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The paper provides a set of algorithms for performing set 
operations on polygonal regions in the plane using standard 
floating-point arithmetc. The algorithms are robust, guaranteeing 
both topological consistency and numerical accuracy. Each 
polygon edge is modelled as an implicit or explicit polygonal 
curve which stays within some distance fl of the original line 
segment. If the curve is implicit, fl is bounded by a small multiple 
of the rounding unit. If the curves are explicit, the bound on fl 
may grow with the number of curves. One can mix implicit 
and explicit representations to suit the application. 
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The practical difficulties of implementing geometric 
algorithms are well known to experienced developers. 
Geometric algorithms rely on the field axioms of 
real arithmetic, and they behave unpredictably when 
implemented in a naive fashion using rounded floating- 
point arithmetic. Developers spend much time carefully 
choosing epsilons, adding fuzzy comparisons, and so 
forth, as the need arises, to improve the reliability of 
geometric programs. These modifications are made in an 
ad hoc fashion, and there is no general procedure for 
reliably implementing geometric algorithms. In the future, 
as geometric programs grow in number and complexity, 
the time and expertise required to fix numerical problems 
will become unsupportable. For some tasks, no amount 
of engineering can improve the reliability to the levels 
now needed. The conclusion is that, if we are to increase 
the reliability of programs, increase the productivity of 
our developers, and decrease the cost of implementing 
geometric algorithms, we must develop a theory of robust 
geometry whose aim is the creation of robust alforithms, 
geometric algorithms which can be proven correct even 
when implemented using rounded arithmetic. 

There are two reasons for the fact that the current 
theory of computational geometry does not ordinarily 
address the issue of robustness. First, current theory is 
based on an analysis of asymptotic cost, and, for any 
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specific geometric construction, the cost of using unlimited- 
precision rational arithmetic (or whatever is necessary to 
implement the algorithm without rounding) is only a 
constant factor greater than using rounded floating-point 
arithmetic. Second, it is assumed (presumably by those 
who have never implemented a geometric algorithm), that 
rourid-off error poses only minor, easiiy surmountable 
difficulties. Experience teaches us that this is a false 
assumption. As far as the constant factors are concerned, 
there are at least three reasons why their size matters a 
great deal and should be addressed by theory. First, if 
operations are cascaded (rotations and translations are 
alternated with other operations on geometric objects), 
the 'constant' factor for exact arithmetic can grow 
exponentially with the number of operations. In contrast, 
the extra cost of cascading rounded operations is only 
logarithmic. Second, constructions involving curved 
surfaces, which are often required in industry, entail very 
large constant factors. Sugihara i estimates a factor of 80 
for the intersection of quadratic surfaces. In order to 
intersect bicubic surface patches, Farouki e has determined 
that we would need to solve equations of degree 1000 or 
higher. The difference in cost between an approximate 
and an exact solution to such an equation* is at least a 
factor of 1000. Finally, the third reason is that a 
theoretically correct algorithm must compete with 'near 
misses'. Given a program with a certain residual (although 
unacceptable) amount of unreliability, a developer would 
be extremely reluctant to eliminate the unreliability by 
slowing down the program by a large factor. He/she 
would probably prefer to whittle away at the numerical 
problems by engineering, even though that wastes his/her 
expertise and time. 

The author has devised a strict robustness t approach 
to the creation of robust algorithms, and has created 
strictly robust algorithms for a number of geometric 
constructions. These algorithms depend on the use of 
implicit monotonic curves called MASCS ~, which we believe 
to be the key to achieving robustness for a large variety 

* By an exact solution, we refer to the construction of rational intervals 
which contain isolated roots. 
t Originally, the term was simply robust 8, but people now commonly 
use this to mean very reliable. 

Monotonic Adaptive Straight Curve Segments. 
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of constructions. We describe here a strictly robust 
algorithm for performing set operations on polygonal 
regions in the plane. This algorithm will acquaint the 
reader with a number of definitions and techniques in 
the area of robust geometry. We hope that this exposition 
will help readers to understand other accounts of robust 
algorithms and to devise algorithms of their own. 

The first section of the paper discusses the philosophy 
behind strict robustness. The second section discusses the 
types of numerical problems caused by a naive application 
of rounded arithmetic in geometric programs, and it 
describes current techniques for addressing these problems, 
including strict robustness. The third, fourth and fifth 
sections give strictly robust algorithms for performing set 
operations on polygonal regions bounded by MASC 
segments. The third section gives low-level primitives for 
robust operations on line segments. The fourth section 
defines MASCS and gives an algorithm for finding all 
intersections among a set of MASC segments. This 
algorithm is strictly robust through the use of implicit 
curves. If one desires, one can alter the algorithm to 
generate an explicit representation of the curves, but only 
at the cost of decreasing the overall accuracy. The fifth 
section gives an algorithm for performing set operations 
on polycurves based on the robust intersection algorithm. 
Finally, the sixth section discusses how the same 
techniques might be applied to other domains. 

Strict robustness 

We propose a classical approach to robust geometry. 
First, define a task to be performed. Second, devise an 
algorithm that performs the task. Third, seek the optimal 
algorithm for that task. For strict robust geometry, the 
task is the accurate construction of a feasible representation 
of some geometric object using rounded arithmetic. We 
do not accept any unreliability: an unreliable algorithm 
is not an algorithm. 

It is an explicit assumption of the task that rounded 
B-bit floating-point arithmetic is a primitive operation, 
and the algorithm must perform all its arithmetic 
computations using this arithmetic. It is not permitted 
to look into the internals of the floating-point representation 
in order to simulate higher-precision arithmetic. The 
algorithm is accurate if it introduces only a small constant 
number C of bits of error, where C is independent of B 
and the input size n. The output is feasible if it is of the 
correct type. That is, if the task is to construct the 
intersection of a set of polygonal regions, then the 
algorithm constructs the intersection of some set of 
polygonal regions. Accuracy and feasibility are discussed 
in more detail below, and some of the current results in 
the area of robust geometry are summarized. 

The output of a strictly robust algorithm is permitted 
to be implicit, where we use this term in the traditional 
sense. For example, the curve y(x) = (x, (1 - x2) 1/2) is 
an explicit representation for (part of) the unit circle, 
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because it tells us, for each coordinate x, what the 
corresponding coordinate y should be. The equation 
x 2 + y2 = 1 is an implicit representation, because it only 
allows us to test whether a given point (x, y)  lies on 
the curve or not. The output of a strictly robust algorithm 
is implicit in the same sense, with two extra properties: 

• Using B-bit arithmetic, for each coordinate x, one 
can compute a coordinate y such that (x, y)  lies very 
near to the implicit curve (error is a constant 
multiplied by 2-n). 

• Using sufficient precision, the coordinate y can be 
computed to any accuracy desired. 

SOURCES OF ERROR 

This section describes the four types of numerical problem 
that arise when geometric algorithms are implemented 
naively: unexpected singularities, gross infeasibility, 
subtle infeasibility, and inaccuracy. These problems must 
be addressed in the design of robust algorithms. The 
section below discusses the numerical operations required 
to intersect line segments and construct polygons. The 
succeeding four sections illustrate the four numerical 
problems for this domain. 

Polygons and line segments 

Constructions of polygons and other operations involving 
line segments in the plane rely on a number of numerical 
tests: (a) determine whether a point lies inside or outside 
a polygon, (b) determine whether two segments intersect, 
(c) determine the order of two intersection points 
on the same segment (the intersection-order test), and so 
on. In each case, the outcome of the test depends on the 
sign of an arithmetic expression. In other geometric 
domains, also, the behaviour of a geometric program is 
determined by the signs of expressions, and this partially 
accounts for the observed sensitivity to round-off error: 
the value of an expression may be stable, but the sign of 
the value is not. If the expression is nearly zero, even a 
very small numerical error can change its sign. 

The outcome of the third, intersection-order test above 
depends on the sign of a 4th-degree polynomial 3 in the 
vertex coordinates. If the coordinates are N-bit integers 
(in the range [-2N, 2N]), registers of 4N + 3 bits suffice 
to compute the value of this polynomial exactly. For 
CAD/CAM applications, N = 20 (one part per million 
accuracy) and thus at least 83 bit arithmetic is needed. 
Since the exact arithmetic of this precision is usually not  
available (in hardware), it is necessary to use rounded 
arithmetic to achieve practical efficiency. 

We see, even for the simplest example, that a 4-fold 
inflation in precision is required in order to avoid 
rounding. Naturally, for more complex domains involving 
curves, planes in 3D, or curved surfaces, much more 
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precision is needed. If we do not sacrifice efficiency, we 
must allow rounding, and therefore we need robust 
geometry. The next three sections will describe the types 
of problem that robust geometry must address. 

Unexpected singularities 

A singularity occurs when the sign of an arithmetic 
expression is zero. The singularity manifests itself as an 
unexpected coincidence. For example, a zero value for 
the intersection-order test above implies that three 
segments are coincident at a single point. Other singular 
cases are overlapping line segments (segments which 
intersect in a segment instead of in a point), vertices with 
equal x or y coordinates, and parallel line segments. If 
there are no singularities, the set of segments is simple or 
in general position. A common source of unreliability in 
geometric programs is an unexpected singularity, a 
singular case for which the algorithm has no logic. 

In general, published algorithms assume simplicity 
because there exist, in principle, general techniques for 
transforming these algorithms into ones which do 
correctly treat singularities. These techniques, called the 
simulation of simplicity 4 or symbolic perturbation 5'6, 
remove these special cases by symbolically perturbing the 
input. These perturbation techniques cannot be applied 
in the case of rounded arithmetic. This is not a great loss, 
because this investigator has not found the technique to 
be particularly practical. The expansion of the 4th-degree 
polynomial for the intersection-order test has 1152 terms 
for the perturbed input, and we must treat this polynomial 
differently, depending on the order in which the vertices 
A, B, C, D, E, F are given to the algorithm, for which 
there are 720 possibilities. It is not clear how to overcome 
the combinatorial complexities of the technique. Further, 
it is usually unreasonable to remove singularities, because 
they are a meaningful aspect of geometric models. Any 
sort of physical contact or common boundary implies a 
singularity in the model. Thus, robust algorithms must 
include a methodical treatment of singular cases. For the 
algorithms listed further below in the second section, the 
treatment is not particularly difficult. The fifth section of 
the paper shows how singular cases for the domain of 
polygonal regions should be treated. 

Gross infeasibility 

The combinatorial structure or order type of a set of 
geometric objects is the collection of properties that 
depends only on the signs of arithmetic expressions of 
the coordinates of the objects. For example, the fact that 
three lines are coincident at a single point is part of their 
combinatorial structure. The values of the angles they 
form is not. A combinatorial structure is feasible if there 
exists some set of values for the coordinates which give 
rise to that structure. 

The structure generated by a set of lines must be 
pseudolinear (no two lines intersect more than once) and 
planar (lines cannot cross without a represented point of 
intersection). A nonpseudolinear or nonplanar structure 
is clearly infeasible. We refer to these two types of 
infeasibility as gross, because they can be detected by a 
polynomial-time test. 

Figure 1 shows a grossly infeasible structure which 
might arise from a single incorrect intersection-order test. 
Vertex I12 lies before 113 and after 114 along the line 
segment A1B 1. This creates a duplicate 112 as shown, 
and allows A1B 1 and A2B 2 to cross without an 
intersection. Tracing out the boundary of the quadrilateral 
A3 A4124123 generates the following sequence of segments: 
A3, A4, 124, 123,113,114 (9, B4, B3,123,124, 114, 113, and 
(finally) back to A 3. If we think of segments A1B1 and 
A2B 2 as straight-line cuts through region A3A4B4B3, the 
nonpseudolinearity and nonplanarity lead to the erroneous 
conclusion that two cuts have failed to separate the region 
into more than one piece. The program may crash, and 
it certainly fails to model reality. 

