/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 2015-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef MATERIAL_H #define MATERIAL_H #include "ray.h" #include "hitinfo.h" #include "PerlinNoise.h" /** * A base class that can be used to derive procedurally generated materials. */ class MATERIAL_GENERATOR { public: MATERIAL_GENERATOR(); virtual ~MATERIAL_GENERATOR() { } /** * Generate a 3D vector based on the ray and hit information depending on the implementation. * * @param aRay the camera ray that hits the object * @param aHitInfo the hit information * @return the result of the procedural */ virtual SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const = 0; }; class BOARD_NORMAL : public MATERIAL_GENERATOR { public: BOARD_NORMAL() : MATERIAL_GENERATOR() { m_scale = 1.0f; } BOARD_NORMAL( float aScale ); virtual ~BOARD_NORMAL() { } SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override; private: float m_scale; }; /** * Procedural generation of the copper normals. */ class COPPER_NORMAL : public MATERIAL_GENERATOR { public: COPPER_NORMAL() : MATERIAL_GENERATOR() { m_board_normal_generator = nullptr; m_scale = 1.0f; } COPPER_NORMAL( float aScale, const MATERIAL_GENERATOR* aBoardNormalGenerator ); virtual ~COPPER_NORMAL() { } SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override; private: const MATERIAL_GENERATOR* m_board_normal_generator; float m_scale; }; class PLATED_COPPER_NORMAL : public MATERIAL_GENERATOR { public: PLATED_COPPER_NORMAL() : MATERIAL_GENERATOR() { m_scale = 1.0f; } PLATED_COPPER_NORMAL( float aScale ) { m_scale = 1.0f / aScale; } virtual ~PLATED_COPPER_NORMAL() { } SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override; private: float m_scale; }; /** * Procedural generation of the solder mask. */ class SOLDER_MASK_NORMAL : public MATERIAL_GENERATOR { public: SOLDER_MASK_NORMAL() : MATERIAL_GENERATOR() { m_copper_normal_generator = nullptr; } SOLDER_MASK_NORMAL( const MATERIAL_GENERATOR* aCopperNormalGenerator ); virtual ~SOLDER_MASK_NORMAL() { } SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override; private: const MATERIAL_GENERATOR* m_copper_normal_generator; }; /** * Procedural generation of the plastic normals. */ class PLASTIC_NORMAL : public MATERIAL_GENERATOR { public: PLASTIC_NORMAL() : MATERIAL_GENERATOR() { m_scale = 1.0f; } PLASTIC_NORMAL( float aScale ); virtual ~PLASTIC_NORMAL() { } SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override; private: float m_scale; }; /** * Procedural generation of the shiny plastic normals. */ class PLASTIC_SHINE_NORMAL : public MATERIAL_GENERATOR { public: PLASTIC_SHINE_NORMAL() : MATERIAL_GENERATOR() { m_scale = 1.0f; } PLASTIC_SHINE_NORMAL( float aScale ); virtual ~PLASTIC_SHINE_NORMAL() { } // Imported from MATERIAL_GENERATOR SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override; private: float m_scale; }; /** * Procedural generation of the shiny brushed metal. */ class BRUSHED_METAL_NORMAL : public MATERIAL_GENERATOR { public: BRUSHED_METAL_NORMAL() : MATERIAL_GENERATOR() { m_scale = 1.0f; } BRUSHED_METAL_NORMAL( float aScale ); virtual ~BRUSHED_METAL_NORMAL() { } SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override; private: float m_scale; }; class SILK_SCREEN_NORMAL : public MATERIAL_GENERATOR { public: SILK_SCREEN_NORMAL() : MATERIAL_GENERATOR() { m_scale = 1.0f; } SILK_SCREEN_NORMAL( float aScale ); virtual ~SILK_SCREEN_NORMAL() { } SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override; private: float m_scale; }; /** * Base material class that can be used to derive other material implementations. */ class MATERIAL { public: static void SetDefaultRefractionRayCount( unsigned int aCount ) { m_defaultRefractionRayCount = aCount; } static void SetDefaultReflectionRayCount( unsigned int aCount ) { m_defaultReflectionRayCount = aCount; } static void SetDefaultRefractionRecursionCount( unsigned int aCount ) { m_defaultRefractionRecursionCount = aCount; } static void SetDefaultReflectionRecursionCount( unsigned int aCount ) { m_defaultFeflectionRecursionCount = aCount; } MATERIAL(); MATERIAL( const SFVEC3F& aAmbient, const SFVEC3F& aEmissive, const SFVEC3F& aSpecular, float aShinness, float aTransparency, float aReflection ); virtual ~MATERIAL() {} const