/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2009-2013 Lorenzo Mercantonio * Copyright (C) 2013 Jean-Pierre Charras jp.charras at wanadoo.fr * Copyright (C) 2004-2013 KiCad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include <3d_struct.h> #include #include #include #include #include #include #include #include #include #include // Number of segments to approximate a circle per segments: #define SEGM_COUNT_PER_360 32 // basic angle to approximate a circle per segments static const double INC_ANGLE = M_PI*2 / SEGM_COUNT_PER_360; /* helper function: * some characters cannot be used in names, * this function change them to "_" */ static void ChangeIllegalCharacters( wxString & aFileName, bool aDirSepIsIllegal ); // I use this a lot... static const double PI2 = M_PI / 2; struct POINT_3D { double x, y, z; }; struct POINT_2D { POINT_2D( double _x = 0, double _y = 0 ) : x( _x ), y( _y ) { } double x, y; }; // Absolutely not optimized triangle bag :D struct TRIANGLE { TRIANGLE( double x1, double y1, double z1, double x2, double y2, double z2, double x3, double y3, double z3 ) { p1.x = x1; p1.y = y1; p1.z = z1; p2.x = x2; p2.y = y2; p2.z = z2; p3.x = x3; p3.y = y3; p3.z = z3; } TRIANGLE() { } POINT_3D p1, p2, p3; }; typedef std::vector TRIANGLEBAG; // A flat triangle fan struct FLAT_FAN { POINT_2D c; std::vector pts; void add( double x, double y ) { pts.push_back( POINT_2D( x, y ) ); } void bag( int layer, bool close = true ); }; // A flat quad ring struct FLAT_RING { std::vector inner; std::vector outer; void add_inner( double x, double y ) { inner.push_back( POINT_2D( x, y ) ); } void add_outer( double x, double y ) { outer.push_back( POINT_2D( x, y ) ); } void bag( int layer, bool close = true ); }; // A vertical quad loop struct VLoop { std::vector pts; double z_top, z_bottom; void add( double x, double y ) { pts.push_back( POINT_2D( x, y ) ); } void bag( TRIANGLEBAG& triangles, bool close = true ); }; // The bags for all the layers static TRIANGLEBAG layer_triangles[LAYER_COUNT]; static TRIANGLEBAG via_triangles[4]; static double layer_z[LAYER_COUNT]; static void bag_flat_triangle( int layer, //{{{ double x1, double y1, double x2, double y2, double x3, double y3 ) { double z = layer_z[layer]; layer_triangles[layer].push_back( TRIANGLE( x1, y1, z, x2, y2, z, x3, y3, z ) ); } void FLAT_FAN::bag( int layer, bool close ) //{{{ { unsigned i; for( i = 0; i < pts.size() - 1; i++ ) bag_flat_triangle( layer, c.x, c.y, pts[i].x, pts[i].y, pts[i + 1].x, pts[i + 1].y ); if( close ) bag_flat_triangle( layer, c.x, c.y, pts[i].x, pts[i].y, pts[0].x, pts[0].y ); } static void bag_flat_quad( int layer, //{{{ double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4 ) { bag_flat_triangle( layer, x1, y1, x3, y3, x2, y2 ); bag_flat_triangle( layer, x2, y2, x3, y3, x4, y4 ); } void FLAT_RING::bag( int layer, bool close ) //{{{ { unsigned i; for( i = 0; i < inner.size() - 1; i++ ) bag_flat_quad( layer, inner[i].x, inner[i].y, outer[i].x, outer[i].y, inner[i + 1].x, inner[i + 1].y, outer[i + 1].x, outer[i + 1].y ); if( close ) bag_flat_quad( layer, inner[i].x, inner[i].y, outer[i].x, outer[i].y, inner[0].x, inner[0].y, outer[0].x, outer[0].y ); } static void bag_vquad( TRIANGLEBAG& triangles, //{{{ double x1, double y1, double x2, double y2, double z1, double z2 ) { triangles.push_back( TRIANGLE( x1, y1, z1, x2, y2, z1, x2, y2, z2 ) ); triangles.push_back( TRIANGLE( x1, y1, z1, x2, y2, z2, x1, y1, z2 ) ); } void VLoop::bag( TRIANGLEBAG& triangles, bool close ) //{{{ { unsigned i; for( i = 0; i < pts.size() - 1; i++ ) bag_vquad( triangles, pts[i].x, pts[i].y, pts[i + 1].x, pts[i + 1].y, z_top, z_bottom ); if( close ) bag_vquad( triangles, pts[i].x, pts[i].y, pts[0].x, pts[0].y, z_top, z_bottom ); } static void write_triangle_bag( FILE* output_file, int color_index, //{{{ const TRIANGLEBAG& triangles, double boardIU2WRML ) { /* A lot of nodes are not required, but blender sometimes chokes * without them */ static const char* shape_boiler[] = { "Transform {\n", " children [\n", " Group {\n", " children [\n", " Shape {\n", " appearance Appearance {\n", " material Material {\n", 0, // Material marker " ambientIntensity 0.8\n", " transparency 0.2\n", " shininess 0.2\n", " }\n", " }\n", " geometry IndexedFaceSet {\n", " solid TRUE\n", " coord Coordinate {\n", " point [\n", 0, // Coordinates marker " ]\n", " }\n", " coordIndex [\n", 0, // Index marker " ]\n", " }\n", " }\n", " ]\n", " }\n", " ]\n", "}\n", 0 // End marker }; int marker_found = 0, lineno = 0; while( marker_found < 4 ) { if( shape_boiler[lineno] ) fputs( shape_boiler[lineno], output_file ); else { marker_found++; switch( marker_found ) { case 1: // Material marker fprintf( output_file, " diffuseColor %g %g %g\n", (double) ColorRefs[color_index].m_Red / 255.0, (double) ColorRefs[color_index].m_Green / 255.0, (double) ColorRefs[color_index].m_Blue / 255.0 ); fprintf( output_file, " specularColor %g %g %g\n", (double) ColorRefs[color_index].m_Red / 255.0, (double) ColorRefs[color_index].m_Green / 255.0, (double) ColorRefs[color_index].m_Blue / 255.0 ); fprintf( output_file, " emissiveColor %g %g %g\n", (double) ColorRefs[color_index].m_Red / 255.0, (double) ColorRefs[color_index].m_Green / 255.0, (double) ColorRefs[color_index].m_Blue / 255.0 ); break; case 2: { // Coordinates marker for( TRIANGLEBAG::const_iterator i = triangles.begin(); i != triangles.end(); i++ ) { fprintf( output_file, "%.8g %.8g %.8g\n", i->p1.x * boardIU2WRML, -i->p1.y * boardIU2WRML, i->p1.z * boardIU2WRML ); fprintf( output_file, "%.8g %.8g %.8g\n", i->p2.x * boardIU2WRML, -i->p2.y * boardIU2WRML, i->p2.z * boardIU2WRML ); fprintf( output_file, "%.8g %.8g %.8g\n", i->p3.x * boardIU2WRML, -i->p3.y * boardIU2WRML, i->p3.z * boardIU2WRML ); } } break; case 3: { // Index marker // OK, that's sick ... int j = 0; for( TRIANGLEBAG::const_iterator i = triangles.begin(); i != triangles.end(); i++ ) { fprintf( output_file, "%d %d %d -1\n", j, j + 1, j + 2 ); j += 3; } } break; default: break; } } lineno++; } } static void compute_layer_Zs( BOARD* pcb ) //{{{ { int copper_layers = pcb->GetCopperLayerCount( ); // We call it 'layer' thickness, but it's the whole board thickness! double board_thickness = pcb->GetDesignSettings().GetBoardThickness(); double half_thickness = board_thickness / 2; // Compute each layer's Z value, more or less like the 3d view for( int i = 0; i <= LAYER_N_FRONT; i++ ) { if( i < copper_layers ) layer_z[i] = board_thickness * i / (copper_layers - 1) - half_thickness; else layer_z[i] = half_thickness; // The component layer... } /* To avoid rounding interference, we apply an epsilon to each * successive layer */ const double epsilon_z = 0.02 * IU_PER_MM; // That's 1/50 mm layer_z[SOLDERPASTE_N_BACK] = -half_thickness - epsilon_z * 4; layer_z[ADHESIVE_N_BACK] = -half_thickness - epsilon_z * 3; layer_z[SILKSCREEN_N_BACK] = -half_thickness - epsilon_z * 2; layer_z[SOLDERMASK_N_BACK] = -half_thickness - epsilon_z; layer_z[SOLDERMASK_N_FRONT] = half_thickness + epsilon_z; layer_z[SILKSCREEN_N_FRONT] = half_thickness + epsilon_z * 2; layer_z[ADHESIVE_N_FRONT] = half_thickness + epsilon_z * 3; layer_z[SOLDERPASTE_N_FRONT] = half_thickness + epsilon_z * 4; layer_z[DRAW_N] = half_thickness + epsilon_z * 5; layer_z[COMMENT_N] = half_thickness + epsilon_z * 6; layer_z[ECO1_N] = half_thickness + epsilon_z * 7; layer_z[ECO2_N] = half_thickness + epsilon_z * 8; layer_z[EDGE_N] = 0; } static void export_vrml_line( int layer, double startx, double starty, //{{{ double endx, double endy, double width, int divisions ) { double r = width / 2; double angle = atan2( endy - starty, endx - startx ); double alpha; FLAT_FAN fan; // Output the 'bone' as a triangle fan, this is the fan centre fan.c.x = (startx + endx) / 2; fan.c.y = (starty + endy) / 2; // The 'end' side cap for( alpha = angle - PI2; alpha < angle + PI2; alpha += PI2 / divisions ) fan.add( endx + r * cos( alpha ), endy + r * sin( alpha ) ); alpha = angle + PI2; fan.add( endx + r * cos( alpha ), endy + r * sin( alpha ) ); // The 'start' side cap for( alpha = angle + PI2; alpha < angle + 3 * PI2; alpha += PI2 / divisions ) fan.add( startx + r * cos( alpha ), starty + r * sin( alpha ) ); alpha = angle + 3 * PI2; fan.add( startx + r * cos( alpha ), starty + r * sin( alpha ) ); // Export the fan fan.bag( layer ); } static void export_vrml_circle( int layer, double startx, double starty, double endx, double endy, double width ) { double hole, radius; FLAT_RING ring; radius = hypot( startx - endx, starty - endy ) + ( width / 2); hole = radius - width; for( double alpha = 0; alpha < M_PI * 2; alpha += INC_ANGLE ) { ring.add_inner( startx + hole * cos( alpha ), starty + hole * sin( alpha ) ); ring.add_outer( startx + radius * cos( alpha ), starty + radius * sin( alpha ) ); } ring.bag( layer ); } static void export_vrml_slot( TRIANGLEBAG& triangles, //{{{ int top_layer, int bottom_layer, double xc, double yc, double dx, double dy, int orient ) { double capx, capy; // Cap center VLoop loop; int divisions = SEGM_COUNT_PER_360 / 2; loop.z_top = layer_z[top_layer]; loop.z_bottom = layer_z[bottom_layer]; double angle = orient / 1800.0 * M_PI; if( dy > dx ) { EXCHG( dx, dy ); angle += PI2; } // The exchange above means that cutter radius is alvays dy/2 double r = dy / 2; double alpha; // The first side cap capx = xc + cos( angle ) * dx / 2; capy = yc + sin( angle ) * dx / 2; for( alpha = angle - PI2; alpha < angle + PI2; alpha += PI2 / divisions ) loop.add( capx + r * cos( alpha ), capy + r * sin( alpha ) ); alpha = angle + PI2; loop.add( capx + r * cos( alpha ), capy + r * sin( alpha ) ); // The other side cap capx = xc - cos( angle ) * dx / 2; capy = yc - sin( angle ) * dx / 2; for( alpha = angle + PI2; alpha < angle + 3 * PI2; alpha += PI2 / divisions ) loop.add( capx + r * cos( alpha ), capy + r * sin( alpha ) ); alpha = angle + 3 * PI2; loop.add( capx + r * cos( alpha ), capy + r * sin( alpha ) ); loop.bag( triangles ); } static void export_vrml_hole( TRIANGLEBAG& triangles, int top_layer, int bottom_layer, double xc, double yc, double hole ) { VLoop loop; loop.z_top = layer_z[top_layer]; loop.z_bottom = layer_z[bottom_layer]; for( double alpha = 0; alpha < M_PI * 2; alpha += INC_ANGLE ) loop.add( xc + cos( alpha ) * hole, yc + sin( alpha ) * hole ); loop.bag( triangles ); } static void export_vrml_oval_pad( int layer, double xc, double yc, double dx, double dy, int orient ) { double capx, capy; // Cap center FLAT_FAN fan; fan.c.x = xc; fan.c.y = yc; double angle = orient / 1800.0 * M_PI; int divisions = SEGM_COUNT_PER_360 / 2; if( dy > dx ) { EXCHG( dx, dy ); angle += PI2; } // The exchange above means that cutter radius is alvays dy/2 double r = dy / 2; double alpha; // The first side cap capx = xc + cos( angle ) * dx / 2; capy = yc + sin( angle ) * dx / 2; for( alpha = angle - PI2; alpha < angle + PI2; alpha += PI2 / divisions ) fan.add( capx + r * cos( alpha ), capy + r * sin( alpha ) ); alpha = angle + PI2; fan.add( capx + r * cos( alpha ), capy + r * sin( alpha ) ); // The other side cap capx = xc - cos( angle ) * dx / 2; capy = yc - sin( angle ) * dx / 2; for( alpha = angle + PI2; alpha < angle + 3 * PI2; alpha += PI2 / divisions ) fan.add( capx + r * cos( alpha ), capy + r * sin( alpha ) ); alpha = angle + 3 * PI2; fan.add( capx + r * cos( alpha ), capy + r * sin( alpha ) ); fan.bag( layer ); } static void export_vrml_arc( int layer, double centerx, double centery, double arc_startx, double arc_starty, double width, double arc_angle ) { FLAT_RING ring; double start_angle = atan2( arc_starty - centery, arc_startx - centerx ); int count = KiROUND( arc_angle / 360.0 * SEGM_COUNT_PER_360 ); if( count < 0 ) count = -count; if( count == 0 ) count = 1; double divisions = arc_angle*M_PI/180.0 / count; double outer_radius = hypot( arc_starty - centery, arc_startx - centerx ) + ( width / 2); double inner_radius = outer_radius - width; double alpha = 0; for( int ii = 0; ii <= count; alpha += divisions, ii++ ) { double angle_rot = start_angle + alpha; ring.add_inner( centerx + cos( angle_rot ) * inner_radius, centery + sin( angle_rot ) * inner_radius ); ring.add_outer( centerx + cos( angle_rot ) * outer_radius, centery + sin( angle_rot ) * outer_radius ); } ring.bag( layer, false ); } static void export_vrml_varc( TRIANGLEBAG& triangles, int top_layer, int bottom_layer, double centerx, double centery, double arc_startx, double arc_starty, double arc_angle ) { VLoop loop; loop.z_top = layer_z[top_layer]; loop.z_bottom = layer_z[bottom_layer]; double start_angle = atan2( arc_starty - centery, arc_startx - centerx ); double radius = hypot( arc_starty - centery, arc_startx - centerx ); int count = KiROUND( arc_angle / 360.0 * SEGM_COUNT_PER_360 ); if( count < 0 ) count = -count; if( count == 0 ) count = 1; double divisions = arc_angle*M_PI/180.0 / count; double alpha = 0; for( int ii = 0; ii <= count; alpha += divisions, ii++ ) { double angle_rot = start_angle + alpha; loop.add( centerx + cos( angle_rot ) * radius, centery + sin( angle_rot ) * radius ); } loop.bag( triangles ); } static void export_vrml_drawsegment( DRAWSEGMENT* drawseg ) //{{{ { int layer = drawseg->GetLayer(); double w = drawseg->GetWidth(); double x = drawseg->GetStart().x; double y = drawseg->GetStart().y; double xf = drawseg->GetEnd().x; double yf = drawseg->GetEnd().y; // Items on the edge layer are high, not thick if( layer == EDGE_N ) { switch( drawseg->GetShape() ) { // There is a special 'varc' primitive for this case S_ARC: export_vrml_varc( layer_triangles[layer], FIRST_COPPER_LAYER, LAST_COPPER_LAYER, x, y, xf, yf, drawseg->GetAngle()/10 ); break; // Circles on edge are usually important holes case S_CIRCLE: export_vrml_hole( layer_triangles[layer], FIRST_COPPER_LAYER, LAST_COPPER_LAYER, x, y, hypot( xf - x, yf - y ) / 2 ); break; default: { // Simply a quad double z_top = layer_z[FIRST_COPPER_LAYER]; double z_bottom = layer_z[LAST_COPPER_LAYER]; bag_vquad( layer_triangles[layer], x, y, xf, yf, z_top, z_bottom ); break; } } } else { switch( drawseg->GetShape() ) { case S_ARC: export_vrml_arc( layer, (double) drawseg->GetCenter().x, (double) drawseg->GetCenter().y, (double) drawseg->GetArcStart().x, (double) drawseg->GetArcStart().y, w, drawseg->GetAngle()/10 ); break; case S_CIRCLE: export_vrml_circle( layer, x, y, xf, yf, w ); break; default: export_vrml_line( layer, x, y, xf, yf, w, 1 ); break; } } } /* C++ doesn't have closures and neither continuation forms... this is * for coupling the vrml_text_callback with the common parameters */ static int s_text_layer; static int s_text_width; static void vrml_text_callback( int x0, int y0, int xf, int yf ) { export_vrml_line( s_text_layer, x0, y0, xf, yf, s_text_width, 1 ); } static void export_vrml_pcbtext( TEXTE_PCB* text ) { // Coupling by globals! Ewwww... s_text_layer = text->GetLayer(); s_text_width = text->m_Thickness; wxSize size = text->m_Size; if( text->m_Mirror ) NEGATE( size.x ); if( text->m_MultilineAllowed ) { wxPoint pos = text->m_Pos; wxArrayString* list = wxStringSplit( text->m_Text, '\n' ); wxPoint offset; offset.y = text->GetInterline(); RotatePoint( &offset, text->GetOrientation() ); for( unsigned i = 0; iCount(); i++ ) { wxString txt = list->Item( i ); DrawGraphicText( NULL, NULL, pos, BLACK, txt, text->GetOrientation(), size, text->m_HJustify, text->m_VJustify, text->m_Thickness, text->m_Italic, true, vrml_text_callback ); pos += offset; } delete (list); } else { DrawGraphicText( NULL, NULL, text->m_Pos, BLACK, text->m_Text, text->GetOrientation(), size, text->m_HJustify, text->m_VJustify, text->m_Thickness, text->m_Italic, true, vrml_text_callback ); } } static void export_vrml_drawings( BOARD* pcb ) //{{{ { // draw graphic items for( EDA_ITEM* drawing = pcb->m_Drawings; drawing != 0; drawing = drawing->Next() ) { switch( drawing->Type() ) { case PCB_LINE_T: export_vrml_drawsegment( (DRAWSEGMENT*) drawing ); break; case PCB_TEXT_T: export_vrml_pcbtext( (TEXTE_PCB*) drawing ); break; default: break; } } } static void export_round_padstack( BOARD* pcb, double x, double y, double r, int bottom_layer, int top_layer ) { int copper_layers = pcb->GetCopperLayerCount( ); for( int layer = bottom_layer; layer < copper_layers; layer++ ) { // The last layer is always the component one, unless it's single face if( (layer > FIRST_COPPER_LAYER) && (layer == copper_layers - 1) ) layer = LAST_COPPER_LAYER; if( layer <= top_layer ) export_vrml_circle( layer, x, y, x + r / 2, y, r ); } } static void export_vrml_via( BOARD* pcb, SEGVIA* via ) //{{{ { double x, y, r, hole; int top_layer, bottom_layer; r = via->GetWidth() / 2; hole = via->GetDrillValue() / 2; x = via->GetStart().x; y = via->GetStart().y; via->ReturnLayerPair( &top_layer, &bottom_layer ); // Export the via padstack export_round_padstack( pcb, x, y, r, bottom_layer, top_layer ); // Drill a hole export_vrml_hole( via_triangles[via->GetShape()], top_layer, bottom_layer, x, y, hole ); } static void export_vrml_tracks( BOARD* pcb ) //{{{ { for( TRACK* track = pcb->m_Track; track != NULL; track = track->Next() ) { if( track->Type() == PCB_VIA_T ) export_vrml_via( pcb, (SEGVIA*) track ); else export_vrml_line( track->GetLayer(), track->GetStart().x, track->GetStart().y, track->GetEnd().x, track->GetEnd().y, track->GetWidth(), 4 ); } } /* not used? @todo complete static void export_vrml_zones( BOARD* pcb ) { // Export fill segments for( SEGZONE* segzone = pcb->m_Zone; segzone != 0; segzone = segzone->Next() ) { // Fill tracks are exported with low subdivisions if( segzone->Type() == PCB_ZONE_T ) export_vrml_line( segzone->GetLayer(), segzone->m_Start.x, segzone->m_Start.y, segzone->m_End.x, segzone->m_End.y, segzone->m_Width, 1 ); } // Export zone outlines for( int i = 0; i < pcb->GetAreaCount(); i++ ) { ZONE_CONTAINER* zone = pcb->GetArea( i ); if( ( zone->m_FilledPolysList.size() == 0 ) ||( zone->m_ZoneMinThickness <= 1 ) ) continue; int width = zone->m_ZoneMinThickness; if( width > 0 ) { int imax = zone->m_FilledPolysList.size() - 1; int layer = zone->GetLayer(); CPolyPt* firstcorner = &zone->m_FilledPolysList[0]; CPolyPt* begincorner = firstcorner; // I'm not really positive about what he's doing here... for( int ic = 1; ic <= imax; ic++ ) { CPolyPt* endcorner = &zone->m_FilledPolysList[ic]; if( begincorner->utility == 0 ) // Draw only basic outlines, not extra segments export_vrml_line( layer, begincorner->x, begincorner->y, endcorner->x, endcorner->y, width, 1 ); if( (endcorner->end_contour) || (ic == imax) ) // the last corner of a filled area is found: draw it { if( endcorner->utility == 0 ) // Draw only basic outlines, not extra segments export_vrml_line( layer, endcorner->x, endcorner->y, firstcorner->x, firstcorner->y, width, 1 ); ic++; // A new contour? if( ic < imax - 1 ) begincorner = firstcorner = &zone->m_FilledPolysList[ic]; } else begincorner = endcorner; } } } } */ static void export_vrml_text_module( TEXTE_MODULE* module ) //{{{ { if( module->IsVisible() ) { wxSize size = module->m_Size; if( module->m_Mirror ) NEGATE( size.x ); // Text is mirrored s_text_layer = module->GetLayer(); s_text_width = module->m_Thickness; DrawGraphicText( NULL, NULL, module->m_Pos, BLACK, module->m_Text, module->GetDrawRotation(), size, module->m_HJustify, module->m_VJustify, module->m_Thickness, module->m_Italic, true, vrml_text_callback ); } } static void export_vrml_edge_module( EDGE_MODULE* aOutline ) //{{{ { int layer = aOutline->GetLayer(); double x = aOutline->GetStart().x; double y = aOutline->GetStart().y; double xf = aOutline->GetEnd().x; double yf = aOutline->GetEnd().y; double w = aOutline->GetWidth(); switch( aOutline->GetShape() ) { case S_ARC: export_vrml_arc( layer, x, y, xf, yf, w, aOutline->GetAngle()/10 ); break; case S_CIRCLE: export_vrml_circle( layer, x, y, xf, yf, w ); break; default: export_vrml_line( layer, x, y, xf, yf, w, 1 ); break; } } static void export_vrml_pad( BOARD* pcb, D_PAD* aPad ) //{{{ { double hole_drill_w = (double) aPad->GetDrillSize().x / 2; double hole_drill_h = (double) aPad->GetDrillSize().y / 2; double hole_drill = std::min( hole_drill_w, hole_drill_h ); double hole_x = aPad->GetPosition().x; double hole_y = aPad->GetPosition().y; // Export the hole on the edge layer if( hole_drill > 0 ) { if( aPad->GetDrillShape() == PAD_OVAL ) { // Oblong hole (slot) export_vrml_slot( layer_triangles[EDGE_N], FIRST_COPPER_LAYER, LAST_COPPER_LAYER, hole_x, hole_y, hole_drill_w, hole_drill_h, aPad->GetOrientation() ); } else { // Drill a round hole export_vrml_hole( layer_triangles[EDGE_N], FIRST_COPPER_LAYER, LAST_COPPER_LAYER, hole_x, hole_y, hole_drill ); } } // The pad proper, on the selected layers int layer_mask = aPad->GetLayerMask(); int copper_layers = pcb->GetCopperLayerCount( ); // The (maybe offseted) pad position wxPoint pad_pos = aPad->ReturnShapePos(); double pad_x = pad_pos.x; double pad_y = pad_pos.y; wxSize pad_delta = aPad->GetDelta(); double pad_dx = pad_delta.x / 2; double pad_dy = pad_delta.y / 2; double pad_w = aPad->GetSize().x / 2; double pad_h = aPad->GetSize().y / 2; for( int layer = FIRST_COPPER_LAYER; layer < copper_layers; layer++ ) { // The last layer is always the component one, unless it's single face if( (layer > FIRST_COPPER_LAYER) && (layer == copper_layers - 1) ) layer = LAST_COPPER_LAYER; if( layer_mask & (1 << layer) ) { // OK, the pad is on this layer, export it switch( aPad->GetShape() ) { case PAD_CIRCLE: export_vrml_circle( layer, pad_x, pad_y, pad_x + pad_w / 2, pad_y, pad_w ); break; case PAD_OVAL: export_vrml_oval_pad( layer, pad_x, pad_y, pad_w * 2, pad_h * 2, aPad->GetOrientation() ); break; case PAD_RECT: // Just to be sure :D pad_dx = 0; pad_dy = 0; case PAD_TRAPEZOID: { int coord[8] = { KiROUND(-pad_w - pad_dy), KiROUND(+pad_h + pad_dx), KiROUND(-pad_w + pad_dy), KiROUND(-pad_h - pad_dx), KiROUND(+pad_w - pad_dy), KiROUND(+pad_h - pad_dx), KiROUND(+pad_w + pad_dy), KiROUND(-pad_h + pad_dx), }; for( int i = 0; i < 4; i++ ) { RotatePoint( &coord[i * 2], &coord[i * 2 + 1], aPad->GetOrientation() ); coord[i * 2] += KiROUND( pad_x ); coord[i * 2 + 1] += KiROUND( pad_y ); } bag_flat_quad( layer, coord[0], coord[1], coord[2], coord[3], coord[4], coord[5], coord[6], coord[7] ); } break; default: ; } } } } // From axis/rot to quaternion static void build_quat( double x, double y, double z, double a, double q[4] ) { double sina = sin( a / 2 ); q[0] = x * sina; q[1] = y * sina; q[2] = z * sina; q[3] = cos( a / 2 ); } // From quaternion to axis/rot static void from_quat( double q[4], double rot[4] ) { rot[3] = acos( q[3] ) * 2; for( int i = 0; i < 3; i++ ) { rot[i] = q[i] / sin( rot[3] / 2 ); } } // Quaternion composition static void compose_quat( double q1[4], double q2[4], double qr[4] ) { double tmp[4]; tmp[0] = q2[3] *q1[0] + q2[0] *q1[3] + q2[1] *q1[2] - q2[2] *q1[1]; tmp[1] = q2[3] *q1[1] + q2[1] *q1[3] + q2[2] *q1[0] - q2[0] *q1[2]; tmp[2] = q2[3] *q1[2] + q2[2] *q1[3] + q2[0] *q1[1] - q2[1] *q1[0]; tmp[3] = q2[3] *q1[3] - q2[0] *q1[0] - q2[1] *q1[1] - q2[2] *q1[2]; qr[0] = tmp[0]; qr[1] = tmp[1]; qr[2] = tmp[2]; qr[3] = tmp[3]; } static void export_vrml_module( BOARD* aPcb, MODULE* aModule, FILE* aOutputFile, double aVRMLModelsToBiu, bool aExport3DFiles, const wxString & a3D_Subdir, double boardIU2WRML ) { // Reference