Avoiding gross infeasibility is a major goal of robust 
geometry. The general principle in all work to date has 
been the maintenance of consistency. If a relationship can 
be deduced from previous calculations, it should be. Once 
we have calculated that 112 lies to the left of 113, we can 
deduce that it must also lie to the left 0fi14, and therefore 
we should not perform a computation that might generate 
a result that is inconsistent with this deduction. This 
technique has the limitation that it can only tractably 
avoid gross infeasibilities, ones which can be detected in 
polynomial time. The next section considers other types 
of infeasibility. 

Subtle infeasibility 

Figure 2 shows a pseudolinear and planar structure which 
is, nonetheless, infeasible for the domain of lines because 

B 3 - _ B 4 

 ,23 \ 
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1 L - - ~ :  - _ ~ - -  - ~ ,  

/ 
A2 ~'~ A3~ ~A, 

Figure 1 Nonplanar and nonpseudolinear structure 

Figure 2 Violation of Pappus theorem 
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it violates Pappus's theorem, a standard theorem of 
projective geometry. (One of the 'lines' is subtly 
curved.) Mnev 7 has shown that determining whether a 
combinatorial structure is generated by some set of lines 
is as hard as solving the existential theory of the reals, 
and it therefore requires exponential time. Thus a 
polynomial-time algorithm will fail to detect some 
infeasible structures, and we refer to these as the subtly 
infeasible structures for this algorithm. 

When we design a robust algorithm, we must show 
that the subtly infeasible structures for that algorithm 
are feasible for some broader domain. For the case of 
lines, we allow the algorithm to implicitly replace each 
line with a simple curve. Assuming that these curves are 
straight enough, the algorithm should be sufficient for 
modelling physical objects, because, after all, there are 
no true straight lines in the physical world. 

such that 
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yi(O) = A~ 

7i(1) = Bi i = 1, 2 . . . . .  n 

Suppose that ~i never strays farther than k# from its 
corresponding line segment AiBi. Then we say that the 
algorithm has a maximum error of log k bits, and a 
guaranteed accuracy of N = B - log k bits. 

We will say that a robust algorithm is accurate if log k 
is a small constant. Typical values for B are 21 (IEEE 
single-precision floating-point) and 53 (double-precision). 
For practical purposes, N/> 20, which implies an 
accuracy of one part per million, is sufficient. Hence, for 
practical purposes, log k ~< 53 - 20 = 23 is sufficient. For 
the robust algorithm given in this paper, log k < 7. 

Inaccuracy 

Actually, it is trivial to describe a perfectly rehable and 
feasible algorithm: generate the null output on all inputs. 
Unfortunately, the null algorithm has 100% inaccuracy. 
Thus it is essential to specify the accuracy of a robust 
algorithm. If the output structure of an algorithm is 
feasible (for some domain), then it is generated by some 
set of inputs I '  which are generally not the same as the 
actual set of inputs I. The accuracy of the algorithm is 
a measure of the similarity of I and I'. Conversely, the 
numerical error of an algorithm is the distance between 
I and I'. 

The measure of error is related to the architecture of 
rounded floating-point arithmetic. A computer provides 
a floating-point representation with a B-bit mantissa. The 
result of each binary operation on two numbers is 
rounded to B bits, thus introducing a maximum relative 
error of e = 2-n  

I(a op b)e - (a op b)l ~< ela op bl 

where op represents any of the four basic arithmetic 
operations, and the subscript B indicates the use of 
rounded B-bit arithmetic. It is usually convenient to 
assume that the constructed object lies in some region 
of radius M about the origin. In this case, we can express 
absolute errors in terms of # = eM. For example, if 
lal, Ibl ~ M, 

I(a + b)B -- (a + b)l ~< 2# 

In the case of intersecting line segments, the input is a 
set of line segments {AIB 1, A2B2 . . . . .  A,B,}. A robust 
intersection algorithm may not generate an output 
structure corresponding to these or any set of line 
segments; instead, it may correspond to a set of simple 
curves 

{~x(t), 72(t),..., ~,.(t)lt ~ [0, 1]} 

Current results 

The author first focused on the task of constructing line 
arrangements: the set of vertices, line segments, and 
polygons generated by a set of lines in the plane. In order 
to attain feasibility, it was necessary to assume that lines 
were very straight simple curves. Why this was necessary 
is explained above. Strictly robust algorithms were 
devised for the construction of arrangements of lines s, 
line segments 9, planes 8, and algebraic curves 1°. With 
Li 11, the author also devised a strictly robust convex-hull 
algorithm for points in 2D. Fortune 12 has also given a 
strictly robust algorithm for constructing convex hulls. 

Hoffman and Hopcroft 13 show how to prove a strong 
form of feasibility for the intersection of no more than 
two polygonal regions. For this construction, the Pappus 
configuration (discussed above) cannot arise, and thus it 
is not necessary to 'bend' the line segments to prove 
feasibility. Hopcroft and Kahn ta do the same for 
intersections of convex polyhedra, another situation in 
which there is no subtle infeasibility. 

A number of algorithms set aside strict accuracy in 
favour of good error bounds in all but pathological cases. 
The author 15 gives such an algorithm for constructing 
unions and intersections of polygonal regions. Segal and 
Sequin 16 give a similar result. Fortune 12 gives a robust 
algorithm for maintaining point-set triangulations which 
has optimal time in all cases, and good error bounds 
in nonpathological cases. Fortune and the author 17 
give optimal running-time algorithms for constructing 
arrangements of lines, and prove an error bound linear 
in the number of input lines. 

Some algorithms are based on a notion of consis tency 
instead of feasibility. Karasick 18 gives an algorithm for 
computing set operations on polyhedral objects, and 
Sugihara and Iri t9 show how to compute Voronoi 
diagrams using rounded arithmetic. More recently, 
Fortune and Van Wyk 2° have contributed to the 
research. 
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Guibas, Stolfi, and Salesin 21 and Segal and Sequin 22 
have given techniques for automating error analysis. 
These guarantee robustness, but it is difficult to prove 
good error bounds, even in typical cases. 

Finally, Karasick, Lieber and Nackman 23 demonstrate 
an exact arithmetic technique that uses only as much 
precision as is needed. They show that, for the task of 
constructing Delaunay triangulations, the average cost 
of using exact arithmetic can be much smaller than in 
the worst case. 

N U M E R I C A L  O P E R A T I O N S  O N  S E G M E N T S  

This section describes a number of low-level operations 
on line segments in the plane. The first two operations 
act on points and line segments: measuring the distance 
from a point to a line segment and classifying the point 
with respect to the line segment as lying above, on, or 
below the segment. The remaining operations determine 
the intersection of a line segment with different types of 
object: horizontal or vertical line segments (parallel to 
the x or y axis), axis-parallel rectangles (see below), and 
other line segments. For each operation, we indicate 
explicit error bounds. The error analyses are given in 
Appendix A. 

Point-segment distance and classification 

This section gives a definition for the bounding rectangle 
of a line segment AB and the classification of a point C 
with respect to a line segment All. These definitions are 
followed by algorithms for computing the distance from 
C to AB and classifying C with respect to AB. 

Definitions 

Definition 1: An axis-parallel rectangle is a rectangle 
whose sides are aligned with the coordinate axes. Let AB 
be a line segment in the plane (with floating-point 
endpoints). Define R(AB), the bounding rectangle of AB, 
to be the axis-parallel rectangle which has AB as one of 
its diagonals. In interval notation, 

R(AB) = [A~, B j  x lAy, By] 

Definition 2 (classification: above, below, on): If AB is a 
nonvertical line segment (A~ # B~), and if C is any point 
such that C~ e [A~, B~], then C has a classification with 
respect to AB: above, below or on. Let P be the point of 
AB such that P~ = Cx. 

. . ab°ve  f!t Point C lies ~below~AB if and only if Cy Pr 

k o n )  

Algorithm 1 (distance from point to line segment) 

Input: Point C and line segment AB. 

Precondition." C e R(AB). It is possible to compute the 
distance when C is outside the bounding rectangle, but 
this is never required for the algorithms in this paper. 

Output." The signed distance 5(C, AB) from C to AB. 

Algorithm." 

5(C, AB) - 
circ(A, B, C) 

IB - AI 

where 

circ(A, B, C) = (A - C) x (B - C) 

= ( A  x - C x ) ( B r  - C y )  

- ( A ~  - C , ) ( B ~  - C x )  

This quantity is called the circulation of A, B and C. 
There are other ways to calculate the circulation, but this 
is the most accurate. 

Error bounds: If we assume that all reasoning occurs 
inside some bounding square I - M ,  M] × l--M, M], 
where M is the maximum magnitude of any coordinate, 
then the error in calculating 5(C, All) using B-bit 
arithmetic is bounded by ct = 6(21/2)eM, where e = 2 -B. 
In other words, 

IS(C, AB)n - 5(C, AB)I ~< 0~ 

where &(C, AB)a is the value of/i(C, AB) calculated using 
B-bit arithmetic. The proofs of this and all the other error 
bounds in the third section are given in Appendix A. 

The ultimate error bound on the robust polygon union 
Algorithms 14 and 15 in the fifth section is llct. This is 
the small multiple fl of the rounding unit # discussed in 
the abstract of this paper. Since log 2 11.6(21/2) < 7, the 
ultimate error is about 7 bit. 

Algorithm 2 (classification algorithm) 

Input." Point C and line segment AB. 

Precondition." min(Ax, B~) ~< Cx ~< max(Ax, B~). 

Output." Classification of C with respect to AB. 

Algorithm: If C lies in the bounding r e c t a a ~  of All, then 
the classification of C depends on the sign of 6(C, All) 
(which is the same as the sign of circ(A, B, C)). However, 
if rounded arithmetic is used to compute &(C, All), the 
classification is ambiguous when Jr(C, All)l ~ =. The 
following algorithm is based on the assumption that 
A x < Bx. If A, > B=, the sign of 6(C, All) is reversed. 
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/* special cases */ 
if C = A or C = B then return on 
if Ay = By = Cy then return on 
if Cy >1 max(Ap By) then return above 
if Cy ~< min(Ay, By) then return below 

/* C e R(AB) */ 
if 16(C, AB)nI ~< ct (alternatively Icirc(A, B, C)al ~< ~IA - BI) 
then Print("Warning: answer is ambiguous.") 
if circ(A, B, C)s = 0 then return on 
if sgn(B~ - A~)circ(A, B, C)a > 0 then return above 
if sgn(Bx - A~)circ(A, B, C)e < 0 then return below 

Error bounds: Since this algorithm takes into account the 
error bounds for the distance computation, it correctly 
emits an 'ambiguous' warning when the classification is 
uncertain. 

Intersections 

This section describes how to compute the intersection 
of a line segment AB with a variety of geometric objects. 
If these computations are performed using rounded 
arithmetic, they are inaccurate. We establish bounds on 
the error. We know a priori that the actual intersection 
of AB with any object must lie in the bounding rectangle 
R(AB). The intersection algorithms of this section are 
designed to assure that the approximate intersection also 
satisfies this property. This property is essential for 
establishing the correctness of the higher-level algorithms 
in the fourth and fifth sections. 

Algorithm 3 (intersection with horizontal or vertical line) 

Input: Line segment AB, and horizontal line y = c or a 
vertical line x = c. 

