/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2017 CERN * Copyright (C) 2018-2022 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifdef PROFILE #include #endif #include #include #include #include #include #include #include #include #include #include #include #include CONNECTIVITY_DATA::CONNECTIVITY_DATA() { m_connAlgo.reset( new CN_CONNECTIVITY_ALGO ); m_progressReporter = nullptr; m_fromToCache.reset( new FROM_TO_CACHE ); } CONNECTIVITY_DATA::CONNECTIVITY_DATA( const std::vector& aItems, bool aSkipRatsnest ) : m_skipRatsnest( aSkipRatsnest ) { Build( aItems ); m_progressReporter = nullptr; m_fromToCache.reset( new FROM_TO_CACHE ); } CONNECTIVITY_DATA::~CONNECTIVITY_DATA() { Clear(); } bool CONNECTIVITY_DATA::Add( BOARD_ITEM* aItem ) { m_connAlgo->Add( aItem ); return true; } bool CONNECTIVITY_DATA::Remove( BOARD_ITEM* aItem ) { m_connAlgo->Remove( aItem ); return true; } bool CONNECTIVITY_DATA::Update( BOARD_ITEM* aItem ) { m_connAlgo->Remove( aItem ); m_connAlgo->Add( aItem ); return true; } void CONNECTIVITY_DATA::Build( BOARD* aBoard, PROGRESS_REPORTER* aReporter ) { aBoard->CacheTriangulation( aReporter ); std::unique_lock lock( m_lock, std::try_to_lock ); if( !lock ) return; if( aReporter ) { aReporter->Report( _( "Updating nets..." ) ); aReporter->KeepRefreshing( false ); } m_connAlgo.reset( new CN_CONNECTIVITY_ALGO ); m_connAlgo->Build( aBoard, aReporter ); m_netclassMap.clear(); for( NETINFO_ITEM* net : aBoard->GetNetInfo() ) { if( net->GetNetClass()->GetName() != NETCLASS::Default ) m_netclassMap[ net->GetNetCode() ] = net->GetNetClass()->GetName(); } if( aReporter ) { aReporter->SetCurrentProgress( 0.75 ); aReporter->KeepRefreshing( false ); } RecalculateRatsnest(); if( aReporter ) { aReporter->SetCurrentProgress( 1.0 ); aReporter->KeepRefreshing( false ); } } void CONNECTIVITY_DATA::Build( const std::vector& aItems ) { std::unique_lock lock( m_lock, std::try_to_lock ); if( !lock ) return; m_connAlgo.reset( new CN_CONNECTIVITY_ALGO ); m_connAlgo->LocalBuild( aItems ); RecalculateRatsnest(); } void CONNECTIVITY_DATA::Move( const VECTOR2I& aDelta ) { m_connAlgo->ForEachAnchor( [&aDelta]( CN_ANCHOR& anchor ) { anchor.Move( aDelta ); } ); } void CONNECTIVITY_DATA::updateRatsnest() { #ifdef PROFILE PROF_COUNTER rnUpdate( "update-ratsnest" ); #endif std::vector dirty_nets; // Start with net 1 as net 0 is reserved for not-connected // Nets without nodes are also ignored std::copy_if( m_nets.begin() + 1, m_nets.end(), std::back_inserter( dirty_nets ), [] ( RN_NET* aNet ) { return aNet->IsDirty() && aNet->GetNodeCount() > 0; } ); // We don't want to spin up a new thread for fewer than 8 nets (overhead costs) size_t parallelThreadCount = std::min( std::thread::hardware_concurrency(), ( dirty_nets.size() + 7 ) / 8 ); std::atomic nextNet( 0 ); std::vector> returns( parallelThreadCount ); auto update_lambda = [this, &nextNet, &dirty_nets]() -> size_t { for( size_t i = nextNet++; i < dirty_nets.size(); i = nextNet++ ) dirty_nets[i]->Update( m_exclusions ); return 1; }; if( parallelThreadCount <= 1 ) { update_lambda(); } else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, update_lambda ); // Finalize the ratsnest threads for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii].wait(); } #ifdef PROFILE rnUpdate.Show(); #endif } void CONNECTIVITY_DATA::addRatsnestCluster( const std::shared_ptr& aCluster ) { RN_NET* rnNet = m_nets[ aCluster->OriginNet() ]; rnNet->AddCluster( aCluster ); } void CONNECTIVITY_DATA::RecalculateRatsnest( BOARD_COMMIT* aCommit ) { m_connAlgo->PropagateNets( aCommit ); int lastNet = m_connAlgo->NetCount(); if( lastNet >= (int) m_nets.size() ) { unsigned int prevSize = m_nets.size(); m_nets.resize( lastNet + 1 ); for( unsigned int i = prevSize; i < m_nets.size(); i++ ) m_nets[i] = new RN_NET; } const std::vector>& clusters = m_connAlgo->GetClusters(); int dirtyNets = 0; for( int net = 0; net < lastNet; net++ ) { if( m_connAlgo->IsNetDirty( net ) ) { m_nets[net]->Clear(); dirtyNets++; } } for( const std::shared_ptr& c : clusters ) { int net = c->OriginNet(); // Don't add intentionally-kept zone islands to the ratsnest if( c->IsOrphaned() && c->Size() == 1 ) { if( dynamic_cast( *c->begin() ) ) continue; } if( m_connAlgo->IsNetDirty( net ) ) { addRatsnestCluster( c ); } } m_connAlgo->ClearDirtyFlags(); if( !m_skipRatsnest ) updateRatsnest(); } void CONNECTIVITY_DATA::BlockRatsnestItems( const std::vector& aItems ) { std::vector citems; for( BOARD_ITEM* item : aItems ) { if( item->Type() == PCB_FOOTPRINT_T ) { for( PAD* pad : static_cast(item)->Pads() ) citems.push_back( pad ); } else { if( BOARD_CONNECTED_ITEM* citem = dynamic_cast( item ) ) citems.push_back( citem ); } } for( const BOARD_CONNECTED_ITEM* item : citems ) { if ( m_connAlgo->ItemExists( item ) ) { CN_CONNECTIVITY_ALGO::ITEM_MAP_ENTRY& entry = m_connAlgo->ItemEntry( item ); for( CN_ITEM* cnItem : entry.GetItems() ) { for( const std::shared_ptr& anchor : cnItem->Anchors() ) anchor->SetNoLine( true ); } } } } int CONNECTIVITY_DATA::GetNetCount() const { return m_connAlgo->NetCount(); } void CONNECTIVITY_DATA::FindIsolatedCopperIslands( ZONE* aZone, std::vector& aIslands ) { // TODO(JE) ZONES #if 0 m_connAlgo->FindIsolatedCopperIslands( aZone, aIslands ); #endif } void CONNECTIVITY_DATA::FindIsolatedCopperIslands( std::vector& aZones ) { m_connAlgo->FindIsolatedCopperIslands( aZones ); } void CONNECTIVITY_DATA::ComputeDynamicRatsnest( const std::vector& aItems, const CONNECTIVITY_DATA* aDynamicData, VECTOR2I aInternalOffset ) { if( !aDynamicData ) return; m_dynamicRatsnest.clear(); // This gets connections between the stationary board and the // moving selection for( unsigned int nc = 1; nc < aDynamicData->m_nets.size(); nc++ ) { auto dynNet = aDynamicData->m_nets[nc]; if( dynNet->GetNodeCount() != 0 ) { RN_NET* ourNet = m_nets[nc]; VECTOR2I pos1, pos2; if( ourNet->NearestBicoloredPair( *dynNet, &pos1, &pos2 ) ) { RN_DYNAMIC_LINE l; l.a = pos1; l.b = pos2; l.netCode = nc; m_dynamicRatsnest.push_back( l ); } } } // This gets the ratsnest for internal connections in the moving set const std::vector& edges = GetRatsnestForItems( aItems ); for( const CN_EDGE& edge : edges ) { const std::shared_ptr& nodeA = edge.GetSourceNode(); const std::shared_ptr& nodeB = edge.GetTargetNode(); RN_DYNAMIC_LINE l; // Use the parents' positions l.a = nodeA->Parent()->GetPosition() + aInternalOffset; l.b = nodeB->Parent()->GetPosition() + aInternalOffset; l.netCode = 0; m_dynamicRatsnest.push_back( l ); } } void CONNECTIVITY_DATA::ClearDynamicRatsnest() { m_connAlgo->ForEachAnchor( []( CN_ANCHOR& anchor ) { anchor.SetNoLine( false ); } ); HideDynamicRatsnest(); } void CONNECTIVITY_DATA::HideDynamicRatsnest() { m_dynamicRatsnest.clear(); } void