and value export_vrml_text_module( aModule->m_Reference ); export_vrml_text_module( aModule->m_Value ); // Export module edges for( EDA_ITEM* item = aModule->m_Drawings; item != NULL; item = item->Next() ) { switch( item->Type() ) { case PCB_MODULE_TEXT_T: export_vrml_text_module( dynamic_cast(item) ); break; case PCB_MODULE_EDGE_T: export_vrml_edge_module( dynamic_cast(item) ); break; default: break; } } // Export pads for( D_PAD* pad = aModule->m_Pads; pad; pad = pad->Next() ) export_vrml_pad( aPcb, pad ); bool isFlipped = aModule->GetLayer() == LAYER_N_BACK; // Export the object VRML model(s) for( S3D_MASTER* vrmlm = aModule->m_3D_Drawings; vrmlm != 0; vrmlm = vrmlm->Next() ) { wxString fname = vrmlm->m_Shape3DName; if( fname.IsEmpty() ) continue; if( ! wxFileName::FileExists( fname ) ) { wxFileName fn = fname; fname = wxGetApp().FindLibraryPath( fn ); if( fname.IsEmpty() ) // keep "short" name if full filemane not found fname = vrmlm->m_Shape3DName; } fname.Replace(wxT("\\"), wxT("/" ) ); wxString source_fname = fname; if( aExport3DFiles ) // Change illegal characters in short filename { ChangeIllegalCharacters( fname, true ); fname = a3D_Subdir + wxT("/") + fname; if( !wxFileExists( fname ) ) wxCopyFile( source_fname, fname ); } /* Calculate 3D shape rotation: * this is the rotation parameters, with an additional 180 deg rotation * for footprints that are flipped * When flipped, axis rotation is the horizontal axis (X axis) */ double rotx = - vrmlm->m_MatRotation.x; double roty = - vrmlm->m_MatRotation.y; double rotz = - vrmlm->m_MatRotation.z; if ( isFlipped ) { rotx += 180.0; NEGATE(roty); NEGATE(rotz); } // Do some quaternion munching double q1[4], q2[4], rot[4]; build_quat( 1, 0, 0, rotx / 180.0 * M_PI, q1 ); build_quat( 0, 1, 0, roty / 180.0 * M_PI, q2 ); compose_quat( q1, q2, q1 ); build_quat( 0, 0, 1, rotz / 180.0 * M_PI, q2 ); compose_quat( q1, q2, q1 ); // Note here aModule->GetOrientation() is in 0.1 degrees, // so module rotation is aModule->GetOrientation() / 1800.0 build_quat( 0, 0, 1, aModule->GetOrientation() / 1800.0 * M_PI, q2 ); compose_quat( q1, q2, q1 ); from_quat( q1, rot ); fprintf( aOutputFile, "Transform {\n" ); // A null rotation would fail the acos! if( rot[3] != 0.0 ) { fprintf( aOutputFile, " rotation %g %g %g %g\n", rot[0], rot[1], rot[2], rot[3] ); } // adjust 3D shape local offset position // they are given in inch, so they are converted in board IU. double offsetx = vrmlm->m_MatPosition.x * IU_PER_MILS * 1000.0; double offsety = vrmlm->m_MatPosition.y * IU_PER_MILS * 1000.0; double offsetz = vrmlm->m_MatPosition.z * IU_PER_MILS * 1000.0; if ( isFlipped ) NEGATE(offsetz); else // In normal mode, Y axis is reversed in Pcbnew. NEGATE(offsety); RotatePoint(&offsetx, &offsety, aModule->GetOrientation()); fprintf( aOutputFile, " translation %g %g %g\n", (offsetx + aModule->m_Pos.x) * boardIU2WRML, - (offsety + aModule->m_Pos.y) * boardIU2WRML, // Y axis is reversed in Pcbnew (offsetz + layer_z[aModule->GetLayer()]) * boardIU2WRML); fprintf( aOutputFile, " scale %g %g %g\n", vrmlm->m_MatScale.x * aVRMLModelsToBiu, vrmlm->m_MatScale.y * aVRMLModelsToBiu, vrmlm->m_MatScale.z * aVRMLModelsToBiu ); fprintf( aOutputFile, // " children [\n Inline {\n url \"file://%s\"\n } ]\n", " children [\n Inline {\n url \"%s\"\n } ]\n", TO_UTF8( fname ) ); fprintf( aOutputFile, " }\n" ); } } static void write_and_empty_triangle_bag( FILE* output_file, TRIANGLEBAG& triangles, int color, double boardIU2WRML ) { if( !triangles.empty() ) { write_triangle_bag( output_file, color, triangles, boardIU2WRML ); triangles.clear( ); } } /* ExportVRML_File * Creates the file(s) exporting current BOARD to a VRML file. * aFullFileName = the full filename of the file to create * aMMtoWRMLunit = the general WRML scaling factor. 