/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2019-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file pcbnew/cross-probing.cpp * @brief Cross probing functions to handle communication to and from Eeschema. * Handle messages between Pcbnew and Eeschema via a socket, the port numbers are * KICAD_PCB_PORT_SERVICE_NUMBER (currently 4242) (Eeschema to Pcbnew) * KICAD_SCH_PORT_SERVICE_NUMBER (currently 4243) (Pcbnew to Eeschema) * Note: these ports must be enabled for firewall protection */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Execute a remote command send by Eeschema via a socket, * port KICAD_PCB_PORT_SERVICE_NUMBER * cmdline = received command from Eeschema * Commands are * $PART: "reference" put cursor on component * $PIN: "pin name" $PART: "reference" put cursor on the footprint pin * $NET: "net name" highlight the given net (if highlight tool is active) * $CLEAR Clear existing highlight * They are a keyword followed by a quoted string. */ void PCB_EDIT_FRAME::ExecuteRemoteCommand( const char* cmdline ) { char line[1024]; wxString msg; wxString modName; char* idcmd; char* text; int netcode = -1; bool multiHighlight = false; FOOTPRINT* footprint = nullptr; PAD* pad = nullptr; BOARD* pcb = GetBoard(); CROSS_PROBING_SETTINGS& crossProbingSettings = GetPcbNewSettings()->m_CrossProbing; KIGFX::VIEW* view = m_toolManager->GetView(); KIGFX::RENDER_SETTINGS* renderSettings = view->GetPainter()->GetSettings(); strncpy( line, cmdline, sizeof(line) - 1 ); line[sizeof(line) - 1] = 0; idcmd = strtok( line, " \n\r" ); text = strtok( NULL, "\"\n\r" ); if( idcmd == NULL ) return; if( strcmp( idcmd, "$NET:" ) == 0 ) { if( !crossProbingSettings.auto_highlight ) return; wxString net_name = FROM_UTF8( text ); NETINFO_ITEM* netinfo = pcb->FindNet( net_name ); if( netinfo ) { netcode = netinfo->GetNetCode(); MSG_PANEL_ITEMS items; netinfo->GetMsgPanelInfo( this, items ); SetMsgPanel( items ); } } if( strcmp( idcmd, "$NETS:" ) == 0 ) { if( !crossProbingSettings.auto_highlight ) return; wxStringTokenizer netsTok = wxStringTokenizer( FROM_UTF8( text ), "," ); bool first = true; while( netsTok.HasMoreTokens() ) { NETINFO_ITEM* netinfo = pcb->FindNet( netsTok.GetNextToken() ); if( netinfo ) { if( first ) { // TODO: Once buses are included in netlist, show bus name MSG_PANEL_ITEMS items; netinfo->GetMsgPanelInfo( this, items ); SetMsgPanel( items ); first = false; pcb->SetHighLightNet( netinfo->GetNetCode() ); renderSettings->SetHighlight( true, netinfo->GetNetCode() ); multiHighlight = true; } else { pcb->SetHighLightNet( netinfo->GetNetCode(), true ); renderSettings->SetHighlight( true, netinfo->GetNetCode(), true ); } } } netcode = -1; } else if( strcmp( idcmd, "$PIN:" ) == 0 ) { wxString pinName = FROM_UTF8( text ); text = strtok( NULL, " \n\r" ); if( text && strcmp( text, "$PART:" ) == 0 ) text = strtok( NULL, "\"\n\r" ); modName = FROM_UTF8( text ); footprint = pcb->FindFootprintByReference( modName ); if( footprint ) pad = footprint->FindPadByName( pinName ); if( pad ) netcode = pad->GetNetCode(); if( footprint == NULL ) msg.Printf( _( "%s not found" ), modName ); else if( pad == NULL ) msg.Printf( _( "%s pin %s not found" ), modName, pinName ); else msg.Printf( _( "%s pin %s found" ), modName, pinName ); SetStatusText( msg ); } else if( strcmp( idcmd, "$PART:" ) == 0 ) { pcb->ResetNetHighLight(); modName = FROM_UTF8( text ); footprint = pcb->FindFootprintByReference( modName ); if( footprint ) msg.Printf( _( "%s found" ), modName ); else msg.Printf( _( "%s not found" ), modName ); SetStatusText( msg ); } else if( strcmp( idcmd, "$SHEET:" ) == 0 ) { msg.Printf( _( "Selecting all from sheet \"%s\"" ), FROM_UTF8( text ) ); wxString sheetUIID( FROM_UTF8( text ) ); SetStatusText( msg ); GetToolManager()->RunAction( PCB_ACTIONS::selectOnSheetFromEeschema, true, static_cast( &sheetUIID ) ); return; } else if( strcmp( idcmd, "$CLEAR" ) == 0 ) { if( renderSettings->IsHighlightEnabled() ) { renderSettings->SetHighlight( false ); view->UpdateAllLayersColor(); } if( pcb->IsHighLightNetON() ) { pcb->ResetNetHighLight(); SetMsgPanel( pcb ); } GetCanvas()->Refresh(); return; } BOX2I bbox = { { 0, 0 }, { 0, 0 } }; if( footprint ) { bbox = footprint->GetBoundingBox( true, false ); // No invisible text in bbox calc if( pad ) m_toolManager->RunAction( PCB_ACTIONS::highlightItem, true, (void*) pad ); else m_toolManager->RunAction( PCB_ACTIONS::highlightItem, true, (void*) footprint ); } else if( netcode > 0 || multiHighlight ) { if( !multiHighlight ) { renderSettings->SetHighlight( ( netcode >= 0 ), netcode ); pcb->SetHighLightNet( netcode ); } else { // Just pick the first one for