Precondition: Line intersects bounding box R(AB). 

Output: Intersection point (X,  Y). 

Algorithm: For  a horizontal line y = c ,  ce[Ay,  By], 
compute 

BX o AX 
X = A~ + - - - - - -7- (c  - Ay) 

- A y B y  
Y = c  

(A vertical line is analogous.) If Xa (X calculated using 
B-bit arithmetic) lies outside the interval [A~, Bx], then 
move it to the nearest endpoint. 

Error bounds: Clearly, (XB, YB~ lies on the line Y = c. 
Also, 16(<X~, Ye>, AB)I < 20c 

Algorithm 4 (intersection with horizontal or vertical line 
segment) 

Input: Line segments AB and CD, where CD is horizontal 
(Cy = Dy) or vertical (C~ = D~). 

Precondition: Segment CD must intersect the bounding 
box R(AB) (C and D may or may not lie inside the box). 
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Output: Intersection I of CD with AB or the nearest 
endpoint of CD to AB if they do not intersect. 

Algorithm: Using Algorithm 3, compute the intersection 
of AB with the line y = Cy (if Cy = Dy) or with the line 
x = Cx (if Cx = D~). If the resulting point does not lie on 
segment CD, move it to the nearest endpoint. Call the 
resulting point I (In when calculated using rounded 
arithmetic). 

Error bounds: If I is not C or D, then [6(la, AB)I ~< 2~c If 
I equals C or D, then either 6(1 e,AB)I ~< 2~ and I 
maximizes 6(P, AB) for P e CD, or 6(In, AB)I t> - 2 ~  and 
I minimizes 6(P, AB) for P ~ C D .  These error bounds 
follows directly from those of the previous section. 

Algorithm 5 (intersection with an axis-parallel rectangle) 

Input: R, an axis-parallel rectangle I-X 1, X2] x [}'1, Y2] 
where X 1 < X2 and Y1 < }'2. This rectangle has vertices 

Pij = ( X i ,  Yj) i -- 1, 2; j = 1, 2 

For  simplicity, we treat only the case in which A x < B x 
and A r < By. The other case (Ay > By) is analogous. 

Precondition: R _ R(AB). 

Output: An entry point I~P11P12 w Pl lP21 and an exit 
point O ~ P~2P22 w P21P22. If there is no intersection, 
then output I = O, and both are equal to the point of R 
that is closest to AB. 

Algorithm: 

set I equal to the intersection of AB with the line y = }'1 
if I x > X2 then set I = O = P21 

else if Ix < XI then 
set I equal to the intersection of AB with the line x = XI 
if Iy > Y2 then set I = O = P t 2  

else ifly < }'1 then set I = P11 
if O has been calculated then return 

set O equal to the intersection of AB with the line y = Y2 
if Ox < X1 then set I = O = P12 

else if Ox > X2 then 
set O equal to the intersection of AB with the line x = X2 
if Oy < Y1 then set I = O = P21 

else if Or > }'2 then set I = P22 

Error bounds: If I ~ O, then 

I~(I, AB)I, 16(O, AB)I ~< 2~ 

If I = O, then both equal either P12 or P2t. If they equal 
P12, then 6(P12, AB) ~< 2~ and P12 maximizes bOP, All) 
for P e R .  If they equal P21, then 6(P2t, All) >I - 2 r ,  and 
P21 minimizes 3(P, All) for P e R .  These error bounds 
follow directly from those of the previous section. 

Algorithm 6 (intersection with line segment) 

Input: Line segments AB and CD. 
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Precondition." AB and CD intersect. (At the end of this 
section, one way of proving this precondition is given.) 

Algorithm." Compute t by solving the linear equation 

t ( B - A )  x ( D - C ) - ( C - A ) x ( D - C ) = O  

Set I = A + t(B - A). The value of I computed using 
rounded arithmetic is called In. If In lies outside 
R(AB) m R(CD), move it to the nearest point on the 
boundary of R(AB) c~ R(CD). 

Error bounds." If(In, AB)I < 6~ and tr(In, CD)I < 9~t. 

This procedure depends on our a priori knowledge that 
segments AB and CD and actually intersect. One way in 
which we might know this is if the points A, B, C and 
D happen to lie on the boundary of some axis-parallel 
rectangle in a particular order. If, for example, we walk 
around the rectangle and encounter these points in the 
order A, C, B, D, then we know that the segments must 
intersect. Testing the order can be done by performing 
comparisons on the x and y coordinates of the points. 
These comparisons are not subject to round-off error. 
This technique is used further below. 

M A S C  S E G M E N T S  

To perform operations on polygons it is necessary to 
calculate intersections among a set of line segments. 
However, because of problems of reliability in floating- 
point, we cannot do this directly. Instead, we replace each 
input line segment with a close approximation called a 
MASC segment. This section defines MASC segments, and 
gives an algorithm for computing all the intersections 
among a set of MASC segments. This algorithm is an 
integral part of the robust polygon intersection algorithm 
in the fifth section. 

The following section defines MASC segments. The first 
part of the section gives a high-level description of 
Algorithm 7 for computing intersections of MASC segments. 
The second and third parts of the sections provide the 
working parts of the algorithm: updating MASC segments, 
detecting intersections, and computing potential inter- 
section points. 

Definition 

Instead of working with line segments, we will work with 
MAsc (Monotonic Adaptive Straight Curve) segments. 
Like all good acronyms, MASC is descriptive of the nature 
of MASCS (or masks), namely, they hide details from our 
view. For each MASC, we know certain combinatorial 
information, but we can never see the curve itself unless 
we use exact arithmetic to calculate it. Strictly speaking, 
the following defines a MASC seament with accuracy ft. As 
shown below, fl = l l~t is the accuracy that can be 

maintained when intersecting MASC segments (see further 
above for the definition of ~). Specifically, 11~ is the sum 
of the error 2c~ arising from the intersection of a line 
segment with a rectangle, and the error 9c~ arising from 
the intersection of a line segment with another segment. 

Definition 3 (MASC seoment): A MASC consists of five parts: 

• a line segment basis c ° r i g c  dest, 
• endpoints D °rig, D dest E R(C°rigcdest), 

• a set A of sites (distinguished points in the 
plane), called the above set, such that VA~A, 
D°rig x < A x < DdeStx, 

• a set B of sites, called the below set, such that VB ~ B, 
D°rig  x < B x < DdeStx, 

• a continuous monotonic (increasing or decreasing) 
function f(x): 

f :  [D°rigx, DdeStx] ~ [D°rigy, DdeSty] 

The curve part of a MASC, 7 ( x ) = / , x , f ( x ) )  for x~ 
[D°rigx, DdeStx] , is defined to have certain properties: 

• It joins D °rig to Dde*t: f(D°rig~)= D°rigy and 
f(Dd==tx) = Dainty. 

• It lies below its above set A: VA e A, f(Ax) < A r 
• It lies above its below set B, VB e B, f(B~) > By. 
• It lies within fl of line segment c°rigc dest, 

Vx E [D°rigx, Da=Stx]: I6((x, f (x)) ,  c°rigcd©stl < fl 

(This is what is meant by a straioht curve.) Two degenerate 
cases are permitted in which D°'igDaest is a horizontal or 
vertical line segment (parallel to the x or y axis). 

A MASC has certain properties; for example, as Fiflure 3 
shows, if f (x)  is an increasing function and if A ~ above 
set, then every point of (x, f (x))  is excluded from the 
set {(x,y)[x ~< A~ and y/> Ay} (crosshatched area). 
Observations such as these are summed up in Lemma 1. 

Lemma l: Let (C°'isC de=t, D °rig, D d"t, A, B, f )  be a MAsc 
segment. 

• Monotonicity." If f (x)  is 

increasing 

decreasing) 

C ~ 

Figure 3 Properties of MASC segment 
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then VA~A and VBeB and the following three 
conditions hold: 

O Ay > min(Dorisy, Ddesty), 
O By < max(D°risy, Ddesty), 
o either Ay > By or 

Bx Ax > 

• Accuracy: The following three bounds hold: 

o VA e A: 6(A, c°rigc dest) > - -  fl, 
o VIi ~ B: 6(B, c°rigc dear) < fl, 
O I¢~(D °rig, c°riscdest)l, I~(D dest, c°riscdest)l < ft. 

The proof of this lemma and the other lemmas and 
theorems of this section are given in Appendix B. 

Now we note that the conclusions of Lemma 1, the 
properties we call monotonicity and accuracy, are 
properties of A, B, corisc dest, D °ris and D dest, but not f ( x )  
explicitly. These properties are a necessary consequence 
of the existence of f. The following theorem shows that 
these properties are sufficient to ensure that f exists. We 
call this the hidden-variable theorem, because it shows 
that certain observable properties, the monotonicity and 
accuracy of A, B, c°rigc dest, D °rig and D d©st, imply the 
existence of an unobservable quantity, the shape of f. 

Theorem 1 (first hidden-variable theorem): If A, B, 
C°~isC d¢~t, D °~8 and D d°'t satisfy the conclusions of 
Lemma 1, there exists a monotonic function f ( x )  such 
that (c°r igc  dest, D °ris, D dest, A, B, f )  is a MASC. 

Theorem 1 also expresses what is mean by f being 
adaptive: whenever the combinatorial information satisfies 
a few simple rules, a function f exists. If we add another 
site to the above set or below set, the function f can 
change shape to accommodate the new site. The proofs 
of this and all the other theorems of the fourth section 
are given in Appendix B. 

Algorithm 7 (intersection algorithm) 

Our robust intersection algorithm for a set of line 
segments consists of two parts. First, we convert the line 
segments into MASC segments. Then, we compute the 
intersections along these MASC segments. 

Converting 
Let us suppose that we have a list of line segments 

corig/'~dest t'~origt"~ dest ( [ " o r i s ( [ ~  d e s t  

Put all the endpoints into a universe of sites U = [C.°rig 
• d e s t ' -  - - -  C: [z = 1, 2 , . . . ,  n}_ For i = 1, 2 . . . .  , n, tO create a MASC 
segment g'c°riscdest rll°ris D dest, D~ ris \--i --i ' --i , Ai, Bi, fi) ,  set and 

C °ris and C~ "t, respectively. Initialize A~ D d',t equal to - i  
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and Bi to ~ .  Step through the sites P ~ U sequentially. 
IfD°ris~ < Px < Diaestx, add P to A i or Bi using the update 
Algorithm 8 further below. 

Computing intersections 
An effective procedure for determining whether two 
MASCS yy = (X, f ( x ) )  and 7g = (x, g(x)) intersect is given 
further below. One simply runs through the current 
universe of sites looking for sites P and Q such that P 
is evidence that f(Px) > g(Px) and Q ~ U is evidence that 
f(Qx) < g(Q~). Of course, if one does this search naively, 
it costs n ( n -  1)IUI(IUI- 1)/4, since we have to look at 
all the pairs of segments and all the pairs of points in U. 
However, we expect that, apart from rare pathological 
cases, one could find all the intersections by a sweepline 
algorithm using O(n log n + k log n) time, where k is the 
number of intersect points. The pathological cases may 
increase the running time, but they do not spoil the 
correctness of the algorithm. Deciding on the most 
efficient intersection algorithm* is beyond the scope of 
this paper. 

