/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2011-2016 Jean-Pierre Charras jp.charras at wanadoo.fr * Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef EXCELLON_IMAGE_H #define EXCELLON_IMAGE_H enum drill_M_code_t { DRILL_M_UNKNOWN, DRILL_M_END, DRILL_M_ENDREWIND, DRILL_M_MESSAGE, DRILL_M_LONGMESSAGE, DRILL_M_HEADER, DRILL_M_ENDHEADER, DRILL_M_BEGINPATTERN, DRILL_M_ENDPATTERN, DRILL_M_CANNEDTEXT, DRILL_M_TIPCHECK, DRILL_M_METRIC, DRILL_M_IMPERIAL, DRILL_METRICHEADER, DRILL_IMPERIALHEADER, DRILL_DETECT_BROKEN, DRILL_INCREMENTALHEADER, DRILL_REWIND_STOP, DRILL_TOOL_CHANGE_STOP, DRILL_AUTOMATIC_SPEED, DRILL_AXIS_VERSION, DRILL_RESET_CMD, DRILL_AUTOMATIC_TOOL_CHANGE, DRILL_FMT, DRILL_SKIP, DRILL_TOOL_INFORMATION }; enum drill_G_code_t { DRILL_G_UNKNOWN, DRILL_G_ABSOLUTE, DRILL_G_INCREMENTAL, DRILL_G_ZEROSET, DRILL_G_ROUT, DRILL_G_DRILL, DRILL_G_SLOT, DRILL_G_ZERO_SET, DRILL_G_LINEARMOVE, DRILL_G_CWMOVE, DRILL_G_CCWMOVE }; // Helper struct to analyse Excellon commands struct EXCELLON_CMD { std::string m_Name; // key string int m_Code; // internal code, used as id in functions int m_asParams; // 0 = no param, -1 = skip params, 1 = read params }; /* EXCELLON_IMAGE handle a drill image * It is derived from GERBER_FILE_IMAGE because there is a lot of likeness * between EXCELLON files and GERBER files * DCode aperture are also similat to T Codes. * So we can reuse GERBER_FILE_IMAGE to handle EXCELLON_IMAGE with very few new functions */ class EXCELLON_IMAGE : public GERBER_FILE_IMAGE { private: enum excellon_state { READ_HEADER_STATE, // When we are in this state, we are reading header READ_PROGRAM_STATE // When we are in this state, we are reading drill data }; excellon_state m_State; // state of excellon file analysis bool m_SlotOn; // true during an oblong drill definition public: EXCELLON_IMAGE( int layer ) : GERBER_FILE_IMAGE( layer ) { m_State = READ_HEADER_STATE; m_SlotOn = false; } ~EXCELLON_IMAGE() {}; virtual void ResetDefaultValues() override { GERBER_FILE_IMAGE::ResetDefaultValues(); SelectUnits( false ); } /** * Read and load a drill (EXCELLON format) file. * @param aFullFileName = the full filename of the Gerber file * when the file cannot be loaded * Warning and info messages are stored in m_Messages * @return bool if OK, false if the gerber file was not loaded */ bool LoadFile( const wxString& aFullFileName ); private: bool Execute_HEADER_Command( char*& text ); bool Select_Tool( char*& text ); bool Execute_EXCELLON_G_Command( char*& text ); bool Execute_Drill_Command( char*& text ); /** Read a tool definition like T1C0.02 or T1F00S00C0.02 or T1C0.02F00S00 * and enter params in TCODE list */ bool readToolInformation( char*& aText ); int TCodeNumber( char*& aText ) { return DCodeNumber( aText ); } void SelectUnits( bool aMetric ); }; /* * EXCELLON commands are given here. * Pcbnew uses only few excellon commands */ /* * see http://www.excellon.com/manuals/program.htm */ /* coordintes units: * Coordinates are measured either in inch or metric (millimeters). * Inch coordinates are in six digits (00.0000) with increments as small as 0.0001 (1/10,000). * Metric coordinates can be measured in microns (thousandths of a millimeter) * in one of the following three ways: * Five digit 10 micron resolution (000.00) * Six digit 10 micron resolution (0000.00) * Six digit micron resolution (000.000) * * Leading and trailing zeros: * Excellon (CNC-7) uses inches in six digits and metric in five or six digits. * The zeros to the left of the coordinate are called leading zeros (LZ). * The zeros to right of the coordinate are called trailing zeros (TZ). * The CNC-7 uses leading zeros unless you specify otherwise through a part program. * You can do so with the INCH/METRIC command. * With leading zeros, the leading zeros must always be included. * Trailing zeros are unneeded and may be left off. * For trailing zeros, the reverse of the above is true. */ /* * EXCELLON Commands Used in a Header * The following table provides you with a list of commands which * are the most used in a part program header. * COMMAND DESCRIPTION * AFS Automatic Feeds and Speeds * ATC Automatic Tool Change * BLKD Delete all Blocks starting with a slash (/) * CCW Clockwise or Counter-clockwise Routing * CP