CONNECTIVITY_DATA::PropagateNets( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode ) { m_connAlgo->PropagateNets( aCommit, aMode ); } bool CONNECTIVITY_DATA::IsConnectedOnLayer( const BOARD_CONNECTED_ITEM *aItem, int aLayer, const std::initializer_list& aTypes, bool aCheckOptionalFlashing ) const { CN_CONNECTIVITY_ALGO::ITEM_MAP_ENTRY &entry = m_connAlgo->ItemEntry( aItem ); auto matchType = [&]( KICAD_T aItemType ) { if( aTypes.size() == 0 ) return true; return alg::contains( aTypes, aItemType); }; for( CN_ITEM* citem : entry.GetItems() ) { for( CN_ITEM* connected : citem->ConnectedItems() ) { CN_ZONE_LAYER* zoneLayer = dynamic_cast( connected ); if( connected->Valid() && connected->Layers().Overlaps( aLayer ) && matchType( connected->Parent()->Type() ) && connected->Net() == aItem->GetNetCode() ) { if( aItem->Type() == PCB_PAD_T && zoneLayer ) { const PAD* pad = static_cast( aItem ); SHAPE_SEGMENT hole( *pad->GetEffectiveHoleShape() ); PCB_LAYER_ID layer = ToLAYER_ID( aLayer ); ZONE* zone = static_cast( zoneLayer->Parent() ); int islandIdx = zoneLayer->SubpolyIndex(); if( zone->IsFilled() ) { const SHAPE_POLY_SET* zoneFill = zone->GetFill( layer ); const SHAPE_LINE_CHAIN& padHull = pad->GetEffectivePolygon()->Outline( 0 ); for( const VECTOR2I& pt : zoneFill->COutline( islandIdx ).CPoints() ) { // If the entire island is inside the pad's flashing then the pad // won't actually connect to anything else, so only return true if // part of the island is *outside* the pad's flashing. if( !padHull.PointInside( pt ) ) return true; } } continue; } else if( aItem->Type() == PCB_VIA_T && zoneLayer ) { const PCB_VIA* via = static_cast( aItem ); SHAPE_CIRCLE hole( via->GetCenter(), via->GetDrillValue() / 2 ); PCB_LAYER_ID layer = ToLAYER_ID( aLayer ); ZONE* zone = static_cast( zoneLayer->Parent() ); int islandIdx = zoneLayer->SubpolyIndex(); if( zone->IsFilled() ) { const SHAPE_POLY_SET* zoneFill = zone->GetFill( layer ); SHAPE_CIRCLE viaHull( via->GetCenter(), via->GetWidth() / 2 ); for( const VECTOR2I& pt : zoneFill->COutline( islandIdx ).CPoints() ) { // If the entire island is inside the via's flashing then the via // won't actually connect to anything else, so only return true if // part of the island is *outside* the via's flashing. if( !viaHull.SHAPE::Collide( pt ) ) return true; } } continue; } return true; } } } return false; } unsigned int CONNECTIVITY_DATA::GetUnconnectedCount() const { unsigned int unconnected = 0; for( RN_NET* net : m_nets ) { if( !net ) continue; for( const CN_EDGE& edge : net->GetEdges() ) { if( edge.IsVisible() ) ++unconnected; } } return unconnected; } void CONNECTIVITY_DATA::Clear() { for( RN_NET* net : m_nets ) delete net; m_nets.clear(); } const std::vector CONNECTIVITY_DATA::GetConnectedItems( const BOARD_CONNECTED_ITEM *aItem, const std::initializer_list& aTypes, bool aIgnoreNetcodes ) const { std::vector rv; CN_CONNECTIVITY_ALGO::CLUSTER_SEARCH_MODE searchMode; if( aIgnoreNetcodes ) searchMode = CN_CONNECTIVITY_ALGO::CSM_PROPAGATE; else searchMode = CN_CONNECTIVITY_ALGO::CSM_CONNECTIVITY_CHECK; const auto clusters = m_connAlgo->SearchClusters( searchMode, aTypes, aIgnoreNetcodes ? -1 : aItem->GetNetCode() ); for( const std::shared_ptr& cl : clusters ) { if( cl->Contains( aItem ) ) { for( const CN_ITEM* item : *cl ) { if( item->Valid() ) rv.push_back( item->Parent() ); } } } return rv; } const std::vector