Each time we uncover evidence of an intersection 
between curves yy and ~9, Algorithms 11-13 further below 
provide an approximate intersection point I "ppr°x. We 
first attempt to split 7y and yg at I "ppr°x using the algorithm 
given below. If some already existing site pblock prevents 
either curve from being split at I =vp~°x, we throw away 
I app~°x and split that curve at pblo=k. In this way, we always 
make progress: either we split both curves at a new site 
pppro~, or we split one curve at a previously existing site 
withoUt increasing the number of sites. If we successfully 
split both curves at ppp~o~, then we add ppp~o~ to U and 
update all the above sets or below sets accordingly using 
Algorithm 8 below. 

Termination 
A MASC segment is nearly a straight line segment. 
Nominally, two MASC segments intersect at most once. 
In pathological cases in which many segments are nearly 
parallel, it may happen that two MASC segments intersect 
more than once. In any case, each time we attempt to 
compute the intersection of two segments, either we 
successfully split both segments, or we split one of the 
segments at an already existing site. Thus the number of 
splits is bounded by nk, and thus the algorithm terminates. 
Except in pathological cases, the number of splits should 
be in O(k) 

Correctness 
In the output, each input MASC segment 7 has been split 
at each point at which it intersects some other MASC 
segment. Thus, the curve is split into a sequence of curves 
~1, ~2 . . . . .  7,,. As shown in Fioure 4, each of these is a 
monotonic curve or a horizontal or vertical line segment. 
These curves all stay within 11~ of the original segment 

* Another possibility is bucketing of regions of the plane. 
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llcx 

C"~ 

Figure 4 Result of intersection algorithm 

c°rigcdest, and therefore they are MASC segments with an 
accuracy o f / / =  l lg.  

It is not possible using rounded arithmetic to convert 
each MASC segment back into a sequence of straight line 
segments. However, for the purposes of graphical display, 
the calculation of area, or some other type of calculation, 
the line segment D°riSD d-st is a good approximation to 
a MASC segment ( Coriscdest, --irj°ris, O f  est, Af,  B f, f ) .  Since 
Doris I-}.dest and the MASC segment all stay within 11~< of 

I ' ~I ' 

the line segment corigc dest, the line segment D°'~SD d~'t 
therefore stays within 22e of the MASC segment. 

If we choose to use explicit updating and splitting 
Algorithm 10 below, we can explicitly calculate the shapes 
of the MASC segments. However, the output of the explicit 
version is not necessarily accurate, because it allows 
segments to drift farther than l le from their original 
positions; in fact, the accuracy bound/? may grow with 
the number of input curves. 

UpdIt iRg alld spHtti~lg MASC segments 

A MASC segment is shaped only by the sites in its above 
and below sets. It changes its shape (adapts) as new sites 
are added to these sets, if these new sites satisfy the 
premises of the first hidden-variable theorem. Sometimes, 
these premises, monotonicity and accuracy, constrain our 
actions, and prevent us from adding a site to either the 
above or below set. This section gives algorithms for 
updating MASC segments which maintain the validity of 
the above and below sets. The update algorithm in the 
next section describes how a MASC segment adapts to a 
new site, assuming that we have the freedom to put the 
new site into either the above or the below set. Sometimes, 
we do not have this freedom. In particular, if I is an 
intersection point that we have calculated for two MASC 
segments, we desire to split each of these segments at the 
point I. Splitting a MASC involves partitioning the 
above and below sets, each into two parts. A complete 
Algorithm 9 for splitting is given below. 

If we prefer that our MASC segments be explicit, true 
line segments, we can perform operations called explicit 
updating and explicit splitting. These operations are not 
strictly robust, in the sense that they do not have the 
accuracy bounds that the implicit version does. The 
explicit operations are given below. 

Algorithm 8 (updating the above and below sets) 
This section describes a set of rules which can be used 
to update MASC segments correctly. These rules are for 
the case of an increasing MASC segment. The decreasing 
case is the same, except that comparisons of y coordinates 
are reversed. 

Let (c°rigcdest, D °ris, D dest, A, B, f )  be a MASC, and 
let P be a point such that DOris x < Px < DdeStx. 

Rule 1: If 3AeA such that P~ ~< A~ and Py f> Ay (see 
Figure 5), then P must be added to the above set A. 

Rule 2: If 3B ~ B such that P~ t> B x and Pr < By, then P 
must be added to the below set B. 

Rule 3: Otherwise, if we can show that 6(P, C°'igCa¢*t) > 
-11~,  we may add P to A, if we choose. Similarly, if we 
can show that cS(P, C°'igC a¢~t) < 11~, we may add P to B. 

In general, if Rules 1 or 2 do not hoM, we use the 
classification Algorithm 2 to classify P with respect to 
c°rigc rest using rounded arithmetic. This algorithm 
can return an incorrect classification only when 43(P, 
c°rigcdest)[ < 0~, which is well within the llce of Rule 3. 

Definition 4: Let U be a set of sites in the plane. A MASC 
segment (c°risc dcst, D °ris, D dest, A, B, f )  is adapted to U if 

A u B L) {C °rig, C dest, D °ris, D dest} ~ U 

and 

A u B = {P ~ UID°"S x < Px < DdeStx} 

In our algorithm, all MASC segments are adapted to the 
same universe U of sites, and, therefore, every time we 
create a new site, we must update each segment with 
respect to that site. 

Algorithm 9 (splitting) 
Let <c°rigc dest, D °ris, D dest, A, B, f )  be a MASC segment. 
The detection of when this segment intersects some other 
segment, and an algorithm for computing an approximate 
point of intersection, are given below. This intersection 
point I is guaranteed to lie in the rectangle R(D °ris, Ddest), 
and it lies within 1 la of C°'isC de't, 16(I, C°"*Ca")I < 11~. 
This section gives an algorithm for splitting the MASC 
segment ?(x) = (x, f (x))  at the point I. Nominally, this 
is a simple task; however, sometimes it is not possible to 
split 7 at I. In this case, we split ~, at some already existing 
site in U. As in the previous section, we consider only 
the case in which f is an increasing function of x. As 

Figure 5 

o > j - -  
Rule 1: forced to put P in above set 
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before, the decreasing case is the same, except that 
comparisons of y coordinates are reversed. 

Nominal case: Splitting is very similar to updating, as 
described in the previous section, and we start by 
updating ~ with I. If Rules 1 and 2 do not force us to 
put I in A or B, then we simply replace (c°rigc dest, D°ris, 
D dest, A, B, f )  by (c°rigcdest, D~ rig, Ddl est, A1, B1, f l )  
and (c° r igc  dest, D~ rig, D d©st, A2, B2, f2) ,  where 

D~ rig = Doris 

D~ rig = I 

D d~,~ = I 

Dd©st 

A I =  

A 2 = 

B 1 = 

B 2 = 

= D dest 

{AeAlD~rlg~ < A~ < Ddlestx} 

{A ~ AID~is~ < Ax < Dd©Stx} 

{B E BlD~rigx < B x < D~=*t~} 
{B E BID;"~ < B= < DdeStx} 

Note that Yl = (x, f l (x))  and ~2 = (x, f2(x)) are still 
approximations to (subsegments of) segment c ° r i g c d e s t .  

It can happen that, after performing a nominal split, 
Dorigr~dest nerigl~dest ends up being parallel to the x 1 *~'1 o r  L,, 2 L,, 2 
or y axis. For this reason, the definition of a MASC segment 
(Definition 3) permitted horizontal or vertical line 
segments as degenerate cases. 

The following two cases are the nonnominal cases. 

Special Case 1: If Rule 1 applies to the point I, then it 
is not possible for ~ to adapt itself to pass through I. We 
say that the site A e A whose existence is implied by Rule 
1 blocks I from splitting ~. Of course, A might not be the 
only site which blocks I. We choose the site Abl°ek6A 
that blocks I from splitting V and that has the largest 
x coordinate Abt°~k~. If more than one site has the same x 
coordinate, then choose the one with the minimum 
y coordinate. 

Special Case 2: In an analogous fashion, if Rule 2 applies, 
we say that the site B E B whose existence is implied by 
this rule blocks I. We choose the site B bl°ek ~ B that blocks 
I and that has the smallest x coordinate Bb~°¢k~. If more 
than one site has the same x coordinate, then choose the 
one with the maximum y coordinate. 

If either of the special cases apply, we cannot split f at 
I, but we can split it at A bl°ek or B bl°ck, whichever the 
case may be, and this is what we do. 

Lemma 2: If Special Case 1 holds, splitting f at A bl°¢k 
generates two valid MASC segments. Similarly, if Special 
Case 2 holds, splitting f at B bl°¢k generates two valid 
MASC segments. 

Algorithm 10 (explicit updating and splitting) 
This section gives explicit versions of the updating and 
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splitting operations described in the previous two 
sections. These explicit versions have poorer accuracy 
bounds than the implicit versions, but they are useful if 
it is necessary to have explicit representations for the 
segments. 

We first describe explicit splitting. This is the same as 
implicit splitting, with the following change. When we 
split a MASC segment (c° r igc  dest, D °rig, D dest, A, B, f )  
into two, we also split the basis segment c ° r i g c  dest. Thus 
the output consists of two MASC segments, ("°rigl"~dest I'~°rig ~'I ~'1 ,L'I 

DdeSt, At, Bx, f l )  and \~'..'2/K'~°rig/"Idest~'-'2 , D'~ rig, Ddest, A2, B2, 
f2), where D~ rig, D dest, A1, B1, n ~  rig, n dest, A 2 and B 2 
are computed as before, and C] ris = D~ rig, C~ rig = D~ ~ig, 
Cdest = D d=~t and cd**t = O dest. 

Explicit updating is a modification of implicit updating. 
If we have a point P that does not satisfy Rules 1 or 2, 
and if IJ(P, c°r~gcd=~t)nl ~< ~ (the subscript B implies the 
use of B-bit rounded arithmetic), we explicitly split the 
MASC segment which we are updating at the site P. 

If we use explicit operations in all cases, then each 
MASC segment (c° r igc  dest, D °rig, D dest, A, B, f )  is explicitly 
equal to its basis line segment c ° r i g c  dest. 

Computing intersections 

This section gives algorithms for effectively detecting 
the fact that two MASC segments intersect, and for 
approximately calculating this point of intersection. A 
second hidden-variable theorem is given below that 
shows that we can effectively detect when two MASC 
segments intersect using only set operations on their 
above and below sets, and comparisons of coordinates 
(which are not subject to round-off error). However, we 
cannot, without incurring round-off error, explicitly 
calculate the exact intersection point I exact. Instead, we 
must settle for an approximate intersection point I "ppr°'. 
This point lies within the bounding rectangles of both 
curves, and it lies within 11~ of the basis segments of the 
curves (see Definition 3). Algorithms for computing I approx 
in all cases are given below. 

Evidence 
By looking at the above sets and below sets of MASC 
segments, we can learn some information about how their 
shapes are related. This section shows how to determine 
whether two MASC segments intersect. 

L,~t / f'~orig/",dest ' (/~'~orig~'~.dest ~,t k~. , f  ~...f , D T l g ,  r~dest A ~.f , ~ f ,  Bf, f )  a n d , _ g  _g , 
Dorig  ] ')dest Ag, Bg, [~ be MASC segments such that g , - - g  , 

• D d e s  t ~ (l~orig r}dest (D~r'g~, f x !  ("3 , _ _  g x '  - -  g xy ~ f~J 

Definition 5 (evidence): Let P ~ U be a site such that 

Px E (D~riSx, Ddestf xY't f~ "--g(D°rigx' --gndest x/~ 

If P ~ Af and if P ~ B v then we say that P is evidence that 
f(Px) < g(Px). I f  D~rig  x ~ [D~-rigx, Ddestf x..I-I ~ LUgl'D°rigx' ugl~deStx.i "] 
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and 

fA'} DT'g~ B~ 

o r  

(o r, .or,,__, 

then D~ 't~ is evidence that 

f(D~rig~){ > }g(DTig~) 

and similarly for D~ ©st. 

