/** * @file convert_basic_shapes_to_polygon.cpp */ /* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include // for max, min #include // for bitset::count #include // for atan2 #include // for swap #include #include #include // for SHAPE_LINE_CHAIN #include // for SHAPE_POLY_SET, SHAPE_POLY_SE... #include #include // for VECTOR2I #include void TransformCircleToPolygon( SHAPE_LINE_CHAIN& aCornerBuffer, const VECTOR2I& aCenter, int aRadius, int aError, ERROR_LOC aErrorLoc, int aMinSegCount ) { VECTOR2I corner_position; int numSegs = GetArcToSegmentCount( aRadius, aError, FULL_CIRCLE ); numSegs = std::max( aMinSegCount, numSegs ); // The shape will be built with a even number of segs. Reason: the horizontal // diameter begins and ends to points on the actual circle, or circle // expanded by aError if aErrorLoc == ERROR_OUTSIDE. // This is used by Arc to Polygon shape convert. if( numSegs & 1 ) numSegs++; int delta = 3600 / numSegs; // rotate angle in 0.1 degree int radius = aRadius; if( aErrorLoc == ERROR_OUTSIDE ) { // The outer radius should be radius+aError // Recalculate the actual approx error, as it can be smaller than aError // because numSegs is clamped to a minimal value int actual_delta_radius = CircleToEndSegmentDeltaRadius( radius, numSegs ); radius += GetCircleToPolyCorrection( actual_delta_radius ); } for( int angle = 0; angle < 3600; angle += delta ) { corner_position.x = radius; corner_position.y = 0; RotatePoint( corner_position, angle ); corner_position += aCenter; aCornerBuffer.Append( corner_position.x, corner_position.y ); } aCornerBuffer.SetClosed( true ); } void TransformCircleToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aCenter, int aRadius, int aError, ERROR_LOC aErrorLoc, int aMinSegCount ) { VECTOR2I corner_position; int numSegs = GetArcToSegmentCount( aRadius, aError, FULL_CIRCLE ); numSegs = std::max( aMinSegCount, numSegs ); // The shape will be built with a even number of segs. Reason: the horizontal // diameter begins and ends to points on the actual circle, or circle // expanded by aError if aErrorLoc == ERROR_OUTSIDE. // This is used by Arc to Polygon shape convert. if( numSegs & 1 ) numSegs++; int delta = 3600 / numSegs; // rotate angle in 0.1 degree int radius = aRadius; if( aErrorLoc == ERROR_OUTSIDE ) { // The outer radius should be radius+aError // Recalculate the actual approx error, as it can be smaller than aError // because numSegs is clamped to a minimal value int actual_delta_radius = CircleToEndSegmentDeltaRadius( radius, numSegs ); radius += GetCircleToPolyCorrection( actual_delta_radius ); } aCornerBuffer.NewOutline(); for( int angle = 0; angle < 3600; angle += delta ) { corner_position.x = radius; corner_position.y = 0; RotatePoint( corner_position, angle ); corner_position += aCenter; aCornerBuffer.Append( corner_position.x, corner_position.y ); } // Finish circle corner_position.x = radius; corner_position.y = 0; corner_position += aCenter; aCornerBuffer.Append( corner_position.x, corner_position.y ); } void TransformOvalToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aStart, const VECTOR2I& aEnd, int aWidth, int aError, ERROR_LOC aErrorLoc, int aMinSegCount ) { // To build the polygonal shape outside the actual shape, we use a bigger // radius to build rounded ends. // However, the width of the segment is too big. // so, later, we will clamp the polygonal shape with the bounding box // of the segment. int radius = aWidth / 2; int numSegs = GetArcToSegmentCount( radius, aError, FULL_CIRCLE ); numSegs = std::max( aMinSegCount, numSegs ); int delta = 3600 / numSegs; // rotate angle in 0.1 degree if( aErrorLoc == ERROR_OUTSIDE ) { // The outer radius should be radius+aError // Recalculate the actual approx error, as it can be smaller than aError // because numSegs is clamped to a minimal value int actual_delta_radius = CircleToEndSegmentDeltaRadius( radius, numSegs ); int correction = GetCircleToPolyCorrection( actual_delta_radius ); radius += correction; } // end point is the coordinate relative to aStart VECTOR2I endp = aEnd - aStart; VECTOR2I startp = aStart; VECTOR2I corner; SHAPE_POLY_SET polyshape; polyshape.NewOutline(); // normalize the position in order to have endp.x >= 0 // it makes calculations more easy to understand if( endp.x < 0 ) { endp = aStart - aEnd; startp = aEnd; } // delta_angle is in radian double delta_angle = atan2( (double)endp.y, (double)endp.x ); int seg_len = KiROUND( EuclideanNorm( endp ) ); // Compute the outlines of the segment, and creates a polygon // Note: the polygonal shape is built from the equivalent horizontal // segment starting at {0,0}, and ending at {seg_len,0} // add right rounded end: for( int angle = 0; angle < 1800; angle += delta ) { corner = VECTOR2I( 0, radius ); RotatePoint( corner, angle ); corner.x += seg_len; polyshape.Append( corner.x, corner.y ); } // Finish arc: corner = VECTOR2I( seg_len, -radius ); polyshape.Append( corner.x, corner.y ); // add left rounded end: for( int angle = 0; angle < 1800; angle += delta ) { corner = VECTOR2I( 0, -radius ); RotatePoint( corner, angle ); polyshape.Append( corner.x, corner.y ); } // Finish arc: corner = VECTOR2I( 0, radius ); polyshape.Append( corner.x, corner.y ); // Now trim the edges of the polygonal shape which will be slightly outside the // track width. SHAPE_POLY_SET bbox; bbox.NewOutline(); // Build the bbox (a horizontal rectangle). int halfwidth = aWidth / 2; // Use the exact segment width for the bbox height corner.x = -radius - 2; // use a bbox width slightly bigger to avoid // creating useless corner at segment ends corner.y = halfwidth; bbox.Append( corner.x, corner.y ); corner.y = -halfwidth; bbox.Append( corner.x, corner.y ); corner.x = radius + seg_len + 2; bbox.Append( corner.x, corner.y ); corner.y = halfwidth; bbox.Append( corner.x, corner.y ); // Now, clamp the shape polyshape.BooleanIntersection( bbox, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); // Note the final polygon is a simple, convex polygon with no hole // due to the shape of initial polygons // Rotate and move the polygon to its right location polyshape.Rotate( delta_angle, VECTOR2I( 0, 0 ) ); polyshape.Move( startp ); aCornerBuffer.Append( polyshape); } struct ROUNDED_CORNER { VECTOR2I m_position; int m_radius; ROUNDED_CORNER( int x, int y ) : m_position( VECTOR2I( x, y ) ), m_radius( 0 ) {} ROUNDED_CORNER( int x, int y, int radius ) : m_position( VECTOR2I( x, y ) ), m_radius( radius ) {} }; // Corner List requirements: no concave shape, corners in clockwise order, no duplicate corners void CornerListToPolygon( SHAPE_POLY_SET& outline, std::vector& aCorners, int aInflate, int aError, ERROR_LOC aErrorLoc ) { assert( aInflate >= 0 ); outline.NewOutline(); VECTOR2I incoming = aCorners[0].m_position - aCorners.back().m_position; for( int n = 0, count = aCorners.size(); n < count; n++ ) { ROUNDED_CORNER& cur = aCorners[n]; ROUNDED_CORNER& next = aCorners[( n + 1 ) % count]; VECTOR2I outgoing = next.m_position - cur.m_position; if( !