CONNECTIVITY_DATA::GetNetItems( int aNetCode, const KICAD_T aTypes[] ) const { std::vector items; items.reserve( 32 ); std::bitset type_bits; for( unsigned int i = 0; aTypes[i] != EOT; ++i ) { wxASSERT( aTypes[i] < MAX_STRUCT_TYPE_ID ); type_bits.set( aTypes[i] ); } m_connAlgo->ForEachItem( [&]( CN_ITEM& aItem ) { if( aItem.Valid() && ( aItem.Net() == aNetCode ) && type_bits[aItem.Parent()->Type()] ) items.push_back( aItem.Parent() ); } ); std::sort( items.begin(), items.end() ); items.erase( std::unique( items.begin(), items.end() ), items.end() ); return items; } bool CONNECTIVITY_DATA::CheckConnectivity( std::vector& aReport ) { RecalculateRatsnest(); for( auto net : m_nets ) { if( net ) { for( const auto& edge : net->GetEdges() ) { CN_DISJOINT_NET_ENTRY ent; ent.net = edge.GetSourceNode()->Parent()->GetNetCode(); ent.a = edge.GetSourceNode()->Parent(); ent.b = edge.GetTargetNode()->Parent(); ent.anchorA = edge.GetSourceNode()->Pos(); ent.anchorB = edge.GetTargetNode()->Pos(); aReport.push_back( ent ); } } } return aReport.empty(); } const std::vector CONNECTIVITY_DATA::GetConnectedTracks( const BOARD_CONNECTED_ITEM* aItem ) const { auto& entry = m_connAlgo->ItemEntry( aItem ); std::set tracks; std::vector rv; for( CN_ITEM* citem : entry.GetItems() ) { for( CN_ITEM* connected : citem->ConnectedItems() ) { if( connected->Valid() && ( connected->Parent()->Type() == PCB_TRACE_T || connected->Parent()->Type() == PCB_VIA_T || connected->Parent()->Type() == PCB_ARC_T ) ) tracks.insert( static_cast ( connected->Parent() ) ); } } std::copy( tracks.begin(), tracks.end(), std::back_inserter( rv ) ); return rv; } void CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem, std::set* pads ) const { for( CN_ITEM* citem : m_connAlgo->ItemEntry( aItem ).GetItems() ) { for( CN_ITEM* connected : citem->ConnectedItems() ) { if( connected->Valid() && connected->Parent()->Type() == PCB_PAD_T ) pads->insert( static_cast ( connected->Parent() ) ); } } } const std::vector CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem ) const { std::set pads; std::vector rv; GetConnectedPads( aItem, &pads ); std::copy( pads.begin(), pads.end(), std::back_inserter( rv ) ); return rv; } unsigned int CONNECTIVITY_DATA::GetNodeCount( int aNet ) const { int sum = 0; if( aNet < 0 ) // Node count for all nets { for( const RN_NET* net : m_nets ) sum += net->GetNodeCount(); } else if( aNet < (int) m_nets.size() ) { sum = m_nets[aNet]->GetNodeCount(); } return sum; } unsigned int CONNECTIVITY_DATA::GetPadCount( int aNet ) const { int n = 0; for( CN_ITEM* pad : m_connAlgo->ItemList() ) { if( !pad->Valid() || pad->Parent()->Type() != PCB_PAD_T) continue; PAD* dpad = static_cast( pad->Parent() ); if( aNet < 0 || aNet == dpad->GetNetCode() ) n++; } return n; } void CONNECTIVITY_DATA::GetUnconnectedEdges( std::vector& aEdges) const { for( const RN_NET* rnNet : m_nets ) { if( rnNet ) { for( const CN_EDGE& edge : rnNet->GetEdges() ) aEdges.push_back( edge ); } } } static int getMinDist( BOARD_CONNECTED_ITEM* aItem, const VECTOR2I& aPoint ) { switch( aItem->Type() ) { case PCB_TRACE_T: case PCB_ARC_T: { PCB_TRACK* track = static_cast( aItem ); return std::min( GetLineLength( track->GetStart(), aPoint ), GetLineLength( track->GetEnd(), aPoint ) ); } default: return GetLineLength( aItem->GetPosition(), aPoint ); } } bool CONNECTIVITY_DATA::TestTrackEndpointDangling( PCB_TRACK* aTrack, VECTOR2I* aPos ) { std::list items = GetConnectivityAlgo()->ItemEntry( aTrack ).GetItems(); // Not in the connectivity system. This is a bug! if( items.empty() ) { wxFAIL_MSG( wxT( "track not in connectivity system" ) ); return false; } CN_ITEM* citem = items.front(); if( !citem->Valid() ) return false; if( aTrack->Type() == PCB_TRACE_T || aTrack->Type() == PCB_ARC_T ) { // Test if a segment is connected on each end. // // NB: be wary of short segments which can be connected to the *same* other item on // each end. If that's their only connection then they're still dangling. PCB_LAYER_ID layer = aTrack->GetLayer(); int accuracy = KiROUND( aTrack->GetWidth() / 2 ); int start_count = 0; int end_count = 0; for( CN_ITEM* connected : citem->ConnectedItems() ) { BOARD_CONNECTED_ITEM* item = connected->Parent(); if( item->GetFlags() & IS_DELETED ) continue; std::shared_ptr shape = item->GetEffectiveShape( layer ); bool hitStart = shape->Collide( aTrack->GetStart(), accuracy ); bool hitEnd = shape->Collide( aTrack->GetEnd(), accuracy ); if( hitStart && hitEnd ) { if( getMinDist( item, aTrack->GetStart() ) < getMinDist( item, aTrack->GetEnd() ) ) start_count++; else end_count++; } else if( hitStart ) { start_count++; } else if( hitEnd ) { end_count++; } if( start_count > 0 && end_count > 0 ) return false; } if( aPos ) *aPos = (start_count == 0 ) ? aTrack->GetStart() : aTrack->GetEnd(); return true; } else if( aTrack->Type() == PCB_VIA_T ) { // Test if a via is only connected on one layer const std::vector& connected = citem->ConnectedItems(); if( connected.empty() ) { if( aPos ) *aPos = aTrack->GetPosition(); return true; } // Here, we check if the via is connected only to items on a single layer int first_layer = UNDEFINED_LAYER; for( CN_ITEM* item : connected ) { if( item->Parent()->GetFlags() & IS_DELETED ) continue; if( first_layer == UNDEFINED_LAYER ) first_layer = item->Layer(); else if( item->Layer() != first_layer ) return false; } if( aPos ) *aPos = aTrack->GetPosition(); return true; } else { wxFAIL_MSG( wxT( "CONNECTIVITY_DATA::TestTrackEndpointDangling: unknown track type" ) ); } return false; } const std::vector CONNECTIVITY_DATA::GetConnectedItemsAtAnchor( const BOARD_CONNECTED_ITEM* aItem, const VECTOR2I& aAnchor, const KICAD_T aTypes[], const int& aMaxError ) const { auto& entry = m_connAlgo->ItemEntry( aItem ); std::vector rv; SEG::ecoord maxErrorSq = (SEG::ecoord) aMaxError * aMaxError; for( auto cnItem : entry.GetItems() ) { for( auto connected : cnItem->ConnectedItems() ) { for( auto anchor : connected->Anchors() ) { if( ( anchor->Pos() - aAnchor ).SquaredEuclideanNorm() <= maxErrorSq ) { for( int i = 0; aTypes[i] > 0; i++ ) { if( connected->Valid() && connected->Parent()->Type() == aTypes[i] ) { rv.push_back( connected->Parent() ); break; } } break; } } } } return rv; } RN_NET* CONNECTIVITY_DATA::GetRatsnestForNet( int aNet ) { if ( aNet < 0 || aNet >= (int) m_nets.size() ) { return nullptr; } return m_nets[ aNet ]; } void CONNECTIVITY_DATA::MarkItemNetAsDirty( BOARD_ITEM *aItem ) { if ( aItem->Type() == PCB_FOOTPRINT_T) { for( PAD* pad : static_cast( aItem )->Pads() ) m_connAlgo->MarkNetAsDirty( pad->GetNetCode() ); } if (aItem->IsConnected() ) { m_connAlgo->MarkNetAsDirty( static_cast( aItem )->GetNetCode() ); } } void CONNECTIVITY_DATA::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; m_connAlgo->SetProgressReporter( m_progressReporter ); } void CONNECTIVITY_DATA::AddExclusion( const KIID& aBoardItemId1, const KIID& aBoardItemId2 ) { m_exclusions.emplace( aBoardItemId1, aBoardItemId2 ); m_exclusions.emplace( aBoardItemId2, aBoardItemId1 ); for( RN_NET* rnNet : m_nets ) { for( CN_EDGE& edge : rnNet->GetEdges() ) { if( ( edge.GetSourceNode()->Parent()->m_Uuid == aBoardItemId1 && edge.GetTargetNode()->Parent()->m_Uuid == aBoardItemId2 ) || ( edge.GetSourceNode()->Parent()->m_Uuid == aBoardItemId2 && edge.GetTargetNode()->Parent()->m_Uuid == aBoardItemId1 ) ) { edge.SetVisible( false ); } } } } void CONNECTIVITY_DATA::RemoveExclusion( const KIID& aBoardItemId1, const KIID& aBoardItemId2 ) { m_exclusions.erase( std::pair( aBoardItemId1, aBoardItemId2 ) ); m_exclusions.erase( std::pair( aBoardItemId2, aBoardItemId1 ) ); for( RN_NET* rnNet : m_nets ) { for( CN_EDGE& edge : rnNet->GetEdges() ) { if( ( edge.GetSourceNode()->Parent()->m_Uuid == aBoardItemId1 && edge.GetTargetNode()->Parent()->m_Uuid == aBoardItemId2 ) || ( edge.GetSourceNode()->Parent()->m_Uuid == aBoardItemId2 && edge.GetTargetNode()->Parent()->m_Uuid == aBoardItemId1 ) ) { edge.SetVisible( true ); } } } } const std::vector CONNECTIVITY_DATA::GetRatsnestForItems( std::vector aItems ) { std::set nets; std::vector edges; std::set item_set; for( BOARD_ITEM* item : aItems ) { if( item->Type() == PCB_FOOTPRINT_T ) { FOOTPRINT* footprint = static_cast( item ); for( PAD* pad : footprint->Pads() ) { nets.insert( pad->GetNetCode() ); item_set.insert( pad ); } } else if( auto conn_item = dyn_cast( item ) ) { item_set.insert( conn_item ); nets.insert( conn_item->GetNetCode() ); } } for( int netcode : nets ) { RN_NET* net = GetRatsnestForNet( netcode ); for( const CN_EDGE& edge : net->GetEdges() ) { std::shared_ptr srcNode = edge.GetSourceNode(); std::shared_ptr dstNode = edge.GetTargetNode(); BOARD_CONNECTED_ITEM* srcParent = srcNode->Parent(); BOARD_CONNECTED_ITEM* dstParent = dstNode->Parent(); bool srcFound = ( item_set.find( srcParent ) != item_set.end() ); bool dstFound = ( item_set.find( dstParent ) != item_set.end() ); if ( srcFound && dstFound ) edges.push_back( edge ); } } return edges; } const std::vector CONNECTIVITY_DATA::GetRatsnestForPad( const PAD* aPad ) { std::vector edges; RN_NET* net = GetRatsnestForNet( aPad->GetNetCode() ); for( const CN_EDGE& edge : net->GetEdges() ) { if( edge.GetSourceNode()->Parent() == aPad || edge.GetTargetNode()->Parent() == aPad ) edges.push_back( edge ); } return edges; } const std::vector CONNECTIVITY_DATA::GetRatsnestForComponent( FOOTPRINT* aComponent, bool aSkipInternalConnections ) { std::set nets; std::set pads; std::vector edges; for( auto pad : aComponent->Pads() ) { nets.insert( pad->GetNetCode() ); pads.insert( pad ); } for( const auto& netcode : nets ) { RN_NET* net = GetRatsnestForNet( netcode ); for( const CN_EDGE& edge : net->GetEdges() ) { auto srcNode = edge.GetSourceNode(); auto dstNode = edge.GetTargetNode(); const PAD* srcParent = static_cast( srcNode->Parent() ); const PAD* dstParent = static_cast( dstNode->Parent() ); bool srcFound = ( pads.find(srcParent) != pads.end() ); bool dstFound = ( pads.find(dstParent) != pads.end() ); if ( srcFound && dstFound && !aSkipInternalConnections ) { edges.push_back( edge ); } else if ( srcFound || dstFound ) { edges.push_back( edge ); } } } return edges; }