Lemma 3." If P ~ U is evidence that f(P~) > g(P~), and if 
Q e U is evidence that f(Q~) < #(Q~), the curves ~f(x) = 
(x, f(x)) and 7o(x)= (x, g(x)~ must intersect at some 
point I such that Ixe(D~rigx, l 'xdest X r~/ l 'xori8 ][~dest ] 

a,, ,  f x !  ~ ~ q,=J g x ,  - -  g x,," 

Proof." This is a fundamental property of continuous 
functions. [] 

Lemma 3 gives a testable condition that suffices to show 
that two MASC segments intersect. Theorem 2 shows that 
the condition is also necessary. 

Theorem 2 (second hidden-variable theorem): If yf(x) and 
y0(x) intersect in their interiors, in the range x ~(D~t~, 
D~eStx) ~ ",--g(D°ri'x, --@l'~deStx,, ~ then there exist sites P, Q e u 
that are evidence that f(P~) > g(P~) and f(Q~) < g(Q~). 

Algorithm 11 (competing intersections: opposite slope sign) 
This section describes how to compute an approximate 
intersection I "pr~°" for two MASC segments ~f /t-,ortll-,dest = N,,.~f ,L.f , 

• = (('~orig('~dest r~orig ]['~dest D~ ns, D~ est, A f, Bf, f )  and 7g - - o  -g  , --~ , --9 , 
Ag, Bq, g) such that f is increasing and g is decreasing. 
Obviously the same algorithm will work if f is decreasing 
and g is increasing. The following section treats the cases 
in which both are increasing or both decreasing. 

The second hidden-variable theorem tells us that, if two 
MASC segments intersect, there must be sites P, Q ~ U that 
are evidence that f(Px) < g(Px) and f(Q~) > o(Q~). Since 
f is increasing, and 0 is decreasing, they can have at most 
one intersection. Therefore, D 7  ig and D~ "t  lie on opposite 
side of the MASC segment 7o and vice versa. We can assume 
that P and Q are endpoints of the two MASC segments, 
in particular, P ~ {D~ ~i~, D°ri*g0 , and Q e {D~ ~'t, D0d"t}. 

Let R = R(D~rtsD~ "t) ~ Rtl~orilgl~d¢$t~ The intersection 
lies somewhere within this rectangle R. Using Algorithm 
5, we compute the intersections I f  and Of  of line segment 
CO~i~¢,d,t with rectangle R. Similarly, we compute the f - - , f  
intersections I~ and O0 of line segment _~c°rt'c ~¢'t_o with 
rectangle R. 

Claim 1: If If :f: Of, then 

I~(If, -.,fporigt"~destll-.-.f 11, 16(Of, ,,~ft"~oriit"~dest'tll.,f 11 ~ 2 g  

If If = O f ,  then 

t~origc~dest)l 16(I s, l..f .,~f 1, Ice(Of, c~r'gc~est)l < lls 

Analogous bounds hold for I o and Og. 

Proof." The first bound is proved further above. The 
second case only occurs when the segment c)rigc) "t fails 
to intersect rectangle R. In this case, I f  and O I are set 

Foriglf'~dest equal to the point of R closest to ,~f ,~f . However, we 
know that ~y(X)= (x, f(x)) and 79(x)= (x, g(x)) inter- 
sect inside R at some point I . . . .  t. Since I =xaCt lies on 
~f, it lies within l l s  ,,r r'origrdest "" "~Y "~f " Therefore, If  and Of  
also lie within 1 l s  ,-¢ ¢'o~isrd*~t 

v a  ~ _ , f  , , _ . f  . [] 

Continuing the algorithm, in order to compute an 
approximate intersection I appr°x between ~)f and yg, 
we temporarily replace 7y with the polygonal path 
D}~glfOfD~ ¢'t, and we replace ?g with the polygonal path 
D°ri~l Cb D ~est Like ~f and 7g, these paths intersect g - g ~ g ~ g  • 

somewhere inside or on the boundary of R, and we know 
from Claim 1 that these polygonal paths stay within 1 l s  
of the corresponding basis segments r, ori=r,d=st and 
C °rigCdest respectively. We will compute the intersection g v g  , 

of these two paths, approximately, and then show that 
this approximate intersection PP~"  is sufficiently accurate. 

Nominal case: In the nominal case, the two paths intersect 
in the interior of R at the intersection of segments If Of 
and IgOg. We can determine that this nominal case holds 
by looking at the positions of If,  Of,  lg and Og along 
the boundary of R. If these two segments form an × 
topologically, we compute their intersection I~ inside the 
rectangle R using Algorithm 6. The nominal case clearly 
holds only if I I ¢ O I and Ig ¢Og.  Therefore, we have 

('~ origl'~ dest'll (~origlf'~dest/i 
16(If, , ,~f x . . f  ]I, 16(Of, ~ f  ~-~f 11, 

]6(Ig, --oc°rigl~dest~[vg li, 1 6 ( O  0, ~gC°rig['~dest]lvg /, ~< 2s 

The intersection section and Appendix A prove the 
bounds 

16(I8, I f  Of)l, 16(In, IgO0)l < 9s 

Combining these bounds, 

16(Ia, ~°rig("destll ~.~f l.~f ]l, [6(IB, c ° r i g c d e s t ' l l  < l l s  

Thus, we can set I appr°x equal to In. 

Special case." We know that the two paths DO'iq O D dcst f f f f 
and otis dest D o loOoD o must intersect on the boundary of R 
In this case, we can find a point I =ppr°x which is common 
to both paths by examining the vertices of the rectangle, 
the vertices of the paths, and at most two horizontal or 
vertical line segments. This can be done using no 
arithmetic operations other than comparisons. Figure 6 
shows an example in which I f  is the vertex common to 
both paths. By the claim above, the point I "~'°~ that we 
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Figure 6 Special case: intersection lies on boundary 

generate in this manner lies within 11~ of segments 
C °rilgt~dest and C~°rigl["~dest 

f ~"~f --ff --O " 

Algorithm 12 (computing intersections: same s l o p e  sign) 
This section describes how to compute an approximate 
intersection epprox for two MASC segments N-..-f/lf'~°rigg'~destl.,f , D~ ~g, 
V ~  est, A f ,  B y ,  f )  and \~O(l[~°rigl["~dcst~g ' --or}°rig, --ffl'~dest' Av B0, g) 
such that both f and g are increasing. Obviously, the 
same algorithm will work if both functions are decreasing. 

As we reasoned in the previous section, if two MASC 
segments intersect, there must be sites P, Q ~ U that are 
evidence that f (P~)<  g(P~) and f ( Q , ) >  g(Qx). In the 
case of two increasing functions, we cannot assume that 
P and Q are endpoints of the MASC segments. However, 

- -  D(Dorigl '~destX t-,, R(l[~origI'}dest'~ and it is true that R(PQ) c .. f JL~f I '  ' ' - x - - O  - -O  . "  

therefore the intersection of ~f and ~g lies in R(PQ). 
As in the previous section, we temporarily replace 7f 

with a polygonal path f r o m  D )  ri~ t o  D~ est. We compute 
the intersection I f  and O f  of line segment ~.~ff~°rigf~dest~..,f . . . . .  ,,vz,,;.th 

the rectangle R(PQ), using the algorithm in the intersection 
section. Then, we replace ~f with the path D ) r i g l f O f D ~  est. 

However, if If.~ = P~ (and thus Is,y >t Py), we replace the 
segment D~iq  I with the path D)"SPlf. Similarly, if 
O$.~ = Q~, we replace OfD~ "t with OfQD~ "t. We denote 
the resulting path by D)ri*(P)IyOy(Q)D~ ¢~t, where the 
parentheses indicate that the points P and Q may or may 
not be vertices of the path. 

Claim 2: Let P' = (P~, Q~) and Q' = (Q~, Py). The path 
D ~ - r i s ( p ) l f O f ( Q ) D ~  e't e n t e r s  R(PQ) through segment PQ' 
and leaves through segment Q'P. It stays with 11~ of 
segment/-~orig/~dest 

-~ f  ,.~f . 

Proof." The claim about entering and leaving are clear 
from the construction. In particular, we add P to the 
path when If lies on segment PP'  instead of segment PQ', 
its nominal location. The previous section showed that 
the distance constraint holds for the -'o*~ r ~ o ~  n r~d,t p, . . . . .  f af'~.F f L r  f . 
We have to show that, when we add P, [6(P, ~.~flf'~°riglf~destXl~...,f 71 < 
1 1~. First, we know that P c  Af (Definition 5), and thus 
6(P, t"~°rig I[~ dest~ • ~f ,~f , /> -- 1 1~ (Lemma 1). We add P to the path 
when I f .~=P~ and If., f>Pr  For fixed x, 6 is a 
monotonic function of y, and thus 

6(p, t "~Orig#" d e s t ' t  corigcdest)  

Similarly, we can show that, when Q is part of the path, 
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Ir(Q, lr °rigl"~ destxI ~.~f '~'f II < llu. By switching the roles of x and 
y, we construct a path o.g dest by D o (P)IoOo(Q)Do that stays 
within 11~ of segment o,is dest C o C o and that enters rectangle 
R(PQ) through segment PP'  and leaves through segment 
Q'Q. The two paths we created must intersect either 
inside or on the outside of rectangle R(PQ), because one 
enters through segment PQ' and leaves through segment 
Q'P, and the other enters through PP'  and leaves through 
segment Q'Q. The construction of point ppprox is as in 
the previous section. [] 

Algorithm 13 (curve-segment intersection) 
We expanded above the notion of MASC segments to 
include horizontal find vertical line segments. Therefore, 
for the sake of completeness, we must consider the 
possibility that one or both of the MASC segments we are 
intersecting may be a horizontal or vertical line segment. 
This section shows how to detect and compute intersections 
in these cases. 

The case in which both are line segments is very simple. 
Let no~i~r~d~,t be a horizontal MASC segment (D)ri~y ~ f  ~ , f  = 

I)origr}dest D~"t,), and let --0 --0 be a vertical MASC segment 
(n °rig = D d~t ~ These two segments intersect if 

~ 0  x ~ g  x J" 

Dorig < D~rigy < ]l-]dest 
g Y u g  y 

and 

Dor ig  I~orig D d e s t  
f x < - - O  x < f x 

Their intersection is the point \__fft/]['}°rigx, D)"gy) " 
The case in which only one MASC is a horizontal or 

vertical line segment is almost as simple. Suppose that 
(jl~origlf'~dest l'~orig l'~dest Af, By, f )  is a true MASC segment, ~.Jf ~.,f  , L  i f  , a J f  , 

I'~ origl~ dest and --9 --g is a horizontal or vertical line segment. 
The line segment intersects the MASC segment if and only 
if orig dest D o ~ (or vice versa). Dg ~ Af and B I 

To compute the intersection, first compute the 
intersection between the line segment ][]jorig][']dest and the u 0 u g  
axis-parallel rectangle R(CO'isC de't) The intersection is a f f • 
line segment PQ. To compute I appr°x, USe Algorithm 6 to 
compute the intersection between segment If'~°rigl"cdcst and • .~f , ~ f  
segment PQ using rounded arithmetic. It is easy to show 
that this segment lies within 11~ of t"'°rillK'~dest '~.., f ~-,f . 

At this point, we have described all the operations 
necessary to implement the MASC-segrnent intersection 
Algorithm 7. 

