( WRITE, OR ) */ { int dx, dy; wxPoint shape_pos = pt_pad->ReturnShapePos();; dx = pt_pad->m_Size.x / 2; dx += marge; if( pt_pad->m_PadShape == PAD_CIRCLE ) { TraceFilledCercle( Pcb, shape_pos.x, shape_pos.y, dx, pt_pad->m_Masque_Layer, color, op_logique ); return; } dy = pt_pad->m_Size.y / 2; dy += marge; if( pt_pad->m_PadShape == PAD_TRAPEZOID ) { dx += abs( pt_pad->m_DeltaSize.y ) / 2; dy += abs( pt_pad->m_DeltaSize.x ) / 2; } if( (pt_pad->m_Orient % 900) == 0 ) { /* Le pad est un rectangle horizontal ou vertical */ if( (pt_pad->m_Orient == 900 ) || (pt_pad->m_Orient == 2700) ) { /* orient tournee de 90 deg */ EXCHG( dx, dy ); } TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx, shape_pos.y + dy, pt_pad->m_Masque_Layer, color, op_logique ); } else { TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx, shape_pos.y + dy, (int) pt_pad->m_Orient, pt_pad->m_Masque_Layer, color, op_logique ); } } /************************************************************************/ void TraceFilledCercle( BOARD* Pcb, int cx, int cy, int rayon, int masque_layer, int color, int op_logique ) /************************************************************************/ /* Initialise a la valeur color, les cellules du Board comprises dans la * surface du cercle de centre cx,cy. * Parametres: * rayon : valeur a ajouter au rayon ou demi cote du pad * masque_layer = couches occupees * color : masque a ecrire dans les cellules * op_logique: type d'ecriture dans la cellule ( WRITE, OR ) */ { int row, col; int ux0, uy0, ux1, uy1; int row_max, col_max, row_min, col_min; int trace = 0; float fdistmin, fdistx, fdisty; void (*WriteCell)( int, int, int, BoardCell ); int tstwrite = 0; int distmin; /* Determination des couches occupees : */ /* routage sur 1 seule couche: * sur bitmap BOTTOM et Route_Layer_B = Route_Layer_A*/ if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] ) trace = 1; /* Trace sur BOTTOM */ if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) if( Nb_Sides ) trace |= 2;/* Trace sur TOP */ if( trace == 0 ) return; switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } cx -= Pcb->m_BoundaryBox.m_Pos.x; cy -= Pcb->m_BoundaryBox.m_Pos.y; distmin = rayon; /* Calcul du rectangle d'encadrement du cercle*/ ux0 = cx - rayon; uy0 = cy - rayon; ux1 = cx + rayon; uy1 = cy + rayon; /* Calcul des coord limites des cellules appartenant au rectangle */ row_max = uy1 / g_GridRoutingSize; col_max = ux1 / g_GridRoutingSize; row_min = uy0 / g_GridRoutingSize; // if (uy0 > row_min*g_GridRoutingSize ) row_min++; col_min = ux0 / g_GridRoutingSize; // if (ux0 > col_min*g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (Nrows - 1) ) row_max = Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= (Ncols - 1) ) col_max = Ncols - 1; /* On s'assure que l'on place toujours au moins une cellule */ if( row_min > row_max ) row_max = row_min; if( col_min > col_max ) col_max = col_min; fdistmin = (float) distmin * distmin; for( row = row_min; row <= row_max; row++ ) { fdisty = (float) ( cy - (row * g_GridRoutingSize) ); fdisty *= fdisty; for( col = col_min; col <= col_max; col++ ) { fdistx = (float) ( cx - (col * g_GridRoutingSize) ); fdistx *= fdistx; if( fdistmin <= (fdistx + fdisty) ) continue; if( trace & 1 ) WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) WriteCell( row, col, TOP, color ); tstwrite = 1; } } if( tstwrite ) return; /* Si aucune cellule n'a ete ecrite, on touche les 4 voisins diagonaux * (cas defavorable: pad hors grille, au centre des 4 voisins diagonaux) */ distmin = g_GridRoutingSize / 2 + 1; fdistmin = ( (float) distmin * distmin ) * 2; /* = dist centre au