SFVEC3F& GetAmbientColor() const { return m_ambientColor; } const SFVEC3F& GetEmissiveColor() const { return m_emissiveColor; } const SFVEC3F& GetSpecularColor() const { return m_specularColor; } float GetReflectivity() const { return m_reflectivity; } float GetTransparency() const { return m_transparency; } float GetReflection() const { return m_reflection; } float GetAbsorvance() const { return m_absorbance; } unsigned int GetRefractionRayCount() const { return m_refractionRayCount; } unsigned int GetReflectionRayCount() const { return m_reflectionRayCount; } unsigned int GetReflectionRecursionCount() const { return m_reflectionRecursionCount; } unsigned int GetRefractionRecursionCount() const { return m_refractionRecursionCount; } void SetAbsorvance( float aAbsorvanceFactor ) { m_absorbance = aAbsorvanceFactor; } void SetRefractionRayCount( unsigned int aCount ) { m_refractionRayCount = aCount; } void SetReflectionRayCount( unsigned int aCount ) { m_reflectionRayCount = aCount; } void SetReflectionRecursionCount( unsigned int aCount ) { m_reflectionRecursionCount = aCount; } void SetRefractionRecursionCount( unsigned int aCount ) { m_refractionRecursionCount = aCount; } /** * Set if the material can receive shadows. * * @param aCastShadows true yes it can, false not it cannot */ void SetCastShadows( bool aCastShadows ) { m_castShadows = aCastShadows; } bool GetCastShadows() const { return m_castShadows; } /** * Shade an intersection point. * * @param aRay the camera ray that hits the object * @param aHitInfo the hit information * @param NdotL the dot product between Normal and Light * @param aDiffuseObjColor diffuse object color * @param aDirToLight a vector of the incident light direction * @param aLightColor the light color * @param aShadowAttenuationFactor 0.0f total in shadow, 1.0f completely not in shadow * @return the resultant color */ virtual SFVEC3F Shade( const RAY& aRay, const HITINFO& aHitInfo, float NdotL, const SFVEC3F& aDiffuseObjColor, const SFVEC3F& aDirToLight, const SFVEC3F& aLightColor, float aShadowAttenuationFactor ) const = 0; void SetGenerator( const MATERIAL_GENERATOR* aGenerator ) { m_generator = aGenerator; } const MATERIAL_GENERATOR* GetGenerator() const { return m_generator; } void Generate( SFVEC3F& aNormal, const RAY& aRay, const HITINFO& aHitInfo ) const; protected: SFVEC3F m_ambientColor; // NOTE: we will not use diffuse color material here, // because it will be stored in object, since there are objects (i.e: triangles) // that can have per vertex color SFVEC3F m_emissiveColor; SFVEC3F m_specularColor; float m_reflectivity; ///< 1.0 is completely transparent, 0.0 completely opaque. float m_transparency; float m_absorbance; ///< absorbance factor for the transparent material. float m_reflection; ///< 1.0 completely reflective, 0.0 no reflective. bool m_castShadows; ///< true if this object will block the light. ///< Number of rays that will be interpolated for this material if it is transparent. unsigned int m_refractionRayCount; ///< Number of rays that will be interpolated for this material if it is reflective. unsigned int m_reflectionRayCount; ///< Number of levels it allows for refraction recursiveness. unsigned int m_refractionRecursionCount; ///< Number of levels it allows for reflection recursiveness. unsigned int m_reflectionRecursionCount; const MATERIAL_GENERATOR* m_generator; private: static int m_defaultRefractionRayCount; static int m_defaultReflectionRayCount; static int m_defaultRefractionRecursionCount; static int m_defaultFeflectionRecursionCount; }; /// Blinn Phong based material /// https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model class BLINN_PHONG_MATERIAL : public MATERIAL { public: BLINN_PHONG_MATERIAL() : MATERIAL() {} BLINN_PHONG_MATERIAL( const SFVEC3F& aAmbient, const SFVEC3F& aEmissive, const SFVEC3F& aSpecular, float aShinness, float aTransparency, float aReflection ) : MATERIAL( aAmbient, aEmissive, aSpecular, aShinness, aTransparency, aReflection ) {} // Imported from MATERIAL SFVEC3F Shade( const RAY& aRay, const HITINFO& aHitInfo, float NdotL, const SFVEC3F& aDiffuseObjColor, const SFVEC3F& aDirToLight, const SFVEC3F& aLightColor, float aShadowAttenuationFactor ) const override; }; #endif // MATERIAL_H