Cutter Compensation * DETECT Broken Tool Detection * DN Down Limit Set * DTMDIST Maximum Rout Distance Before Toolchange * EXDA Extended Drill Area * FMAT Format 1 or 2 * FSB Turns the Feed/Speed Buttons off * HPCK Home Pulse Check * ICI Incremental Input of Part Program Coordinates * INCH Measure Everything in Inches * METRIC Measure Everything in Metric * M48 Beginning of Part Program Header * M95 End of Header * NCSL NC Slope Enable/Disable * OM48 Override Part Program Header * OSTOP Optional Stop Switch * OTCLMP Override Table Clamp * PCKPARAM Set up pecking tool,depth,infeed and retract parameters * PF Floating Pressure Foot Switch * PPR Programmable Plunge Rate Enable * PVS Pre-vacuum Shut-off Switch * R,C Reset Clocks * R,CP Reset Program Clocks * R,CR Reset Run Clocks * R,D Reset All Cutter Distances * R,H Reset All Hit Counters * R,T Reset Tool Data * SBK Single Block Mode Switch * SG Spindle Group Mode * SIXM Input From External Source * T Tool Information * TCST Tool Change Stop * UP Upper Limit Set * VER Selection of X and Y Axis Version * Z Zero Set * ZA Auxiliary Zero * ZC Zero Correction * ZS Zero Preset * Z+# or Z-# Set Depth Offset * % Rewind Stop * #/#/# Link Tool for Automatic Tool Change * / Clear Tool Linking */ /* * Beyond The Header: The Part Program Body * COMMAND DESCRIPTION * A# Arc Radius * B# Retract Rate * C# Tool Diameter * F# Table Feed Rate;Z Axis Infeed Rate * G00X#Y# Route Mode * G01 Linear (Straight Line) Mode * G02 Circular CW Mode * G03 Circular CCW Mode * G04 X# Variable Dwell * G05 Drill Mode * G07 Override current tool feed or speed * G32X#Y#A# Routed Circle Canned Cycle * CW G33X#Y#A# Routed Circle Canned Cycle * CCW G34,#(,#) Select Vision Tool * G35(X#Y#) Single Point Vision Offset (Relative to Work Zero) * G36(X#Y#) Multipoint Vision Translation (Relative to Work Zero) * G37 Cancel Vision Translation or Offset (From G35 or G36) * G38(X#Y#) Vision Corrected Single Hole Drilling (Relative to Work Zero) * G39(X#Y#) Vision System Autocalibration * G40 Cutter Compensation Off * G41 Cutter Compensation Left * G42 Cutter Compensation Right * G45(X#Y#) Single Point Vision Offset (Relative to G35 or G36) * G46(X#Y#) Multipoint Vision Translation (Relative to G35 or G36) * G47 Cancel Vision Translation or Offset (From G45 or G46) * G48(X#Y#) Vision Corrected Single Hole Drilling (Relative to G35 or G36) * G82(G81) Dual In Line Package * G83 Eight Pin L Pack * G84 Circle * G85 Slot * G87 Routed Step Slot Canned Cycle * G90 Absolute Mode * G91 Incremental Input Mode * G93X#Y# Zero Set * H# Maximum hit count * I#J# Arc Center Offset * M00(X#Y#) End of Program - No Rewind * M01 End of Pattern * M02X#Y# Repeat Pattern Offset * M06(X#Y#) Optional Stop * M08 End of Step and Repeat * M09(X#Y#) Stop for Inspection * M14 Z Axis Route Position With Depth Controlled Contouring * M15 Z Axis Route Position * M16 Retract With Clamping * M17 Retract Without Clamping * M18 Command tool tip check * M25 Beginning of Pattern * M30(X#Y#) End of Program Rewind * M45,long message\ Long Operator message on multiple\ part program lines * M47,text Operator Message * M50,# Vision Step and Repeat Pattern Start * M51,# Vision Step and Repeat Rewind * M52(#) Vision Step and Repeat Offset Counter Control * M02XYM70 Swap Axes * M60 Reference Scaling enable * M61 Reference Scaling disable * M62 Turn on peck drilling * M63 Turn off peck drilling * M71 Metric Measuring Mode * M72 Inch Measuring Mode * M02XYM80 Mirror Image X Axis * M02XYM90 Mirror Image Y Axis * M97,text Canned Text * M98,text Canned Text * M99,subprogram User Defined Stored Pattern * P#X#(Y#) Repeat Stored Pattern * R#M02X#Y# Repeat Pattern (S&R) * R#(X#Y#) Repeat Hole * S# Spindle RPM * T# Tool Selection; Cutter Index * Z+# or Z-# Depth Offset * % Beginning of Pattern (see M25 command) * / Block Delete */ /* * Example of a Header * COMMAND PURPOSE * M48 The beginning of a header * INCH,LZ Use the inch measuring system with leading zeros * VER,1 Use Version 1 X and Y axis layout * FMAT,2 Use Format 2 commands * 1/2/3 Link tools 1, 2, and 3 * T1C.04F200S65 Set Tool 1 for 0.040" with infeed rate of 200 inch/min Speed of 65,000 RPM * DETECT,ON Detect broken tools * M95 End of the header */ #endif // EXCELLON_IMAGE_H