/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013 CERN * Copyright (C) 2021-2022 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef __SHAPE_H #define __SHAPE_H #include #include #include #include #include #include #include class SHAPE_LINE_CHAIN; /** * Lists all supported shapes. */ enum SHAPE_TYPE { SH_RECT = 0, ///< axis-aligned rectangle SH_SEGMENT, ///< line segment SH_LINE_CHAIN, ///< line chain (polyline) SH_CIRCLE, ///< circle SH_SIMPLE, ///< simple polygon SH_POLY_SET, ///< set of polygons (with holes, etc.) SH_COMPOUND, ///< compound shape, consisting of multiple simple shapes SH_ARC, ///< circular arc SH_NULL, ///< empty shape (no shape...), SH_POLY_SET_TRIANGLE ///< a single triangle belonging to a POLY_SET triangulation }; static inline wxString SHAPE_TYPE_asString( SHAPE_TYPE a ) { switch( a ) { case SH_RECT: return wxT( "SH_RECT" ); case SH_SEGMENT: return wxT( "SH_SEGMENT" ); case SH_LINE_CHAIN: return wxT( "SH_LINE_CHAIN" ); case SH_CIRCLE: return wxT( "SH_CIRCLE" ); case SH_SIMPLE: return wxT( "SH_SIMPLE" ); case SH_POLY_SET: return wxT( "SH_POLY_SET" ); case SH_COMPOUND: return wxT( "SH_COMPOUND" ); case SH_ARC: return wxT( "SH_ARC" ); case SH_NULL: return wxT( "SH_NULL" ); case SH_POLY_SET_TRIANGLE: return wxT( "SH_POLY_SET_TRIANGLE" ); } return wxEmptyString; // Just to quiet GCC. } class SHAPE; class SHAPE_BASE { public: /** * Create an empty shape of type aType */ SHAPE_BASE( SHAPE_TYPE aType ) : m_type( aType ) {} virtual ~SHAPE_BASE() {} /** * Return the type of the shape. * * @retval the type */ SHAPE_TYPE Type() const { return m_type; } wxString TypeName() const { return SHAPE_TYPE_asString( m_type ); } virtual bool HasIndexableSubshapes() const { return false; } virtual size_t GetIndexableSubshapeCount() const { return 0; } virtual void GetIndexableSubshapes( std::vector& aSubshapes ) const { } protected: ///< type of our shape SHAPE_TYPE m_type; }; /** * An abstract shape on 2D plane. */ class SHAPE : public SHAPE_BASE { public: /** * This is the minimum precision for all the points in a shape. */ static const int MIN_PRECISION_IU = 4; /** * Create an empty shape of type \a aType. */ SHAPE( SHAPE_TYPE aType ) : SHAPE_BASE( aType ) {} virtual ~SHAPE() {} /** * Return a dynamically allocated copy of the shape. * * @retval copy of the shape */ virtual SHAPE* Clone() const { assert( false ); return nullptr; }; /** * Return the actual minimum distance between two shapes * * @retval distance in IU */ int GetClearance( const SHAPE* aOther ) const; /** * Return true if the shape is a null shape. * * @retval true if null :-) */ bool IsNull() const { return m_type == SH_NULL; } /** * Check if the boundary of shape (this) lies closer to the point \a aP than \a aClearance, * indicating a collision. * * @param aActual [out] an optional pointer to an int to store the actual distance in the * event of a collision. * @param aLocation [out] an option pointer to a point to store a nearby location in the * event of a collision. * @return true, if there is a collision. */ virtual bool Collide( const VECTOR2I& aP, int aClearance = 0, int* aActual = nullptr, VECTOR2I* aLocation = nullptr ) const { return Collide( SEG( aP, aP ), aClearance, aActual, aLocation ); } /** * Check if the boundary of shape (this) lies closer to the shape \a aShape than \a aClearance, * indicating a collision. * * @param aShape shape to check collision against * @param aClearance minimum clearance * @param aMTV [out] minimum translation vector * @param aActual [out] an optional pointer to an int to store the actual distance in the * event of a collision. * @param aLocation [out] an option pointer to a point to store a nearby location in the * event of a collision. * @return true, if there is a collision. */ virtual bool Collide( const SHAPE* aShape, int aClearance, VECTOR2I* aMTV ) const; virtual bool Collide( const SHAPE* aShape, int aClearance = 