( aInflate || cur.m_radius ) ) outline.Append( cur.m_position ); else { VECTOR2I cornerPosition = cur.m_position; int endAngle, radius = cur.m_radius; double tanAngle2; if( ( incoming.x == 0 && outgoing.y == 0 ) || ( incoming.y == 0 && outgoing.x == 0 ) ) { endAngle = 900; tanAngle2 = 1.0; } else { double cosNum = (double) incoming.x * outgoing.x + (double) incoming.y * outgoing.y; double cosDen = (double) incoming.EuclideanNorm() * outgoing.EuclideanNorm(); double angle = acos( cosNum / cosDen ); tanAngle2 = tan( ( M_PI - angle ) / 2 ); endAngle = RAD2DECIDEG( angle ); } if( aInflate ) { radius += aInflate; cornerPosition += incoming.Resize( aInflate / tanAngle2 ) + incoming.Perpendicular().Resize( -aInflate ); } // Ensure 16+ segments per 360deg and ensure first & last segment are the same size int numSegs = std::max( 16, GetArcToSegmentCount( radius, aError, FULL_CIRCLE ) ); int angDelta = 3600 / numSegs; int lastSegLen = endAngle % angDelta; // or 0 if last seg length is angDelta int angPos = lastSegLen ? ( angDelta + lastSegLen ) / 2 : angDelta; double arcTransitionDistance = radius / tanAngle2; VECTOR2I arcStart = cornerPosition - incoming.Resize( arcTransitionDistance ); VECTOR2I arcCenter = arcStart + incoming.Perpendicular().Resize( radius ); VECTOR2I arcEnd, arcStartOrigin; if( aErrorLoc == ERROR_INSIDE ) { arcEnd = SEG( cornerPosition, arcCenter ).ReflectPoint( arcStart ); arcStartOrigin = arcStart - arcCenter; outline.Append( arcStart ); } else { // The outer radius should be radius+aError, recalculate because numSegs is clamped int actualDeltaRadius = CircleToEndSegmentDeltaRadius( radius, numSegs ); int radiusExtend = GetCircleToPolyCorrection( actualDeltaRadius ); arcStart += incoming.Perpendicular().Resize( -radiusExtend ); arcStartOrigin = arcStart - arcCenter; // To avoid "ears", we only add segments crossing/within the non-rounded outline // Note: outlineIn is short and must be treated as defining an infinite line SEG outlineIn( cornerPosition - incoming, cornerPosition ); VECTOR2I prevPt = arcStart; arcEnd = cornerPosition; // default if no points within the outline are found while( angPos < endAngle ) { VECTOR2I pt = arcStartOrigin; RotatePoint( pt, -angPos ); pt += arcCenter; angPos += angDelta; if( outlineIn.Side( pt ) > 0 ) { VECTOR2I intersect = outlineIn.IntersectLines( SEG( prevPt, pt ) ).get(); outline.Append( intersect ); outline.Append( pt ); arcEnd = SEG( cornerPosition, arcCenter ).ReflectPoint( intersect ); break; } endAngle -= angDelta; // if skipping first, also skip last prevPt = pt; } } for( ; angPos < endAngle; angPos += angDelta ) { VECTOR2I pt = arcStartOrigin; RotatePoint( pt, -angPos ); outline.Append( pt + arcCenter ); } outline.Append( arcEnd ); } incoming = outgoing; } } void CornerListRemoveDuplicates( std::vector& aCorners ) { VECTOR2I prev = aCorners[0].m_position; for( int pos = aCorners.size() - 1; pos >= 0; pos-- ) { if( aCorners[pos].m_position == prev ) aCorners.erase( aCorners.begin() + pos ); else prev = aCorners[pos].m_position; } } void TransformTrapezoidToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aPosition, const VECTOR2I& aSize, double aRotation, int aDeltaX, int aDeltaY, int aInflate, int aError, ERROR_LOC aErrorLoc ) { SHAPE_POLY_SET outline; VECTOR2I size( aSize / 2 ); std::vector corners; if( aInflate < 0 ) { if( !aDeltaX && !aDeltaY ) // rectangle { size.x = std::max( 1, size.x + aInflate ); size.y = std::max( 1, size.y + aInflate ); } else if( aDeltaX ) // horizontal trapezoid { double slope = (double) aDeltaX / size.x; int yShrink = KiROUND( ( std::hypot( size.x, aDeltaX ) * aInflate ) / size.x ); size.y = std::max( 1, size.y + yShrink ); size.x = std::max( 1, size.x + aInflate ); aDeltaX = KiROUND( size.x * slope ); if( aDeltaX > size.y ) // shrinking turned the trapezoid into a triangle { corners.reserve( 3 ); corners.push_back( ROUNDED_CORNER( -size.x, -size.y - aDeltaX ) ); corners.push_back( ROUNDED_CORNER( KiROUND( size.y / slope ), 0 ) ); corners.push_back( ROUNDED_CORNER( -size.x, size.y + aDeltaX ) ); } } else // vertical trapezoid { double slope = (double) aDeltaY / size.y; int xShrink = KiROUND( ( std::hypot( size.y, aDeltaY ) * aInflate ) / size.y ); size.x = std::max( 1, size.x + xShrink ); size.y = std::max( 1, size.y + aInflate ); aDeltaY = KiROUND( size.y * slope ); if( aDeltaY > size.x ) { corners.reserve( 3 ); corners.push_back( ROUNDED_CORNER( 0, -KiROUND( size.x / slope ) ) ); corners.push_back( ROUNDED_CORNER( size.x + aDeltaY, size.y ) ); corners.push_back( ROUNDED_CORNER( -size.x - aDeltaY, size.y ) ); } } aInflate = 0; } if( corners.empty() ) { corners.reserve( 4 ); corners.push_back( ROUNDED_CORNER( -size.x + aDeltaY, -size.y - aDeltaX ) ); corners.push_back( ROUNDED_CORNER( size.x - aDeltaY, -size.y + aDeltaX ) ); corners.push_back( ROUNDED_CORNER( size.x + aDeltaY, size.y - aDeltaX ) ); corners.push_back( ROUNDED_CORNER( -size.x - aDeltaY, size.y + aDeltaX ) ); if( aDeltaY == size.x || aDeltaX == size.y ) CornerListRemoveDuplicates( corners ); } CornerListToPolygon( outline, corners, aInflate, aError, aErrorLoc ); if( aRotation != 0.0 ) outline.Rotate( DECIDEG2RAD( -aRotation ), VECTOR2I( 0, 0 ) ); outline.Move( VECTOR2I( aPosition ) ); aCornerBuffer.Append( outline ); } void TransformRoundChamferedRectToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aPosition, const VECTOR2I& aSize, double aRotation, int aCornerRadius, double aChamferRatio, int aChamferCorners, int aInflate, int aError, ERROR_LOC aErrorLoc ) { SHAPE_POLY_SET outline; VECTOR2I size( aSize / 2 ); int chamferCnt = std::bitset<8>( aChamferCorners ).count(); double chamferDeduct = 0; if( aInflate < 0 ) { size.x = std::max( 1, size.x + aInflate ); size.y = std::max( 1, size.y + aInflate ); chamferDeduct = aInflate * ( 2.0 - M_SQRT2 ); aCornerRadius = std::max( 0, aCornerRadius + aInflate ); aInflate = 0; } std::vector corners; corners.reserve( 4 + chamferCnt ); corners.push_back( ROUNDED_CORNER( -size.x, -size.y, aCornerRadius ) ); corners.push_back( ROUNDED_CORNER( size.x, -size.y, aCornerRadius ) ); corners.push_back( ROUNDED_CORNER( size.x, size.y, aCornerRadius ) ); corners.push_back( ROUNDED_CORNER( -size.x, size.y, aCornerRadius ) ); if( aChamferCorners ) { int shorterSide = std::min( aSize.x, aSize.y ); int chamfer = std::max( 0, KiROUND( aChamferRatio * shorterSide + chamferDeduct ) ); int chamId[4] = { RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT, RECT_CHAMFER_BOTTOM_RIGHT, RECT_CHAMFER_BOTTOM_LEFT }; int sign[8] = { 0, 1, -1, 0, 0, -1, 1, 0 }; for( int cc = 0, pos = 0; cc < 4; cc++, pos++ ) { if( !