/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2020 Ian McInerney * Copyright (C) 2007-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.TXT for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #if BOOST_VERSION >= 106700 #include #endif #include #include #include #include // boost:mt19937 is not thread-safe static std::mutex rng_mutex; // Static rng and generators are used because the overhead of constant seeding is expensive // We rely on the default non-arg constructor of basic_random_generator to provide a random seed. // We use a separate rng object for cases where we want to control the basic_random_generator // initial seed by calling SeedGenerator from unit tests and other special cases. static boost::mt19937 rng; static boost::uuids::basic_random_generator randomGenerator; // These don't have the same performance penalty, but we might as well be consistent static boost::uuids::string_generator stringGenerator; static boost::uuids::nil_generator nilGenerator; // Global nil reference KIID niluuid( 0 ); // When true, always create nil uuids for performance, when valid ones aren't needed static bool g_createNilUuids = false; // For static initialization KIID& NilUuid() { static KIID nil( 0 ); return nil; } KIID::KIID() { m_cached_timestamp = 0; #if BOOST_VERSION >= 106700 try { #endif if( g_createNilUuids ) { m_uuid = nilGenerator(); } else { std::lock_guard lock( rng_mutex ); m_uuid = randomGenerator(); } #if BOOST_VERSION >= 106700 } catch( const boost::uuids::entropy_error& ) { wxLogFatalError( "A Boost UUID entropy exception was thrown in %s:%s.", __FILE__, __FUNCTION__ ); } #endif } KIID::KIID( int null ) : m_uuid( nilGenerator() ), m_cached_timestamp( 0 ) { wxASSERT( null == 0 ); } KIID::KIID( const std::string& aString ) : m_uuid(), m_cached_timestamp( 0 ) { if( aString.length() == 8 && std::all_of( aString.begin(), aString.end(), []( unsigned char c ) { return std::isxdigit( c ); } ) ) { // A legacy-timestamp-based UUID has only the last 4 octets filled in. // Convert them individually to avoid stepping in the little-endian/big-endian // doo-doo. for( int i = 0; i < 4; ++i ) { std::string octet = aString.substr( i * 2, 2 ); m_uuid.data[i + 12] = strtol( octet.data(), nullptr, 16 ); } m_cached_timestamp = strtol( aString.c_str(), nullptr, 16 ); } else { try { m_uuid = stringGenerator( aString ); if( IsLegacyTimestamp() ) m_cached_timestamp = strtol( aString.substr( 28 ).c_str(), nullptr, 16 ); } catch( ... ) { // Failed to parse string representation; best we can do is assign a new // random one. #if BOOST_VERSION >= 106700 try { #endif m_uuid = randomGenerator(); #if BOOST_VERSION >= 106700 } catch( const boost::uuids::entropy_error& ) { wxLogFatalError( "A Boost UUID entropy exception was thrown in %s:%s.", __FILE__, __FUNCTION__ ); } #endif } } } KIID::KIID( const char* aString ) : KIID( std::string( aString ) ) { } KIID::KIID( const wxString& aString ) : KIID( std::string( aString.ToUTF8() ) ) { } bool KIID::SniffTest( const wxString& aCandidate ) { static wxString niluuidStr = niluuid.AsString(); if( aCandidate.Length() != niluuidStr.Length() ) return false; for( wxChar c : aCandidate ) { if( c >= '0' && c <= '9' ) continue; if( c >= 'a' && c <= 'f' ) continue; if( c >= 'A' && c <= 'F' ) continue; if( c == '-' ) continue; return false; } return true; } KIID::KIID( timestamp_t aTimestamp ) { m_cached_timestamp = aTimestamp; // A legacy-timestamp-based UUID has only the last 4 octets filled in. // Convert them individually to avoid stepping in the little-endian/big-endian // doo-doo. wxString str = AsLegacyTimestampString(); for( int i = 0; i < 4; ++i ) { wxString octet = str.substr( i * 2, 2 ); m_uuid.data[i + 12] = strtol( octet.data(), nullptr, 16 ); } } bool KIID::IsLegacyTimestamp() const { return !m_uuid.data[8] && !m_uuid.data[9] && !m_uuid.data[10] && !m_uuid.data[11]; } timestamp_t KIID::AsLegacyTimestamp() const { return m_cached_timestamp; } size_t KIID::Hash() const { size_t hash = 0; // Note: this is NOT little-endian/big-endian safe, but as long as it's just used // at runtime it won't matter. for( int i = 0; i < 4; ++i ) boost::hash_combine( hash, reinterpret_cast( m_uuid.data )[i] ); return hash; } void KIID::Clone( const KIID& aUUID ) { m_uuid = aUUID.m_uuid; m_cached_timestamp = aUUID.m_cached_timestamp; } wxString KIID::AsString() const { return boost::uuids::to_string( m_uuid ); } std::string KIID::AsStdString() const { return boost::uuids::to_string( m_uuid ); } wxString KIID::AsLegacyTimestampString() const { return wxString::Format( "%8.8lX", (unsigned long) AsLegacyTimestamp() ); } void KIID::ConvertTimestampToUuid() { if( !IsLegacyTimestamp() ) return; m_cached_timestamp = 0; m_uuid = randomGenerator(); } void KIID::Increment() { // This obviously destroys uniform distribution, but it can be useful when a // deterministic replacement for a duplicate ID is required. for( int i = 15; i >= 0; --i ) { m_uuid.data[i]++; if( m_uuid.data[i] != 0 ) break; } } void KIID::CreateNilUuids( bool aNil ) { g_createNilUuids = aNil; } void KIID::SeedGenerator( unsigned int aSeed ) { rng.seed( aSeed ); randomGenerator = boost::uuids::basic_random_generator( rng ); } KIID_PATH::KIID_PATH( const wxString& aString ) { for( const wxString& pathStep : wxSplit( aString, '/' ) ) { if( !pathStep.empty() ) emplace_back( KIID( pathStep ) ); } } bool KIID_PATH::MakeRelativeTo( const KIID_PATH& aPath ) { KIID_PATH copy = *this; clear(); if( aPath.size() > copy.size() ) return false; // this path is not contained within aPath for( size_t i = 0; i < aPath.size(); ++i ) { if( copy.at( i ) != aPath.at( i ) ) { *this = copy; return false; // this path is not contained within aPath } } for( size_t i = aPath.size(); i < copy.size(); ++i ) push_back( copy.at( i ) ); return true; } bool KIID_PATH::EndsWith( const KIID_PATH& aPath ) const { if( aPath.size() > size() ) return false; // this path can not end aPath KIID_PATH copyThis = *this; KIID_PATH copyThat = aPath; while( !copyThat.empty() ) { if( *std::prev( copyThis.end() ) != *std::prev( copyThat.end() ) ) return false; copyThis.pop_back(); copyThat.pop_back(); } return true; } wxString KIID_PATH::AsString() const { wxString path; for( const KIID& pathStep : *this ) path += '/' + pathStep.AsString(); return path; } void to_json( nlohmann::json& aJson, const KIID& aKIID ) { aJson = aKIID.AsString().ToUTF8(); } void from_json( const nlohmann::json& aJson, KIID& aKIID ) { aKIID = KIID( aJson.get() ); }