SET O P E R A T I O N S  O N  P O L Y G O N S  

This section gives a strictly robust algorithm for 
performing set operations on planar regions bounded by 
line segments. As we know, it is not possible to apply 
rounded arithmetic to this problem directly. Therefore, 
we approximate the line segments by MIneS. Fortunately, 
all the tricky numerical calculations involved in performing 
robust calculations on MASCS have been carried out in 
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Figure 7 Union of rectangular and triangular planar regions 

the previous two sections. The algorithm described in 
this section has no numerical operations; it is purely 
symbolic. 

It is easy to apply the operations of the previous section 
to the problem of modelling planar regions. In Figure 7, 
we see a rectangle A1A2AsA 4 and a triangle B1B2B3 . By 
approximating the line segments by MASC segments and 
applying the MASC segment intersection algorithm, we 
obtain the four intersection points I~, 12, I3 and 14. Using 
information generated by the intersection algorithm, 
namely the above sets and below sets of the MASC 
segments, it is possible to determine that the MASC 
segments* I112, I213, I314 and I4I~ should be removed to 
generate the set union of the polygonal regions as shown 
on the right. This section gives an algorithm for 
determining which segments to remove. 

P o l y g o n  definit ions 

This section defines polygons and polygonal regions. 
These can be bounded by any continuous simple curve 
segments, but, for the purposes of this paper, they are 
bounded by MASC segments. We disallow the regions such 
as that on the left of Figure 8, in which two segments 
are intersecting other than at an endpoint. However, we 
do allow regions such as that shown on the right of 
Figure 8, in which vertices have degrees of higher than 
two. 

Definition 6 (graph of segment set): Let M be a set of 
MASC segments adapted to a common universe U of sites 
(Definition 4). Define Graph(M) to be the graph whose 
vertices are the sites in U and whose edges are the 
segments in M. 

Theorem 3: Let M be a set of MASC segments adapted to 
a common universe U of sites. If Graph(M) is the planar 
embedding of a planar graph (meaning that segments in 
M intersect only at their endpoints), and if each vertex 
in Graph(M) has an even degree, then the union of the 
segments in M is the boundary of a closed region of the 
plane. 

Proof." It is a standard result of graph theory that the set 
of faces of an embedding of a planar graph is 2-colourable 

*In the following discussion, we denote MASC segments by their 
er~lpoints. 

if every vertex has an even degree. The union of the set 
of faces with one colour is a region of the plane whose 
boundary is M. [] 

Corollary 1." If M is the boundary of one closed planar 
region, then it is also the boundary of exactly two closed 
regions, one bounded, and the other unbounded. 

Definition 7. A set M of MASC segments is a polygon if it 
satisfies the conditions of Theorem 3. In this case, M is 
the boundary of two polygonal regions, one unbounded, 
and one bounded. 

One can represent a polygonal region by a set P of MASCS 
which bounds it plus a single bit to indicate whether the 
region is bounded or unbounded. 

U n i o n s  o f  bounded polygonal  regions 

Let P and Q be polygons. The following two sections 
give an algorithm for computing the union of the bounded 
polygonal regions defined by P and Q. The algorithm is 
extended to perform any set operation on any two of the 
polygonal regions defined by P and Q. 

Algorithm 14A (comparing MASC segllll~ngS) 
The concept of evidence introduced above allows us to 
determine information about the relative positions of two 
MASC segments merely by examining their above and 
below sets. This fact is formalized in the following 
definitions. 

/corigcdest Definition 8 (comparing MASC segments): Let x f f , 
D~ rig, D~ est, A f, Bf,  f )  and \__gffc°rigcdest__g ' --3D°ri', --.Dd=st, A3, 

B 0, g) be MASC segments adapted to the same universe 
such that 7y = (x, f (x))  and ~3 = (x, g(x)) either have 
disjoint interiors or are identical (they intersect only at 
their endpoints), and such that 

(o)rigx, rtdcst "~ ,-., inorig ll'}dest 
~ f  xJ' ' ~ 3  x,--3 x,=/= 

There are three possibilities: 

• D~ ris = __gD °'is, D~ cs' = __g]nldcst, A I = A 3, and Bf = B 3, 
in which case we say that ~y = 73" 

• 3P e U that is evidence (Definition 5) that f(Px) > 
g(Px), in which case we say that yy > Y3' 

• 3Pc  U that is evidence that f(Px) < g(Px), in which 
case we say that yf < )'3" 

Definition 9: Let P be a polygon with universe U. We 
say a value X is in general position if it does not equal 
the x coordinate of any site in U. For each X in general 

A, A2 A4 A2 
Figure 8 Invalid and valid polygons 
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position, define P(X) to be the set of MASC segments 
( t~orig~dest " A/, B/, f ) E P  such that '~f '~f , D 7  aS, D~ e't, 
X ~(D~*~, D~'t~) (X is in the x interval of the segment). 

Definition 10: Let P be a polygon with universe U, and 
let y be a MASC segment with the same universe that does 
not cross any ?y E P (7 may or may not be an element of 
P). Let X be a real value in general position in the x 
interval of ?. The index of ? in P(X), denoted Index(y, 
P(X)), is the number of curves ?I ~ P(X) such that ? < Yl 
under Definition 8. 

One can think of the index as follows. Take the point on 
? with x coordinate X, and cast a ray in the vertical 
(positive y) direction. The number of segments of P that 
this ray crosses is Index(y, P(X)). However, as Definition 8 
indicates, the index can be computed using purely 
symbolic operations, and we consider it to be a function 
available to the union algorithm below. 

For any MASC y, the value of Index(y, P(X)) varies with 
X. However, if y crosses no segment of P, the parity 
(evenness or oddness) of Index(y, P(X)) is independent of 
X. This is easy to show from the fact that every vertex 
in Graph(P) has an even degree. 

Algorithm 14B (union algorithm) 
This section gives the algorithm for taking the union of 
bounded polygonal regions defined by polygons P and 
Q. This consists of several steps. First, use the intersection 
algorithm of the fourth section to compute all the 
intersections among the MASC segments in P u Q. This 
results in new sets P' and Q' of MASC segments. Second, 
'dean up' P' and Q' by eliminating multiple occurrences 
of MASC segments in each of these sets. Finally, eliminate 
more segments from R = P' w Q' to generate the boundary 
of the union of the bounded polygonal regions defined 
by P and Q. 

Intersection 
During the intersection stage, each segment in P is split 
at the points of intersection with segments in Q using 
Algorithms 11 and 12. The resulting sets of segments P' 
and Q' are adapted to the same universe. 

Cleaning 
All or part of two distinct segments in P may 
be 'pinched' together to result in multiple identical 
segments appearing in P'. Fortunately, as Definition 8 
indicates, we can detect identical segments by comparing 
endpoints, above sets, and below sets. For each class of 
equal segments in P', the algorithm cleans the class by 
deleting the largest possible even number of segments 
from the class; the result is zero or one segment depending 
on whether the class had an even or odd number of 
identical segments, respectively. The same procedure is 
applied to Q'. Once P' and Q' have been cleaned in this 
manner, they satisfy Definition 7. 

Marking embedded segments 
Now, for each yg e Q' which is not a vertical line segment 
and which is not identical to a segment in P', choose 
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X g: (l"}¢rig ndest ~ in general position. If Index(? v P'(X)) 
is odd, mark ?g for deletion. Do the same for each yf e P' 
with respect to Q'. 

Marking identical segments 
For each Yl ~ P' and Tg ~ Q' such that 7 / =  ?g, choose 
X ~ (D)rigx, D~='tx) (which equals D~rigx, D~='tx)) in general 
position. If Index(y/, P'(X)) and Index(? v Q'(X)) have 
opposite parity (one odd and the other even), mark both 
for deletion; otherwise, mark one of them for deletion. 

Putting in vertical segments 
Delete all marked segments from R = P' u Q'. The set R 
is almost a polygon. We just have to deal with vertical 
line segments. Remove all vertical line segments from R. 
For each X that is not in general position, let D~, 
D2 . . . . .  D,(x) be the list of vertices with x coordinate X, 
sorted by y coordinate: 

Dl.y < D2,y < .-- < Dn(x).y 

Apply the following algorithm to R: 

for i = 1 to d - 1 
if D~ has odd degree in Graph(R) then 

add segment DiDi+ 1 to R. 

This completes the algorithm for the union of two 
bounded polygonal regions. 

Algorithm 15 (general set operations) 
The algorithm in the previous section only works for 
taking the union of bounded polygonal regions. The 
general algorithm is based on the following observation. 
Define special values - o v  and + ~ which are less than 
and greater than every other value, respectively. If P is 
a polygon, then the unbounded region defined by P is 
the bounded region defined by 

pu {<-~,-~><+ ~,-oo>,<+~,-~> <+~, +~>,~ 
<+~,+~)<-oo,+~), <-~ ,+~)( -~ , -oo)  J 

which is the union of P with the 'square at infinity'. We 
can use this observation to take the complement of any 
region, and to take the union of any two unbounded 
regions. All set operations can be reduced to set 
complement and union. Adding or removing the square 
at infinity requires only constant cost, and thus any binary 
set operation, such as intersection or difference, can be 
computed as fast as the union. 

Algorithm 16 (cleaning up) 
The algorithm of the previous section is strictly robust, 
but it may generate unexpected answers in certain 
pathological cases. This section describes a more complex 
dean-up algorithm than the one described above. 
That clean-up algorithm removed multiple occurrences 
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Figure 9 Union algorithm in pathological case 

of MASC segments in P' and Q', where P' and Q' are the 
result of finding all the intersections among the segments 
of two polygons P and Q. The clean-up algorithm in this 
section removes or alters other MASC segments which 
correspond to 'nonphysical' situations*. 

Figure 7 shows the nominal intersection of a rectangle 
AIA2A3A 4 and a triangle B1B2B 3. In pathological cases, 
which can only occur if segments A1A2 and A3A 4 lie 
within a small multiple of ~, segments AxA2 and A3A 4 

might intersect. In Figure 9, the MASC-Segment intersection 
algorithm has generated two intersection points 15 and 
16 for these segments. Algorithm 14B generates the union 
of these two regions, as shown on the right. 

This union is somewhat nonphysical in appearance. If 
the original segments A1A 2 and A3A 4 meet, they should 
'cancel' each other, as shown on the left of Figure 10. 
This corresponds more closely to a notion of a rectangle 
of physical material which is drying up like a puddle. We 
describe here an algorithm for this type of physical 
cleaning. The resulting union is shown on the right of 
Figure 10. In the above notation, 

We presume that the records for segments 1116 and I aA  3 

in P' contain pointers back to the original segments A1 A2 
and A3A4, respectively, which spawned them. For each 
value X in general position (Definition 10) such that 
X ~ ( l l , x ,  I6,x), we define Oldlndex(IlI6, P(X)) to be the 
index of segment AxA2 in P(X). For the example shown, 
Oldlndex(Ixl 6, P(X))= 1 (independent of X). Note, 
however, that the index of lf16 in P'(X) is 2. By looking 
at the old and new indices, we can determine which curves 
should be removed from P'. 

Here is the general algorithm applied to P and P'. It 
should also be applied to Q and Q', in both cases as a 
substitute for the original cleaning algorithm. 