1.0 to export in mm * @param aExport3DFiles = true to copy 3D shapes in the subdir a3D_Subdir * a3D_Subdir = sub directory where 3D shapes files are copied * used only when aExport3DFiles == true */ /* Note1: * When copying 3D shapes files, the new filename is build from * the full path name, changing the separators by underscore. * this is needed because files with the same shortname can exist in different directories * Note 2: * ExportVRML_File generates coordinates in board units (BIU) inside the file. * (TODO: use mm inside the file) * A general scale transform is applied to the whole file * (1.0 to have the actual WRML unit im mm, 0.001 to have the actual WRML unit im meter * Note 3: * For 3D models built by a 3D modeler, the unit is 0,1 inch * A specfic scale is applied to 3D models to convert them to BIU * */ bool PCB_EDIT_FRAME::ExportVRML_File( const wxString & aFullFileName, double aMMtoWRMLunit, bool aExport3DFiles, const wxString & a3D_Subdir ) { wxString msg; FILE* output_file; BOARD* pcb = GetBoard(); output_file = wxFopen( aFullFileName, wxT( "wt" ) ); if( output_file == NULL ) return false; // Switch the locale to standard C (needed to print floating point numbers like 1.3) SetLocaleTo_C_standard(); // Begin with the usual VRML boilerplate wxString name = aFullFileName; name.Replace(wxT("\\"), wxT("/" ) ); ChangeIllegalCharacters( name, false ); fprintf( output_file, "#VRML V2.0 utf8\n" "WorldInfo {\n" " title \"%s - Generated by Pcbnew\"\n" "}\n", TO_UTF8( name ) ); /* The would be in BIU and not in meters, as the standard wants. * It is trivial to embed everything in a transform node to * fix it. For example here we build the world in inches... */ // Global VRML scale to export to a different scale. // (aMMtoWRMLScale = 1.0 to export in mm) double boardIU2WRML = aMMtoWRMLunit / MM_PER_IU; fprintf( output_file, "Transform {\n" ); /* Define the translation to have the board centre to the 2D axis origin * more easy for rotations... */ EDA_RECT bbbox = pcb->ComputeBoundingBox(); double dx = boardIU2WRML * bbbox.Centre().x; double dy = boardIU2WRML * bbbox.Centre().y; fprintf( output_file, " translation %g %g 0.0\n", -dx, dy ); fprintf( output_file, " children [\n" ); // Preliminary computation: the z value for each layer compute_layer_Zs( pcb ); // Drawing and text on the board, and edges which are special export_vrml_drawings( pcb ); // Export vias and trackage export_vrml_tracks( pcb ); // Export zone fills /* TODO export_vrml_zones(pcb); */ /* scaling factor to convert 3D models to board units (decimils) * Usually we use Wings3D to create thems. * One can consider the 3D units is 0.1 inch (2.54 mm) * So the scaling factor from 0.1 inch to board units * is 2.54 * aMMtoWRMLunit */ double wrml_3D_models_scaling_factor = 2.54 * aMMtoWRMLunit; // Export footprints for( MODULE* module = pcb->m_Modules; module != 0; module = module->Next() ) export_vrml_module( pcb, module, output_file, wrml_3D_models_scaling_factor, aExport3DFiles, a3D_Subdir, boardIU2WRML ); /* Output the bagged triangles for each layer * Each layer will be a separate shape */ for( int layer = 0; layer < LAYER_COUNT; layer++ ) write_and_empty_triangle_bag( output_file, layer_triangles[layer], pcb->GetLayerColor(layer), boardIU2WRML ); // Same thing for the via layers for( int i = 0; i < 4; i++ ) write_and_empty_triangle_bag( output_file, via_triangles[i], pcb->GetVisibleElementColor( VIAS_VISIBLE + i ), boardIU2WRML ); // Close the outer 'transform' node fputs( "]\n}\n", output_file ); // End of work fclose( output_file ); SetLocaleTo_Default(); // revert to the current locale return true; } /* * some characters cannot be used in filenames, * this function change them to "_" */ static void ChangeIllegalCharacters( wxString & aFileName, bool aDirSepIsIllegal ) { if( aDirSepIsIllegal ) aFileName.Replace(wxT("/"), wxT("_" ) ); aFileName.Replace(wxT(" "), wxT("_" ) ); aFileName.Replace(wxT(":"), wxT("_" ) ); }