/* * coplanar.cpp - coplanar class implementation * * Copyright (C) 2008 Michael Margraf <michael.margraf@alumni.tu-berlin.de> * Copyright (C) 2005, 2006 Stefan Jahn <stefan@lkcc.org> * Modified for Kicad: 2011 jean-pierre.charras * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this package; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include "coplanar.h" #include "units.h" COPLANAR::COPLANAR() : TRANSLINE() { m_Name = "CoPlanar"; backMetal = false; Init(); } GROUNDEDCOPLANAR::GROUNDEDCOPLANAR() : COPLANAR() { m_Name = "GrCoPlanar"; backMetal = true; } // ------------------------------------------------------------------- void COPLANAR::calcAnalyze() { m_parameters[SKIN_DEPTH_PRM] = skin_depth(); // other local variables (quasi-static constants) double k1, kk1, kpk1, k2, k3, q1, q2, q3 = 0, qz, er0 = 0; double zl_factor; // compute the necessary quasi-static approx. (K1, K3, er(0) and Z(0)) k1 = m_parameters[PHYS_WIDTH_PRM] / ( m_parameters[PHYS_WIDTH_PRM] + m_parameters[PHYS_S_PRM] + m_parameters[PHYS_S_PRM] ); kk1 = ellipk( k1 ); kpk1 = ellipk( sqrt( 1 - k1 * k1 ) ); q1 = kk1 / kpk1; // backside is metal if( backMetal ) { k3 = tanh( ( M_PI / 4 ) * ( m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM] ) ) / tanh( ( M_PI / 4 ) * ( m_parameters[PHYS_WIDTH_PRM] + m_parameters[PHYS_S_PRM] + m_parameters[PHYS_S_PRM] ) / m_parameters[H_PRM] ); q3 = ellipk( k3 ) / ellipk( sqrt( 1 - k3 * k3 ) ); qz = 1 / ( q1 + q3 ); er0 = 1 + q3 * qz * ( m_parameters[EPSILONR_PRM] - 1 ); zl_factor = ZF0 / 2 * qz; } // backside is air else { k2 = sinh( ( M_PI / 4 ) * ( m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM] ) ) / sinh( ( M_PI / 4 ) * ( m_parameters[PHYS_WIDTH_PRM] + m_parameters[PHYS_S_PRM] + m_parameters[PHYS_S_PRM] ) / m_parameters[H_PRM] ); q2 = ellipk( k2 ) / ellipk( sqrt( 1 - k2 * k2 ) ); er0 = 1 + ( m_parameters[EPSILONR_PRM] - 1 ) / 2 * q2 / q1; zl_factor = ZF0 / 4 / q1; } // adds effect of strip thickness if( m_parameters[T_PRM] > 0 ) { double d, se, We, ke, qe; d = ( m_parameters[T_PRM] * 1.25 / M_PI ) * ( 1 + log( 4 * M_PI * m_parameters[PHYS_WIDTH_PRM] / m_parameters[T_PRM] ) ); se = m_parameters[PHYS_S_PRM] - d; We = m_parameters[PHYS_WIDTH_PRM] + d; // modifies k1 accordingly (k1 = ke) ke = We / ( We + se + se ); // ke = k1 + (1 - k1 * k1) * d / 2 / s; qe = ellipk( ke ) / ellipk( sqrt( 1 - ke * ke ) ); // backside is metal if( backMetal ) { qz = 1 / ( qe + q3 ); er0 = 1 + q3 * qz * ( m_parameters[EPSILONR_PRM] - 1 ); zl_factor = ZF0 / 2 * qz; } // backside is air else { zl_factor = ZF0 / 4 / qe; } // modifies er0 as well er0 = er0 - ( 0.7 * ( er0 - 1 ) * m_parameters[T_PRM] / m_parameters[PHYS_S_PRM] ) / ( q1 + ( 0.7 * m_parameters[T_PRM] / m_parameters[PHYS_S_PRM] ) ); } // pre-compute square roots double sr_er = sqrt( m_parameters[EPSILONR_PRM] ); double sr_er0 = sqrt( er0 ); // cut-off frequency of the TE0 mode double fte = ( C0 / 4 ) / ( m_parameters[H_PRM] * sqrt( m_parameters[EPSILONR_PRM] - 1 ) ); // dispersion factor G double p = log( m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM] ); double u = 0.54 - ( 0.64 - 0.015 * p ) * p; double v = 0.43 - ( 0.86 - 0.54 * p ) * p; double G = exp( u * log( m_parameters[PHYS_WIDTH_PRM] / m_parameters[PHYS_S_PRM] ) + v ); // loss constant factors (computed only once for efficiency's sake) double ac = 0; if( m_parameters[T_PRM] > 0 ) { // equations by GHIONE double n = ( 1 - k1 ) * 8 * M_PI / ( m_parameters[T_PRM] * ( 1 + k1 ) ); double a = m_parameters[PHYS_WIDTH_PRM] / 2; double b = a + m_parameters[PHYS_S_PRM]; ac = ( M_PI + log( n * a ) ) / a + ( M_PI + log( n * b ) ) / b; } double ac_factor = ac / ( 4 * ZF0 * kk1 * kpk1 * ( 1 - k1 * k1 ) ); double ad_factor = ( m_parameters[EPSILONR_PRM] / ( m_parameters[EPSILONR_PRM] - 1 ) ) * m_parameters[TAND_PRM] * M_PI / C0; // .................................................... double sr_er_f = sr_er0; // add the dispersive effects to er0 sr_er_f += ( sr_er - sr_er0 ) / ( 1 + G * pow( m_parameters[FREQUENCY_PRM] / fte, -1.8 ) ); // for now, the loss are limited to strip losses (no radiation // losses yet) losses in neper/length m_parameters[LOSS_CONDUCTOR_PRM] = 20.0 / log( 10.0 ) * m_parameters[PHYS_LEN_PRM] * ac_factor * sr_er0 * sqrt( M_PI * MU0 * m_parameters[FREQUENCY_PRM] / m_parameters[SIGMA_PRM] ); m_parameters[LOSS_DIELECTRIC_PRM] = 20.0 / log( 10.0 ) * m_parameters[PHYS_LEN_PRM] * ad_factor * m_parameters[FREQUENCY_PRM] * ( sr_er_f * sr_er_f - 1 ) / sr_er_f; m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] * sr_er_f * m_parameters[FREQUENCY_PRM] / C0; /* in radians */ m_parameters[EPSILON_EFF_PRM] = sr_er_f * sr_er_f; m_parameters[Z0_PRM] = zl_factor / sr_er_f; } // ------------------------------------------------------------------- void COPLANAR::show_results() { setResult( 0, m_parameters[EPSILON_EFF_PRM], "" ); setResult( 1, m_parameters[LOSS_CONDUCTOR_PRM], "dB" ); setResult( 2, m_parameters[LOSS_DIELECTRIC_PRM], "dB" ); setResult( 3, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" ); } #define MAX_ERROR 0.000001 // ------------------------------------------------------------------- /* @function calcSynthesize * * @TODO Add a warning in case the synthetizin algorithm did not converge. * Add it for all transmission lines that uses @ref minimizeZ0Error1D . */ void COPLANAR::calcSynthesize() { if( isSelected( PHYS_WIDTH_PRM ) ) minimizeZ0Error1D( &( m_parameters[PHYS_WIDTH_PRM] ) ); else minimizeZ0Error1D( &( m_parameters[PHYS_S_PRM] ) ); } // ------------------------------------------------------------------- void COPLANAR::showSynthesize() { if( isSelected( PHYS_WIDTH_PRM ) ) setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] ); if( isSelected( PHYS_S_PRM ) ) setProperty( PHYS_S_PRM, m_parameters[PHYS_S_PRM] ); setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] ); if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0 ) { if( isSelected( PHYS_S_PRM ) ) setErrorLevel( PHYS_S_PRM, TRANSLINE_ERROR ); else setErrorLevel( PHYS_S_PRM, TRANSLINE_WARNING ); } if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0 ) { if( isSelected( PHYS_WIDTH_PRM ) ) setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR ); else setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING ); } if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 ) setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR ); if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 ) setErrorLevel( Z0_PRM, TRANSLINE_WARNING ); if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 ) setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING ); } void COPLANAR::showAnalyze() { setProperty( Z0_PRM, m_parameters[Z0_PRM] ); setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] ); if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0 ) setErrorLevel( PHYS_S_PRM, TRANSLINE_WARNING ); if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0 ) setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING ); if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 ) setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING ); if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 ) setErrorLevel( Z0_PRM, TRANSLINE_ERROR ); if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 ) setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR ); }