For each X in general position t, do the following. First, 
assign indices to the curves in P'(X) in a manner that is 

* This is the author's opinion. Others who have viewed Figures 9-12 
have perceived the output of the previous algorithm to be more 
'physical'. 
* It suffices to look at a set of X values which covers the set of segments. Figure 11 Cleaning algorithm applied to doubly misplaced curve 

consistent with the < relation: 

P ' ( X )  .-~ {~)1, ~2 . . . . .  Yn(X)} 

such that V 1 <~ i < j <. n(X), Yi < Yj or ~i ----- ~j' 
Next, assign each ?ieP'(X) a reference count of zero. 

For each i = 1, 2,.. . ,  n(X), do the following: let j >/i be 
the largest index such that OldIndex(? i, P(X))<<. 
OldIndex(y~, P(X)). Increment the reference count of ~j. 
If j # i, mark Yi for deletion. After performing this 
operation for each i, mark for deletion every curve with 
an even reference count. After performing this operation 
for all X, remove all the marked curves from P'. Finally, 
apply the original clean-up function above to P' to 
eliminate multiple identical segments. 

Thus, in Figure 10, segment I2I 6 is removed, because 
its index is less than that of IlI6, and its old index is 
greater. Segment I l I  6 is removed, because it ends up 
having a reference count equal to 2. Figures 11 and 12 
show the result of the cleaning algorithm on other 
pathological cases. 

C O N C L U S I O N S  

In this paper, we have considered the problem of 
constructing unions and intersections of polygonal 
regions in the plane using rounded finite-precision 
arithmetic. The second section determined that the best 
that we can hope to accomplish is to perform set 
operations on regions bounded by curves, not necessarily 

A3A2 

Ax 

Figure 10 

P = {AIA2, A2A3, A3A,,, A4Aa} 

p' = {AtI5,1511, I l I 6 ,  I613,13A2, A2A3,  A3I,,, 1416, I612, 

I215, 15A4, A,tA1} 

Physical cleaning of polygon before umon 
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Figure 12 Cleaning algorithm applied to triply misplaced curve 

straight line segments, because straightness is a property 
that is not detectable by a polynomial-time rounded- 
arithmetic algorithm. The third, fourth and fifth sections 
give a strictly robust algorithm for performing the desired 
set operations, and this algorithm generates the best 
output possible: regions bounded by monotonic curves 
which are straight to within a small multiple of the 
rounding unit of the machine arithmetic. 

This final section summarizes our robust polygon 
set-operation algorithm. The first part of the section gives 
reasons for the output of the robust algorithm being 
practically applicable, even though it replaces straight 
line segments with curves. The second part of the section 
describes techniques which might be used to implement 
the robust algorithm efficiently. Finally, the third and 
fourth parts of the section discuss the comparison principle 
and the hidden variable method, techniques used by our 
algorithm, and how they might be applied in other 
geometric domains. 
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If the output becomes the input to another set operation, 
no additional error is added. 

The 'thought construction' shows that the output of 
the robust algorithm is indeed practically applicable. Let 
us suppose that the input polygons are known only to a 
certain accuracy ff representing B' bits of precision 
(if= 2-B'M), as is generally the case in any physical 
application (B' = 20 corresponds to an accuracy of one 
part per million). In other words, the actual shapes of 
the input polygons may differ by as much as fl' from the 
shapes that we perceive them to have. If B is sufficiently 
large, B > B' + 7, so that fl < if, then the first step in 
our 'thought construction' above may introduce no error 
at all; it is possible the ft. perturbation of the input is in 
fact the actual shape of the input, and therefore the output 
of the robust algorithm is the correct polygon. Of course, 
it is also possible that the robust algorithm generates an 
incorrect solution, but the same holds true for an exact 
algorithm using infinite-precision arithmetic: it too may 
or may not generate the correct polygon. The important 
observation is that the robust solution and the exact 
solution arc equally valid from the point of view of 
practical applications. 

Since the robust solution requires less precision to 
compute, we should use it instead of the exact solution, 
which requires arithmetic with more than 4B' bits of 
precision. In particular, the robust algorithm requires 
only 27 bit arithmetic, which is easily provided by 
standard 53 bit floating-point arithmetic. The exact 
algorithm requires more than 80 bit arithmetic, which 
would generally have to be implemented in software. 

Practical applicability of robust algorithm 

The robust algorithm in the third, fourth and fifth sections 
can be used by applications which require set operations 
on polygonal regions. The fifth section uses the example 
of the union of a rectangle and a triangle. The robust 
algorithm generates a good approximation to the correct 
polygon, an approximate polygon bounded by MASC 
segments, and this approximate polygon can be used as 
input to the same algorithm. All numerical calculations 
used by the robust algorithm are performed using 
rounded B-bit arithmetic, and, no matter how many 
operations are performed, the error bound depends only 
on B, and not on the number of operations. 

We can describe the accuracy of the robust algorithm 
in terms of backward error analysis. The approximate 
polygon that it generates can be thought of as being 
generated by two steps: 

• Replace each line segment of the input polygons by 
monotonic curves which do not stray farther than 
fl = 66(21/2)# distant from the segments they replace 
(p = 2-aM is the absolute rounding unit). 

• Perform the desired set operation on the altered 
inputs exactly. 

Implementation of robust polygon set operations 

The third, fourth and fifth sections do not immediately 
lead to a computer program for performing set operations 
on polygonal regions. Instead, they reduce the difficult 
problem of reasoning about round-off error to a few basic 
operations on sets of points in the plane. There are well 
understood techniques for implementing these operations, 
and it remains to be discovered which one leads to the 
most practically efficient program. One can only briefly 
summarize here one technique, a sweepline construction, 
and discuss ways in which it can. be made efficient. 

We need a method for maintaining the sets and lists 
necessary for implementing the robust segment-intersection 
algorithm. We describe a modification of the Bentley- 
Ottman 24 swccpline technique to demonstrate how the 
robustness techniques can be added to a commonly used 
algorithm. Similar adaptations can be made to other 
techniques, such as bucketing. 

Algorithm 7 (sweepline algorithm) 
In the sweepline algorithm, we sweep a vertical line from 
left to right, putting anticipated intersections into a 
priority queue. Above and below lists arc represented 
implicitly in the current state. 
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For each segment c°rigc dest with positive slope, we 
must save a hiohest below site B, the site in the below set 
with the greatest y value. (Analogously, we save the lowest 
above site for each segment with negative slope.) This is 
the only extra information needed over that provided by 
the Bentley-Ottmann algorithm. Maintaining the highest 
below site for each C°'igC d=st is potentially expensive, 
because every time we add a new site, it may become the 
highest below site for a large number of segments. 
However, we can use the following efficiency technique. 
If 6(B, c°rigcdeSt)B < --12ct (recall that the subscript B 
refers to the use of rounded B-bit arithmetic), then 6(B, 
C°rigC d~'t) < -11~  = fl (see Definition 3), and thus it 
cannot affect the shape of the r~ASC segment C°'igCd~'t. 
Therefore, we can safely leave B out of the below set of 
C°rigC d~st, considerably reducing the cost of maintaining 
the below set. 

This efficiency technique works well unless many sites 
are near segments, a case which generally causes 
nonrobust algorithms to fail. Difficult or pathological 
cases may increase the running time of the author's robust 
algorithm, but they do not affect its reliability. 

N e w  techniques 

The robust polygon intersection algorithm is based on a 
number of new techniques, in particular a comparison 
principle and a hidden-variable method. The comparison 
principle is the observation that comparisons of 
representable floating-point numbers can be carried out 
without round-off error. The hidden-variable method is 
based on the observation that, by keeping certain portions 
of a geometric representation implicit or hidden, it is 
generally possible to greatly improve the error bounds. 

We use the comparison principle heavily in the design 
of the low-level numerical operations on points and line 
segments in the third section. Definition 2, classifying a 
point with respect to a line segment, is based on the 
assumption that we can classify a point with respect to 
an axis-parallel rectangle. Algorithms 3 and 4 for 
intersecting a segment with a horizontal or vertical line 
or line segment require us to move a point to the nearest 
endpoint of a line segment. This operation can be 
performed using comparisons alone if the segment is 
parallel to a coordinate axis. The general Algorithm 5 
for intersecting two line segments requires us to move a 
point to the nearest point on the boundary of an 
axis-parallel rectangle. This operation can also be 
performed using comparisons alone. 

A number of the operations in the higher-level segment 
intersection in the fourth section also depend on the 
comparison principle. In particular, the update procedure 
for MASC segments and the technique for detecting the 
intersections of MASC segments depend on comparisons 
of floating-point numbers. When we compute an 
intersection point (Algorithms 11 and 12), we use 
comparisons to determine whether it lies on the boundary 

of an axis-parallel rectangle, and we use additional 
comparisons to compute its location if it does. 

The hidden-variable method is closely related to the 
comparison principle. Theorem 1, the first hidden- 
variable theorem, implies the existence of a MASC function 
if certain premises are satisfied. Most of these premises 
are based on comparisons of floating-point numbers, and 
all of these premises are testable using rounded B-bit 
arithmetic. Actually, constructing the curve explicitly 
would require much higher precision. In a similar fashion, 
Theorem 2, the second hidden-variable theorem, implies 
the existence of an intersection point based on testable 
premises, again without requiring that it be computed 
explicitly. These two theorems make it possible to work 
with implicit curves, which in turn makes it possible to 
bound the maximum error of the intersection algorithm 
by a constant multiple of the rounding unit. Explicit 
representation of the curves, as described in the fourth 
section, is possible, but it does not have a good provable 
accuracy bound. 

Future  work  

It has already been shown that the hidden-variable 
method leads to strictly robust algorithms for computing 
the intersections of algebraic curves in 2D 1° and planes 
in 3D 8. The author 1 t and Fortune 12 have devised strictly 
robust algorithms for constructing convex hulls of points 
in the plane. These algorithms rely heavily on the 
comparison principle. 

In the immediate future, we plan to extend our work 
to the intersection of spline curves in the plane and to 
the construction of convex hulls in higher dimensions. 
In the case of spline curves, we plan to develop a 
hidden-variable theory that allows us to work with curves 
with unspecified control points. By doing this, we hope 
to obtain the same high accuracy that we have obtained 
for the intersection of line segments. 

Beyond that point, we plan to work on developing 
robust algorithms for the domains of potyhedra and 
objects bounded by curved surfaces, These pose difficult 
problems, but we hope that the techniques we have 
devised for the 2D domain will generalize to 3D. 
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A P P E N D I X  A 

Error analysis: numerical  operations on segments  

Appendix A proves error bounds for the operations given 

Robust polygon modelling: V Milenkovic 

in the third section when they are implemented using 
arithmetic with B bits of precision (see the second section). 