( aChamferCorners & chamId[cc] ) ) continue; corners[pos].m_radius = 0; if( chamfer == 0 ) continue; corners.insert( corners.begin() + pos + 1, corners[pos] ); corners[pos].m_position.x += sign[( 2 * cc ) & 7] * chamfer; corners[pos].m_position.y += sign[( 2 * cc - 2 ) & 7] * chamfer; corners[pos + 1].m_position.x += sign[( 2 * cc + 1 ) & 7] * chamfer; corners[pos + 1].m_position.y += sign[( 2 * cc - 1 ) & 7] * chamfer; pos++; } if( chamferCnt > 1 && 2 * chamfer >= shorterSide ) CornerListRemoveDuplicates( corners ); } CornerListToPolygon( outline, corners, aInflate, aError, aErrorLoc ); if( aRotation != 0.0 ) outline.Rotate( DECIDEG2RAD( -aRotation ), VECTOR2I( 0, 0 ) ); outline.Move( VECTOR2I( aPosition ) ); aCornerBuffer.Append( outline ); } int ConvertArcToPolyline( SHAPE_LINE_CHAIN& aPolyline, VECTOR2I aCenter, int aRadius, const EDA_ANGLE& aStartAngle, const EDA_ANGLE& aArcAngle, double aAccuracy, ERROR_LOC aErrorLoc ) { int n = 2; if( aRadius >= aAccuracy ) n = GetArcToSegmentCount( aRadius, aAccuracy, aArcAngle ) + 1; if( aErrorLoc == ERROR_OUTSIDE ) { int seg360 = std::abs( KiROUND( n * 360.0 / aArcAngle.AsDegrees() ) ); int actual_delta_radius = CircleToEndSegmentDeltaRadius( aRadius, seg360 ); aRadius += actual_delta_radius; } for( int i = 0; i <= n ; i++ ) { EDA_ANGLE rot = aStartAngle; rot += ( aArcAngle * i ) / n; double x = aCenter.x + aRadius * cos( rot.AsRadians() ); double y = aCenter.y + aRadius * sin( rot.AsRadians() ); aPolyline.Append( KiROUND( x ), KiROUND( y ) ); } return n; } void TransformArcToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd, int aWidth, int aError, ERROR_LOC aErrorLoc ) { SHAPE_ARC arc( aStart, aMid, aEnd, aWidth ); // Currentlye have currently 2 algos: // the first approximates the thick arc from its outlines // the second approximates the thick arc from segments given by SHAPE_ARC // using SHAPE_ARC::ConvertToPolyline // The actual approximation errors are similar but not exactly the same. // // For now, both algorithms are kept, the second is the initial algo used in Kicad. #if 1 // This appproximation convert the 2 ends to polygons, arc outer to polyline // and arc inner to polyline and merge shapes. int radial_offset = ( aWidth + 1 ) / 2; SHAPE_POLY_SET polyshape; std::vector outside_pts; /// We start by making rounded ends on the arc TransformCircleToPolygon( polyshape, aStart, radial_offset, aError, aErrorLoc ); TransformCircleToPolygon( polyshape, aEnd, radial_offset, aError, aErrorLoc ); // The circle polygon is built with a even number of segments, so the // horizontal diameter has 2 corners on the biggest diameter // Rotate these 2 corners to match the start and ens points of inner and outer // end points of the arc appoximation outlines, build below. // The final shape is much better. double arc_angle_start_deg = arc.GetStartAngle(); double arc_angle = arc.GetCentralAngle(); double arc_angle_end_deg = arc_angle_start_deg + arc_angle; if( arc_angle_start_deg != 0 && arc_angle_start_deg != 180.0 ) polyshape.Outline(0).Rotate( arc_angle_start_deg * M_PI/180.0, aStart ); if( arc_angle_end_deg != 0 && arc_angle_end_deg != 180.0 ) polyshape.Outline(1).Rotate( arc_angle_end_deg * M_PI/180.0, aEnd ); VECTOR2I center = arc.GetCenter(); int radius = arc.GetRadius(); int arc_outer_radius = radius + radial_offset; int arc_inner_radius = radius - radial_offset; ERROR_LOC errorLocInner = ERROR_OUTSIDE; ERROR_LOC errorLocOuter = ERROR_INSIDE; if( aErrorLoc == ERROR_OUTSIDE ) { errorLocInner = ERROR_INSIDE; errorLocOuter = ERROR_OUTSIDE; } polyshape.NewOutline(); ConvertArcToPolyline( polyshape.Outline(2), center, arc_outer_radius, EDA_ANGLE( arc_angle_start_deg, DEGREES_T ), EDA_ANGLE( arc_angle, DEGREES_T ), aError, errorLocOuter ); if( arc_inner_radius > 0 ) ConvertArcToPolyline( polyshape.Outline(2), center, arc_inner_radius, EDA_ANGLE( arc_angle_end_deg, DEGREES_T ), -EDA_ANGLE( arc_angle, DEGREES_T ), aError, errorLocInner ); else polyshape.Append( center ); #else // This appproximation use SHAPE_ARC to convert the 2 ends to polygons, // approximate arc to polyline, convert the polyline corners to outer and inner // corners of outer and inner utliners and merge shapes. double defaultErr; SHAPE_LINE_CHAIN arcSpine = arc.ConvertToPolyline( SHAPE_ARC::DefaultAccuracyForPCB(), &defaultErr); int radius = arc.GetRadius(); int radial_offset = ( aWidth + 1 ) / 2; SHAPE_POLY_SET polyshape; std::vector outside_pts; // delta is the effective error approximation to build a polyline from an arc int segCnt360 = arcSpine.GetSegmentCount()*360.0/arc.GetCentralAngle();; int delta = CircleToEndSegmentDeltaRadius( radius+radial_offset, std::abs(segCnt360) ); /// We start by making rounded ends on the arc TransformCircleToPolygon( polyshape, aStart, radial_offset, aError, aErrorLoc ); TransformCircleToPolygon( polyshape, aEnd, radial_offset, aError, aErrorLoc ); // The circle polygon is built with a even number of segments, so the // horizontal diameter has 2 corners on the biggest diameter // Rotate these 2 corners to match the start and ens points of inner and outer // end points of the arc appoximation outlines, build below. // The final shape is much better. double arc_angle_end_deg = arc.GetStartAngle(); if( arc_angle_end_deg != 0 && arc_angle_end_deg != 180.0 ) polyshape.Outline(0).Rotate( arc_angle_end_deg * M_PI/180.0, arcSpine.GetPoint( 0 ) ); arc_angle_end_deg = arc.GetEndAngle(); if( arc_angle_end_deg != 0 && arc_angle_end_deg != 180.0 ) polyshape.Outline(1).Rotate( arc_angle_end_deg * M_PI/180.0, arcSpine.GetPoint( -1 ) ); if( aErrorLoc == ERROR_OUTSIDE ) radial_offset += delta + defaultErr/2; else radial_offset -= defaultErr/2; if( radial_offset < 0 ) radial_offset = 0; polyshape.NewOutline(); VECTOR2I center = arc.GetCenter(); int last_index = arcSpine.GetPointCount() -1; for( std::size_t ii = 0; ii <= last_index; ++ii ) { VECTOR2I offset = arcSpine.GetPoint( ii ) - center; int curr_rd = radius; polyshape.Append( offset.Resize( curr_rd - radial_offset ) + center ); outside_pts.emplace_back( offset.Resize( curr_rd + radial_offset ) + center ); } for( auto it = outside_pts.rbegin(); it != outside_pts.rend(); ++it ) polyshape.Append( *it ); #endif // Can be removed, but usefull to display the outline: polyshape.Simplify( SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( polyshape ); } void TransformRingToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aCentre, int aRadius, int aWidth, int aError, ERROR_LOC aErrorLoc ) { int inner_radius = aRadius - ( aWidth / 2 ); int outer_radius = inner_radius + aWidth; if( inner_radius <= 0 ) { //In this case, the ring is just a circle (no hole inside) TransformCircleToPolygon( aCornerBuffer, aCentre, aRadius + ( aWidth / 2 ), aError, aErrorLoc ); return; } SHAPE_POLY_SET buffer; TransformCircleToPolygon( buffer, aCentre, outer_radius, aError, aErrorLoc ); // Build the hole: buffer.NewHole(); // The circle is the hole, so the approximation error location is the opposite of aErrorLoc ERROR_LOC inner_err_loc = aErrorLoc == ERROR_OUTSIDE ? ERROR_INSIDE : ERROR_OUTSIDE; TransformCircleToPolygon( buffer.Hole( 0, 0 ), aCentre, inner_radius, aError, inner_err_loc ); buffer.Fracture( SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( buffer ); }