/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2017 CERN * Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors. * * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #ifndef __PNS_LINE_H #define __PNS_LINE_H #include #include #include #include #include #include #include "pns_item.h" #include "pns_via.h" #include "pns_link_holder.h" namespace PNS { class LINKED_ITEM; class NODE; class VIA; #define PNS_HULL_MARGIN 10 /** * Represents a track on a PCB, connecting two non-trivial joints (that is, * vias, pads, junctions between multiple traces or two traces different widths * and combinations of these). PNS_LINEs are NOT stored in the model (NODE). * Instead, they are assembled on-the-fly, based on a via/pad/segment that * belongs to/starts/ends them. * * PNS_LINEs can be either loose (consisting of segments that do not belong to * any NODE) or owned (with segments taken from a NODE) - these are returned by * #NODE::AssembleLine and friends. * * A LINE may have a VIA attached at its end (i.e. the last point) - this is used by via * dragging/force propagation stuff. */ class LINE : public LINK_HOLDER { public: /** * Makes an empty line. */ LINE() : LINK_HOLDER( LINE_T ), m_blockingObstacle( nullptr ) { m_width = 1; // Dummy value m_snapThreshhold = 0; m_via = nullptr; } LINE( const LINE& aOther ); /** * Copy properties (net, layers, etc.) from a base line and replaces the shape by another. */ LINE( const LINE& aBase, const SHAPE_LINE_CHAIN& aLine ) : LINK_HOLDER( aBase ), m_line( aLine ), m_width( aBase.m_width ), m_snapThreshhold( aBase.m_snapThreshhold ), m_blockingObstacle( nullptr ) { m_net = aBase.m_net; m_layers = aBase.m_layers; m_via = nullptr; } /** * Construct a LINE for a lone VIA (ie a stitching via). */ LINE( const VIA& aVia ) : LINK_HOLDER( LINE_T ), m_blockingObstacle( nullptr ) { m_via = aVia.Clone(); m_width = aVia.Diameter(); m_net = aVia.Net(); m_layers = aVia.Layers(); m_rank = aVia.Rank(); m_snapThreshhold = 0; } ~LINE(); static inline bool ClassOf( const ITEM* aItem ) { return aItem && LINE_T == aItem->Kind(); } /// @copydoc ITEM::Clone() virtual LINE* Clone() const override; LINE& operator=( const LINE& aOther ); bool IsLinkedChecked() const { return IsLinked() && LinkCount() == ShapeCount(); } ///< Assign a shape to the line (a polyline/line chain). void SetShape( const SHAPE_LINE_CHAIN& aLine ) { m_line = aLine; m_line.SetWidth( m_width ); } ///< Return the shape of the line. const SHAPE* Shape() const override { return &m_line; } ///< Modifiable accessor to the underlying shape. SHAPE_LINE_CHAIN& Line() { return m_line; } const SHAPE_LINE_CHAIN& CLine() const { return m_line; } int SegmentCount() const { return m_line.SegmentCount(); } int PointCount() const { return m_line.PointCount(); } int ArcCount() const { return m_line.ArcCount(); } int ShapeCount() const { return m_line.ShapeCount(); } ///< Return the \a aIdx-th point of the line. const VECTOR2I& CPoint( int aIdx ) const { return m_line.CPoint( aIdx ); } const SEG CSegment( int aIdx ) const { return m_line.CSegment( aIdx ); } ///< Set line width. void SetWidth( int aWidth ) { m_width = aWidth; m_line.SetWidth( aWidth ); } ///< Return line width. int Width() const { return m_width; } ///< Return true if the line is geometrically identical as line \a aOther. bool CompareGeometry( const LINE& aOther ); ///< Reverse the point/vertex order void Reverse(); ///< Clip the line to the nearest obstacle, traversing from the line's start vertex (0). ///< Returns the clipped line. const LINE ClipToNearestObstacle( NODE* aNode ) const; ///< Clip the line to a given range of vertices. void ClipVertexRange ( int aStart, int aEnd ); ///< Return the number of corners of angles specified by mask aAngles. int CountCorners( int aAngles ) const; /** * Calculate a line tightly wrapping a convex hull of an obstacle object (aObstacle). * @param aPrePath is the path from origin to the obstacle. * @param aWalkaroundPath is the path around the obstacle. * @param aPostPath is the path from obstacle till the end. * @param aCW determines whether to walk around in clockwise or counter-clockwise direction. */ bool Walkaround( SHAPE_LINE_CHAIN aObstacle, SHAPE_LINE_CHAIN& aPre, SHAPE_LINE_CHAIN& aWalk, SHAPE_LINE_CHAIN& aPost, bool aCw ) const; bool Walkaround( const SHAPE_LINE_CHAIN& aObstacle, SHAPE_LINE_CHAIN& aPath, bool aCw ) const; ///< Print out all linked segments. void ShowLinks() const; bool EndsWithVia() const { return m_via != nullptr; } void AppendVia( const VIA& aVia ); void RemoveVia(); VIA& Via() { return *m_via; } const VIA& Via() const { return *m_via; } void SetViaDiameter( int aDiameter ) { assert(m_via); m_via->SetDiameter( aDiameter ); } void SetViaDrill( int aDrill ) { assert(m_via); m_via->SetDrill( aDrill ); } virtual void Mark( int aMarker ) const override; virtual void Unmark( int aMarker = -1 ) const override; virtual int Marker() const override; void SetBlockingObstacle( ITEM* aObstacle ) { m_blockingObstacle = aObstacle; } ITEM* GetBlockingObstacle() const { return m_blockingObstacle; } void DragSegment( const VECTOR2I& aP, int aIndex, bool aFreeAngle = false ); void DragCorner( const VECTOR2I& aP, int aIndex, bool aFreeAngle = false ); void SetRank( int aRank ) override; int Rank() const override; bool HasLoops() const; bool HasLockedSegments() const; void Clear(); OPT_BOX2I ChangedArea( const LINE* aOther ) const; void SetSnapThreshhold( int aThreshhold ) { m_snapThreshhold = aThreshhold; } int GetSnapThreshhold() const { return m_snapThreshhold; } private: void dragSegment45( const VECTOR2I& aP, int aIndex ); void dragCorner45( const VECTOR2I& aP, int aIndex ); void dragSegmentFree( const VECTOR2I& aP, int aIndex ); void dragCornerFree( const VECTOR2I& aP, int aIndex ); VECTOR2I snapToNeighbourSegments( const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP, int aIndex ) const; VECTOR2I snapDraggedCorner( const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP, int aIndex ) const; SHAPE_LINE_CHAIN m_line; ///< The actual shape of the line. int m_width; ///< Our width. int m_snapThreshhold; ///< Width to smooth out jagged segments. VIA* m_via; ITEM* m_blockingObstacle; ///< For mark obstacle mode. }; } #endif // __PNS_LINE_H