Point--segment distance and classification 
The third section gives a formula (see Algorithm 1) for 
6(C, AB), the signed distance from a point C to a line 
segment AB. As a precondition, C lies inside the bounding 
box R(AB). The claimed error bound is [6(C, AB)a - 6(C, 
AB)I <~ ~t, where 6(C, AB)s is the value of 6(C, AB) 
computed using rounded B-bit arithmetic. The error 
arising from the circulation computation dominates. 
Using elementary error analysis and the Cauchy inequality, 
one can show that 

Icirc(A, B, C)B -- ¢irc(A, 13, C)I 

= I((A - C) x (B - C))a - (A - C) x (B - C)l (1) 

~< 3elA - CIIB - CI + el(A - C) × (B - C)I (2) 

where e = 2 -~. For C close to AB, the second term can 
be neglected, and thus 

I~(C, AB)B - ~(C, AB)I ~< 3e IA CIIB CI l 1 

[A - B[ 

For C E R(AB), 

[A - CI, IB - C[ ~< IC - AI 

and, therefore, 

16(C, AB)B - 6(C, AB)I ~< 3eIC - AI ~< 6(21/2)~M 

where M is an upper bound on the magnitude of any 
coordinate. [] 

Intersections 
Intersection with horizontal or vertical line 
The third section gives a formula (see Algorithm 3) for the 
intersection of a line segment AB with a horizontal line 
Y = c. Error analysis* shows that, if we use rounded 
arithmetic to compute X, 

IX~ - xI ~< ~lXl + 5~ n~ - A ~ (  c _ A , )  
By - Ay 

If Xa lies outside the interval lAx, Bx], we move it to the 
nearest endpoint. This will always decrease the error. For 
a fixed y coordinate, a unit change in x changes the 
distance to line AB by (By - Ay)/IB - AI, which is always 

less than unity. Therefore, 

16((XB, Ya), AB)I ~< 81Xl I~  - AIAyl 

+ 5elc -- Ayl I ? B -  AXIAl 

<~ l l e M  < 2ct [] 

* For example, the factor of 58 arises from the three subtractions, one 
division and one multiplication. 
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Intersection with line segment 
Let AB and CD be line segments such that we know, a 
priori, that they intersect. The third section gives a 
procedure (see Algorithm 6) for computing this intersection 
I approximately using rounded arithmetic. The resulting 
approximate intersection point I s lies in R(AB) c~ R(CD). 
We have 

t n = ( ( C - A )  x ( D - C ) )  

( B - A )  x ( D - C )  n 

A single division introduces at most  a relative error of 
size e: 

tn _ ( ( C  - A) x (D - C))~ ~< e ((C - A) x (D - C)) m 
((B A) x ( D  C))n ((13 A) x 0 D  C))n 

and, hence, 

It,((B - A) x (D - C)) n - ((C - A) x (D - C))nl 

~< el((C - A) x (D - C))nl ~< tIC - AIID - C[ 

We can write this as 3el e l - e ,  el, such that 

t~((B - A) x (D - C))n - ((C - A) x (D - C)) n 

= ~llC - AIID - CI (3) 

From Equation 2, it follows that 3e2, e3 e I - e ,  el, such 
that 

( B - A )  x ( D - C ) - ( ( B - A )  x ( D - C ) ) n  

= 4e21B - AIID - CI (4) 

( C - A )  x ( D - C ) - ( ( C - A ) x ( D - C ) )  n 

= 4e31C - AIID - CI (5) 

Combining Equations 3, 4, and 5, 

6(A + ta(B - A), CD) 

tn(B-A) x ( D - C ) - ( C - A ) x ( D - C )  
la - cl 

eltC - AIID - CI + ta(4~zlB - AIID - CI) - 4ealC - AIID - CI 
ID-C1 

= ellC-AI + 4tae21B-At-4ealC-AI (6) 

Thus 

16(A + tB(B -- A), CD)I 

~< e(IC - AI + 4In - AI + 4 I t  - AI) ~< 9e(2(2~/2)M) 

= 3~ 

The previous paragraph derived a bound on the distance 
f rom A + t n ( B - A )  to CD. However ,  Is  equals 
(A + t a ( B -  A))n, which has the additional round-off 
error introduced by a subtraction, a multiplication and 

an addition for each coordinate. We have 

[IB - (A + tn(B - A))I ~< e(lln[ + 2ltn(B - A)I) 

<~ e(M(21/2) + (4(21/2)M) < ot 

Combining this bound with the bound in the previous 
paragraph, 

[6(In, AB)[ < ~t 

and 

16(In, CD)I < 4~ 

As stated above, even though IB lies close to each line 
segment AB and CD, it may not lie in the bounding 
boxes of these segments. In this case, we simply move it 
to the nearest point on the boundary of R(AB) r~ R(CD). 
We claim that we move I B at most 5¢. To prove this 
claim, we need the following lemma. 

Lemma 4: Let R 1 and R 2 be two axis-parallel rectangles 
such that R1 c~ R 2 # O.  Let P be any point outside R 1. 
Moving P directly towards R 1 (see Figure 13) does not 
increase its distance from R 2. 

Proof." There are several cases to consider, but, basically, 
if moving P directly towards R t increases its distance 
from R 2, then either the line x = Px or the line y = Py 
separates Rz from R 2, contradicting the premise that 
their intersection is nonempty. Incidentally, this lemma 
is not true for arbitrary (non-axis-parallel) rectangles. []  

Now we can establish the claim made above. Since I B is 
at most  = from AB and 4¢ from BC, it is at most ¢ distant 
from R(AB) and 4¢ from R(BC). These two axis-parallel 
rectangles have a nonempty intersection because of the 
premise that AB and CD intersect. Therefore, we can 
move I B to R(AB) without increasing its distance from 
R(BC). Then we can move I s to R(CD) without increasing 
its distance from R(AB) (which is zero). The total distance 
moved is at most 5a. After we have altered the position 
of I B, it satisfies 

Jr(In, AB)I < 6~x 

and 

16(In, CD)I < 9~ [] 

Figure 13 Moving point towards rectangle 

P 
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MASC segments 

Appendix B gives proofs of the theorems in the fourth 
section. 

Proof of I.emma 1 
The properties listed in Lemma 1 are easy to establish. 
The first is a consequence of the monotonicity of f, and 
Figure 14 shows what happens when sites A and B violate 
the monotonicity property. The second property is a 
consequence of the bound on the distance from <x, 
f(x)> to corigc dest. []  

Proof of Theorem 1 
This section gives an informal proof of Theorem 1. Let 
A > 0 be less than the minimum nonzero difference 
between dements of the set of x coordinates and y 
coordinates of sites in the above set A and in the below 
set B. If necessary, diminish A so that it is smaller than 
both 

/3 + min 6(A, c°rigc deSt) 
AeA 

and 

/3 - max 6(B, c°rigc dest) 
BeB 

Imagine a tiny test driver who must drive a course from 
D °~  to D d~'t. At each site A~A and BeB,  we place a 
traffic cone of radius A/3. The driver must drive a course 
that keeps every A cone to his left and every B cone to 
his right. Suppose that the driver takes the shortest course 
which satisfies these conditions. We notice that he will 
only turn left at A cones and right at B cones. Figure 15 
shows that a course that turns left at a B cone can be 
made shorter. We claim that the course, (x, f(x)), has 
exactly the properties we need. We first show that the y 
coordinate of the course is monotonic. Assume without 

° ' A  
D 

Figure 14 Violation of monotonicity property 

Figure 15 Nonshortest course 
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D ~ 

Figure 16 Proof of monotonicity 

Cd,= 

C ~ 

Figure 17 Proof of accuracy 

loss of generality that D°rigy < Dd©sty (f(x) should be an 
increasing function), and that the course has a segment 
that is nonincreasing in y. Figure 16 shows a string of 
such segments. Eventually, the course must turn left to 
get to D aest. There is, therefore, a nonincreasing segment 
starting from a right turn at some B e B, and ending with 
a left turn at some A e A. Thus, Ax I> Bx and Ay ~< By. 
However, this contradicts the assumption that A and B 
satisfy the conclusion of Lemma 1. Now we have to show 
that every point of the course lies within fl of cor~sc d='t. 
Let T be a point on the course which is the maximum 
distance to the left of segment c°rigcdest (such that 6(T, 
C°r~sC d*'t) is maximal). Let us assume the contrary of the 
error bound, that a(T, C°risC d='t) I>/3. Because D °el= and 
D dest satisfy the conclusion of Lemma 1, T cannot equal 
either of these sites. Therefore, T must be a right turn in 
the course, and therefore it must lie on the boundary of 
a B cone, as shown in Figure 17. However, this implies 
that 

~(T, c°rigcdest) = A/3 --I- ~(A, c°rigcdest) < 

where B e B is the centre of the cone. This contradicts 
our assumption. Therefore, the course does not stray 
farther than /3 to the left of line segment C*'IsC d''t. 
Similarly, the course does not stray farther than/3 to the 
right either. [] 

Proof of Lemma 2 
This section proves Lemma 2 of the fourth section. The 
proof for Special Case 1 is as follows. There are two 
conditions that A b~°~k must satisfy to permit the successful 
splitting ofy = <c° r tgc  dest, D °ris, D dest, A, B, f >  at A bl°ck. 
First, a(A bl°ck, c°rigCdest) must be bounded by 11~. 
Second, no site may block A b~*=k splitting ~ in the way 
that A b~°ck prevented I from splitting this MASC segment. 
The distance bound, I6(A bio=lt, corlgcdest)] < 11= follows 
from the inequalities 

la(I, c°rigCdest)] < 11~ 
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~(A bl°ck, c° r igc  dest) > -- 11~ 

(~(I, c ° r igc  dest) ~ ~(A hI°ok, c ° r igc  dest) 

The first is a premise of the splitting algorithm. The 
second is a property of MASC segments (Lemma I). The 
third follows from the fact that the distance to c°r~gcd~t 
is a monotone function of x and y, and that 

I x ~< Abl°ck x 

and 

Iy ~ Abl°Cky 

We prove by contradiction that A b~°¢k is not blocked 
from splitting y. Suppose that it is blocked by some site 
A~A: 

Abl°ck x ~ A~ 

and 

Abl°Cky i> Ay 

However, A bl°ck blocks I: 

I~ ~< Abl°ck x 

and 

Iy f> Abl°cky 

Therefore, 

Ix ~< Ax 

and 

Iy/> Ay 

This is a contradiction, since A bl°ck is with the site with 
the largest x and smallest y which satisfied these 
conditions. Special Case 2 is proved analogously. []  

Proof  of  Theorem 2 
This section gives an informal proof of Theorem 2, the 
second hidden-variable theorem. If the curve s ~y(x) and 
~a(x) intersect once, the proof is simple. Unfortunately, 
we cannot guarantee pseudol ineari ty  (see the second 

Figure 18 

A 

Proof of second hidden-variable theorem 

section); the curves may intersect more than once.  This 
will probably only happen very rarely, and only when 
corig('~aest and (~orig(~dest are parallel or nearly parallel. It f ~"f --g --g 
can only happen if f and g are both increasing or both 
decreasing. We give the single-intersection proof first, and 
then consider the more difficult case. Let Ex °rig, xde't] = 

xOrig erf,,,Jlo I~orig [o~riSx, D~eStx" ] . , t ~  L--gl-][~origx, --gr~deStxj" q Thus "~""°~ : x 
or D~rig= or both, if they are equal, and x dcst equals D~C~t= 

[~dest or _g  x or both. It is clear that, if the curves ~f(x)  and 
),g(x) intersect exactly once, then f ( x  °ris) ~ g(x °rig) and 
f (x  d~t) - g ( x  d"t) have opposite signs. Thus, we can 
satisfy the theorem by setting P equal to the element of 
{D~ig~, --gl~°'tgx, ~ with the largest x coordinate, and by 
setting Q equal to the element of YD dest 11 dest ~ with 
the smallest x coordinate. To prove the harder multi- 
intersection case, we return to our test-car driver analogy. 
Suppose, without loss of generality, that ~g starts above 
~I (so that D~lge B f, for example); it crosses ~s, and then 
it crosses back again. Between these two crossings, either 
),g turns left or Yy turns right; otherwise, once they cross 
and part the first time, they never meet again (see Figure 

18). Without loss of generality, it is 7g which turns. 
Therefore, 2:g makes a left turn at an A~ cone centred at 
some site A ~ Ag. Since ~g is below ~f at this cone, A is 
below ~¢, and thus A e B  I. Therefore, we can satisfy 
Theorem 2 by setting P equal to D °ris and setting Q ~ g  , 
equal to A. []  
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