0, int* aActual = nullptr, VECTOR2I* aLocation = nullptr ) const; /** * Check if the boundary of shape (this) lies closer to the segment \a aSeg than \a aClearance, * indicating a collision. * * @param aActual [out] an optional pointer to an int to be updated with the actual distance * int the event of a collision. * @param aLocation [out] an option pointer to a point to store a nearby location in the * event of a collision. * @return true, if there is a collision. */ virtual bool Collide( const SEG& aSeg, int aClearance = 0, int* aActual = nullptr, VECTOR2I* aLocation = nullptr ) const = 0; /** * Compute a bounding box of the shape, with a margin of \a aClearance a collision. * * @param aClearance how much the bounding box is expanded wrs to the minimum enclosing * rectangle for the shape. * @return the bounding box. */ virtual const BOX2I BBox( int aClearance = 0 ) const = 0; /** * Compute a center-of-mass of the shape. * * @return the center-of-mass point */ virtual VECTOR2I Centre() const { return BBox( 0 ).Centre(); // if nothing better is available.... } /** * @param aCenter is the rotation center. * @param aAngle rotation angle. */ virtual void Rotate( const EDA_ANGLE& aAngle, const VECTOR2I& aCenter = { 0, 0 } ) = 0; virtual void Move( const VECTOR2I& aVector ) = 0; virtual bool IsSolid() const = 0; virtual bool Parse( std::stringstream& aStream ); virtual const std::string Format( bool aCplusPlus = true ) const; protected: typedef VECTOR2I::extended_type ecoord; }; class SHAPE_LINE_CHAIN_BASE : public SHAPE { public: SHAPE_LINE_CHAIN_BASE( SHAPE_TYPE aType ) : SHAPE( aType ) { } virtual ~SHAPE_LINE_CHAIN_BASE() { } /** * Check if point \a aP lies closer to us than \a aClearance. * * @param aP the point to check for collisions with * @param aClearance minimum distance that does not qualify as a collision. * @param aActual an optional pointer to an int to store the actual distance in the event * of a collision. * @return true, when a collision has been found */ virtual bool Collide( const VECTOR2I& aP, int aClearance = 0, int* aActual = nullptr, VECTOR2I* aLocation = nullptr ) const override; /** * Check if segment \a aSeg lies closer to us than \a aClearance. * * @param aSeg the segment to check for collisions with * @param aClearance minimum distance that does not qualify as a collision. * @param aActual an optional pointer to an int to store the actual distance in the event * of a collision. * @return true, when a collision has been found */ virtual bool Collide( const SEG& aSeg, int aClearance = 0, int* aActual = nullptr, VECTOR2I* aLocation = nullptr ) const override; SEG::ecoord SquaredDistance( const VECTOR2I& aP, bool aOutlineOnly = false ) const; /** * Check if point \a aP lies inside a polygon (any type) defined by the line chain. * For closed shapes only. * * @param aPt point to check * @param aUseBBoxCache gives better performance if the bounding box caches have been * generated. * @return true if the point is inside the shape (edge is not treated as being inside). */ bool PointInside( const VECTOR2I& aPt, int aAccuracy = 0, bool aUseBBoxCache = false ) const; /** * Check if point \a aP lies on an edge or vertex of the line chain. * * @param aP point to check * @return true if the point lies on the edge. */ bool PointOnEdge( const VECTOR2I& aP, int aAccuracy = 0 ) const; /** * Check if point \a aP lies on an edge or vertex of the line chain. * * @param aP point to check * @return index of the first edge containing the point, otherwise negative */ int EdgeContainingPoint( const VECTOR2I& aP, int aAccuracy = 0 ) const; virtual const VECTOR2I GetPoint( int aIndex ) const = 0; virtual const SEG GetSegment( int aIndex ) const = 0; virtual size_t GetPointCount() const = 0; virtual size_t GetSegmentCount() const = 0; virtual bool IsClosed() const = 0; virtual BOX2I* GetCachedBBox() const { return nullptr; } }; #endif // __SHAPE_H