point diagonal*/ for( row = row_min; row <= row_max; row++ ) { fdisty = (float) ( cy - (row * g_GridRoutingSize) ); fdisty *= fdisty; for( col = col_min; col <= col_max; col++ ) { fdistx = (float) ( cx - (col * g_GridRoutingSize) ); fdistx *= fdistx; if( fdistmin <= (fdistx + fdisty) ) continue; if( trace & 1 ) WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) WriteCell( row, col, TOP, color ); } } } /******************************************************************************/ void TraceSegmentPcb( BOARD* Pcb, TRACK* pt_segm, int color, int marge, int op_logique ) /******************************************************************************/ /* trace un Segment de piste sur le BOARD de routage */ { int demi_pas, demi_largeur; int ux0, uy0, ux1, uy1; int layer = pt_segm->GetLayer(); demi_pas = g_GridRoutingSize / 2; demi_largeur = (pt_segm->m_Width / 2) + marge; /* Calcul du rectangle d'encadrement du segment ( si H,V ou Via) */ ux0 = pt_segm->m_Start.x - Pcb->m_BoundaryBox.m_Pos.x; uy0 = pt_segm->m_Start.y - Pcb->m_BoundaryBox.m_Pos.y; ux1 = pt_segm->m_End.x - Pcb->m_BoundaryBox.m_Pos.x; uy1 = pt_segm->m_End.y - Pcb->m_BoundaryBox.m_Pos.y; if( color == VIA_IMPOSSIBLE ) layer = -1; /* Test si VIA (cercle plein a tracer) */ if( pt_segm->Type() == TYPEVIA ) { TraceFilledCercle( Pcb, pt_segm->m_Start.x, pt_segm->m_Start.y, demi_largeur, 0x0000FFFF, color, op_logique ); return; } /* Le segment est ici un segment de droite ou un cercle ou un arc: */ if( pt_segm->m_Shape == S_CIRCLE ) { TraceCercle( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique ); return; } if( pt_segm->m_Shape == S_ARC ) { TraceArc( ux0, uy0, ux1, uy1, pt_segm->m_Param, demi_largeur, layer, color, op_logique ); return; } /* Le segment est ici un segment de droite */ if( (ux0 != ux1) && (uy0 != uy1) ) // segment incline { DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique ); return; } // Ici le segment est HORIZONTAL ou VERTICAL // DrawHVSegment(ux0,uy0,ux1,uy1,demi_largeur,layer,color,op_logique); //F4EXB 051018-01 DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique ); //F4EXB 051018-01 return; //F4EXB 051018-01 } /******************************************************************************************/ void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color, int op_logique ) /******************************************************************************************/ /* trace une ligne; si layer = -1 sur toutes les couches */ { int dx, dy, lim; int cumul, inc, il, delta; void (*WriteCell)( int, int, int, BoardCell ); switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } if( x0 == x1 ) // ligne verticale { if( y1 < y0 ) EXCHG( y0, y1 ); dy = y0 / g_GridRoutingSize; lim = y1 / g_GridRoutingSize; dx = x0 / g_GridRoutingSize; /* Clipping aux limites du board */ if( (dx < 0) || (dx >= Ncols) ) return; if( dy < 0 ) dy = 0; if( lim >= Nrows ) lim = Nrows - 1; for( ; dy <= lim; dy++ ) { OP_CELL( layer, dy, dx ); } return; } if( y0 == y1 ) // ligne horizontale { if( x1 < x0 ) EXCHG( x0, x1 ); dx = x0 / g_GridRoutingSize; lim = x1 / g_GridRoutingSize; dy = y0 / g_GridRoutingSize; /* Clipping aux limites du board */ if( (dy < 0) || (dy >= Nrows) ) return; if( dx < 0 ) dx = 0; if( lim >= Ncols ) lim = Ncols - 1; for( ; dx <= lim; dx++ ) { OP_CELL( layer, dy, dx ); } return; } /* Ici l'angle est quelconque: on utilise l'algorithme de LUCAS */ if( abs( x1 - x0 ) >= abs( y1 - y0 ) ) /* segment peu incline */ { if( x1 < x0 ) { EXCHG( x1, x0 ); EXCHG( y1, y0 ); } dx = x0 / g_GridRoutingSize; lim = x1 / g_GridRoutingSize; dy = y0 / g_GridRoutingSize; inc = 1; if( y1 < y0 ) inc = -1; il = lim - dx; cumul = il / 2; delta = abs( y1 - y0 ) / g_GridRoutingSize; for( ; dx <= lim; ) { if( (dx >= 0) && (dy >= 0) && (dx < Ncols) && (dy < Nrows) ) { OP_CELL( layer, dy, dx ); } dx++; cumul += delta; if( cumul > il ) { cumul -= il; dy += inc; } } } else { if( y1 < y0 ) { EXCHG( x1, x0 ); EXCHG( y1, y0 ); } dy = y0 / g_GridRoutingSize; lim = y1 / g_GridRoutingSize; dx = x0 / g_GridRoutingSize; inc = 1; if( x1 < x0 ) inc = -1; il = lim - dy; cumul = il / 2; delta = abs( x1 - x0 ) / g_GridRoutingSize; for( ; dy <= lim; ) { if( (dx >= 0) && (dy >= 0) && (dx < Ncols) && (dy < Nrows) ) { OP_CELL( layer, dy, dx ); } dy++; cumul += delta; if( cumul > il ) { cumul -= il; dx += inc; } } } } /*****************************************************************/ void TraceFilledRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1, int masque_layer, int color, int op_logique ) /*****************************************************************/ /* Fonction Surchargee. * * Met a la valeur color l'ensemble des cellules du board inscrites dans * le rectangle de coord ux0,uy0 ( angle haut a gauche ) * a ux1,uy1 ( angle bas a droite ) * Le rectangle est horizontal ( ou vertical ) * Coordonnees PCB. */ { int row, col; int row_min, row_max, col_min, col_max; int trace = 0; void (*WriteCell)( int, int, int, BoardCell ); if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] ) trace = 1; /* Trace sur BOTTOM */ if( (masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) && Nb_Sides ) trace |= 2; /* Trace sur TOP */ if( trace == 0 ) return; switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y; ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y; /* Calcul des coord limites des cellules appartenant au rectangle */ row_max = uy1 / g_GridRoutingSize; col_max = ux1 / g_GridRoutingSize; row_min = uy0 / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize ) row_min++; col_min = ux0 / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (Nrows - 1) ) row_max = Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= (Ncols - 1) ) col_max = Ncols - 1; for( row = row_min; row <= row_max; row++ ) { for( col = col_min; col <= col_max; col++ ) { if( trace & 1 ) WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) WriteCell( row, col, TOP, color ); } } } /***********************************************************************************/ void TraceFilledRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1, int angle, int masque_layer, int color, int op_logique ) /***********************************************************************************/ /* Fonction Surchargee. * * Met a la valeur color l'ensemble des cellules du board inscrites dans * le rectangle de coord ux0,uy0 ( angle haut a droite ) * a ux1,uy1 ( angle bas a gauche ) * Le rectangle est tourne de la valeur angle (en 0,1 degres) * Coordonnees PCB. */ { int row, col; int cx, cy; /* Centre du rectangle */ int rayon; /* rayon du cercle exinscrit */ int row_min, row_max, col_min, col_max; int rotrow, rotcol; int trace = 0; void (*WriteCell)( int, int, int, BoardCell ); if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] ) trace = 1; /* Trace sur BOTTOM */ if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) if( Nb_Sides ) trace |= 2;/* Trace sur TOP */ if( trace == 0 ) return; switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y; ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y; cx = (ux0 + ux1) / 2; cy = (uy0 + uy1) / 2; rayon = (int) sqrt( (float) (cx - ux0) * (cx - ux0) + (float) (cy - uy0) * (cy - uy0) ); /* Calcul des coord limites des cellules appartenant au rectangle */ row_max = (cy + rayon) / g_GridRoutingSize; col_max = (cx + rayon) / g_GridRoutingSize; row_min = (cy - rayon) / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize ) row_min++; col_min = (cx - rayon) / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (Nrows - 1) ) row_max = Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= (Ncols - 1) ) col_max = Ncols - 1; for( row = row_min; row <= row_max; row++ ) { for( col = col_min; col <= col_max; col++ ) { rotrow = row * g_GridRoutingSize; rotcol = col * g_GridRoutingSize; RotatePoint( &rotcol, &rotrow, cx, cy, -angle ); if( rotrow <= uy0 ) continue; if( rotrow >= uy1 ) continue; if( rotcol <= ux0 ) continue; if( rotcol >= ux1 ) continue; if( trace & 1 ) WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) WriteCell( row, col, TOP, color ); } } } /*****************************************************************/ void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logique ) /*****************************************************************/ /* Remplit toutes les cellules du BOARD contenues dans le segment * de demi-largeur lg, org ux,y0 fin ux,y1 a la valeur color . * coord en unites PCB (0.1 mil) relatives a l'origine pt_pcb->m_PcbBox.m_Xmin,Y du board. */ { int row, col; int inc; int row_max, col_max, row_min, col_min; int demi_pas; void (*WriteCell)( int, int, int, BoardCell ); int angle; int cx, cy, dx, dy; switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } /* on rend la coordonnee ux1 tj > ux0 , pour simplifier les calculs */ if( ux1 < ux0 ) { EXCHG( ux1, ux0 ); EXCHG( uy1, uy0 ); } /* calcul de l'increment selon axe Y */ inc = 1; if( uy1 < uy0 ) inc = -1; /* Calcul de l'encadrement : */ demi_pas = g_GridRoutingSize / 2; col_min = (ux0 - lg) / g_GridRoutingSize; if( col_min < 0 ) col_min = 0; col_max = (ux1 + lg + demi_pas) / g_GridRoutingSize; if( col_max > (Ncols - 1) ) col_max = Ncols - 1; if( inc > 0 ) { row_min = (uy0 - lg) / g_GridRoutingSize; row_max = (uy1 + lg + demi_pas) / g_GridRoutingSize; } else { row_min = (uy1 - lg) / g_GridRoutingSize; row_max = (uy0 + lg + demi_pas) / g_GridRoutingSize; } if( row_min < 0 ) row_min = 0; if( row_min > (Nrows - 1) ) row_min = Nrows - 1; if( row_max < 0 ) row_max = 0; if( row_max > (Nrows - 1) ) row_max = Nrows - 1; dx = ux1 - ux0; dy = uy1 - uy0; if( dx ) angle = (int) (atan2( dy, dx ) * 1800 / M_PI); else { angle = 900; if( dy < 0 ) angle = -900; } RotatePoint( &dx, &dy, angle ); /* dx = longueur, dy = 0 */ for( col = col_min; col <= col_max; col++ ) { int cxr; cxr = (col * g_GridRoutingSize) - ux0; for( row = row_min; row <= row_max; row++ ) { cy = (row * g_GridRoutingSize) - uy0; cx = cxr; RotatePoint( &cx, &cy, angle ); if( abs( cy ) > lg ) continue; /* Le point est trop loin sur l'axe Y */ /* ici le point a tester est proche du segment: la position * selon l'axe X doit etre testee */ if( (cx >= 0) && (cx <= dx) ) { OP_CELL( layer, row, col ); continue; } /* examen des extremites qui sont arrondies */ if( (cx < 0) && (cx >= -lg) ) { if( ( (cx * cx) + (cy * cy) ) <= (lg * lg) ) OP_CELL( layer, row, col ); continue; } if( (cx > dx) && ( cx <= (dx + lg) ) ) { if( ( ( (cx - dx) * (cx - dx) ) + (cy * cy) ) <= (lg * lg) ) OP_CELL( layer, row, col ); continue; } } } } /********************************************************************/ void DrawHVSegment( int ux0, int uy0, int ux1, int uy1, int demi_largeur, int layer, int color, int op_logique ) /********************************************************************/ /* Draw a horizontal or vertical segment. * same as DrawSegmentQcq, but faster */ { int row, col; int row_max, col_max, row_min, col_min; void (*WriteCell)( int, int, int, BoardCell ); switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } // Modif des coord pour que les coord de fin soient > coord de debut if( uy1 < uy0 ) EXCHG( uy0, uy1 ); // ceci n'est vrai que parce que if( ux1 < ux0 ) EXCHG( ux0, ux1 ); // dx ou dy ou les 2 sonts nuls // Le segment est assimile a un rectangle. // TODO: traiter correctement les extremites arrondies // if ( ux0 == ux1 ) // Vertical Segment { ux0 -= demi_largeur; ux1 += demi_largeur; } // else // Horizontal segment { uy0 -= demi_largeur; uy1 += demi_largeur; } // Calcul des coord limites des cellules appartenant au rectangle row_max = uy1 / g_GridRoutingSize; col_max = ux1 / g_GridRoutingSize; row_min = uy0 / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize ) row_min++; // Traitement de l'arrondi par defaut col_min = ux0 / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (Nrows - 1) ) row_max = Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= (Ncols - 1) ) col_max = Ncols - 1; if( row_min > row_max ) row_max = row_min; if( col_min > col_max ) col_max = col_min; for( row = row_min; row <= row_max; row++ ) { for( col = col_min; col <= col_max; col++ ) { OP_CELL( layer, row, col ); } } } /*****************************************************************/ void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logique ) /*****************************************************************/ /* Remplit toutes les cellules du BOARD contenues dans le cercle * de demi-largeur lg, centre ux,y0 passant par ux,y1 a la valeur color . * coord en unites PCB (0.1 mil) relatives a l'origine pt_pcb->m_PcbBox.m_Xmin,Y du board. */ { int rayon, nb_segm; int x0, y0, // Point de depart du segment en cours de trace x1, y1; // point d'arrivee int ii; int angle; rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) ); x0 = x1 = rayon; y0 = y1 = 0; if( lg < 1 ) lg = 1; nb_segm = (2 * rayon) / lg; if( nb_segm < 5 ) nb_segm = 5; if( nb_segm > 100 ) nb_segm = 100; for( ii = 1; ii < nb_segm; ii++ ) { angle = (3600 * ii) / nb_segm; x1 = (int) (rayon * fcosinus[angle]); y1 = (int) (rayon * fsinus[angle]); DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logique ); x0 = x1; y0 = y1; } DrawSegmentQcq( x1 + ux0, y1 + uy0, ux0 + rayon, uy0, lg, layer, color, op_logique ); } /****************************************************************************/ void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer, int color, int op_logique ) /****************************************************************************/ /* Remplit toutes les cellules du BOARD contenues dans l'arc de "longueur" angle * de demi-largeur lg, centre ux,y0 commencant en ux,y1 a la valeur color . * coord en unites PCB (0.1 mil) relatives a l'origine * pt_pcb->m_PcbBox.m_Xmin,Y du board. */ { int rayon, nb_segm; int x0, y0, // Point de depart du segment en cours de trace x1, y1; // point d'arrivee int ii; int angle, StAngle; rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) ); x0 = ux1 - ux0; y0 = uy1 - uy0; StAngle = ArcTangente( uy1 - uy0, ux1 - ux0 ); if( lg < 1 ) lg = 1; nb_segm = (2 * rayon) / lg; nb_segm = ( nb_segm * abs( ArcAngle ) ) / 3600; if( nb_segm < 5 ) nb_segm = 5; if( nb_segm > 100 ) nb_segm = 100; for( ii = 1; ii <= nb_segm; ii++ ) { angle = (ArcAngle * ii) / nb_segm; angle += StAngle; while( angle >= 3600 ) angle -= 3600; while( angle < 0 ) angle += 3600; x1 = (int) (rayon * fcosinus[angle]); y1 = (int) (rayon * fsinus[angle]); DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logique ); x0 = x1; y0 = y1; } // DrawSegmentQcq(x1+ux0,y1+uy0, ux0+rayon, uy0,lg,layer, color, op_logique); }