area calculation netcode = *pcb->GetHighLightNetCodes().begin(); } pcb->HighLightON(); auto merge_area = [netcode, &bbox]( BOARD_CONNECTED_ITEM* aItem ) { if( aItem->GetNetCode() == netcode ) { if( bbox.GetWidth() == 0 ) bbox = aItem->GetBoundingBox(); else bbox.Merge( aItem->GetBoundingBox() ); } }; if( crossProbingSettings.center_on_items ) { for( ZONE* zone : pcb->Zones() ) merge_area( zone ); for( TRACK* track : pcb->Tracks() ) merge_area( track ); for( FOOTPRINT* fp : pcb->Footprints() ) { for( PAD* p : fp->Pads() ) merge_area( p ); } } } else { renderSettings->SetHighlight( false ); } if( crossProbingSettings.center_on_items && bbox.GetWidth() > 0 && bbox.GetHeight() > 0 ) { if( crossProbingSettings.zoom_to_fit ) { //#define DEFAULT_PCBNEW_CODE // Un-comment for normal full zoom KiCad algorithm #ifdef DEFAULT_PCBNEW_CODE auto bbSize = bbox.Inflate( bbox.GetWidth() * 0.2f ).GetSize(); auto screenSize = view->ToWorld( GetCanvas()->GetClientSize(), false ); // The "fabs" on x ensures the right answer when the view is flipped screenSize.x = std::max( 10.0, fabs( screenSize.x ) ); screenSize.y = std::max( 10.0, screenSize.y ); double ratio = std::max( fabs( bbSize.x / screenSize.x ), fabs( bbSize.y / screenSize.y ) ); // Try not to zoom on every cross-probe; it gets very noisy if( crossProbingSettings.zoom_to_fit && ( ratio < 0.5 || ratio > 1.0 ) ) view->SetScale( view->GetScale() / ratio ); #endif // DEFAULT_PCBNEW_CODE #ifndef DEFAULT_PCBNEW_CODE // Do the scaled zoom auto bbSize = bbox.Inflate( bbox.GetWidth() * 0.2f ).GetSize(); auto screenSize = view->ToWorld( GetCanvas()->GetClientSize(), false ); // This code tries to come up with a zoom factor that doesn't simply zoom in // to the cross probed component, but instead shows a reasonable amount of the // circuit around it to provide context. This reduces or eliminates the need // to manually change the zoom because it's too close. // Using the default text height as a constant to compare against, use the // height of the bounding box of visible items for a footprint to figure out // if this is a big footprint (like a processor) or a small footprint (like a resistor). // This ratio is not useful by itself as a scaling factor. It must be "bent" to // provide good scaling at varying component sizes. Bigger components need less // scaling than small ones. double currTextHeight = Millimeter2iu( DEFAULT_TEXT_SIZE ); double compRatio = bbSize.y / currTextHeight; // Ratio of component to text height double compRatioBent = 1.0; // This will end up as the scaling factor we apply to "ratio" // This is similar to the original KiCad code that scaled the zoom to make sure components // were visible on screen. It's simply a ratio of screen size to component size, and its // job is to zoom in to make the component fullscreen. Earlier in the code the // component BBox is given a 20% margin to add some breathing room. We compare // the height of this enlarged component bbox to the default text height. If a component // will end up with the sides clipped, we adjust later to make sure it fits on screen. // // The "fabs" on x ensures the right answer when the view is flipped screenSize.x = std::max( 10.0, fabs( screenSize.x ) ); screenSize.y = std::max( 10.0, screenSize.y ); double ratio = std::max( -1.0, fabs( bbSize.y / screenSize.y ) ); // Original KiCad code for how much to scale the zoom double kicadRatio = std::max( fabs( bbSize.x / screenSize.x ), fabs( bbSize.y / screenSize.y ) ); // LUT to scale zoom ratio to provide reasonable schematic context. Must work // with footprints of varying sizes (e.g. 0402 package and 200 pin BGA). // "first" is used as the input and "second" as the output // // "first" = compRatio (footprint height / default text height) // "second" = Amount to scale ratio by std::vector> lut{ { 1, 8 }, { 1.5, 5 }, { 3, 3 }, { 4.5, 2.5 }, { 8, 2.0 }, { 12, 1.7 }, { 16, 1.5 }, { 24, 1.3 }, { 32, 1.0 }, }; std::vector>::iterator it; compRatioBent = lut.back().second; // Large component default if( compRatio >= lut.front().first ) { // Use LUT to do linear interpolation of "compRatio" within "first", then // use that result to linearly interpolate "second" which gives the scaling // factor needed. for( it = lut.begin(); it < lut.end() - 1; it++ ) { if( it->first <= compRatio && next( it )->first >= compRatio ) { double diffx = compRatio - it->first; double diffn = next( it )->first - it->first; compRatioBent = it->second + ( next( it )->second - it->second ) * diffx / diffn; break; // We have our interpolated value } } } else compRatioBent = lut.front().second; // Small component default // If the width of the part we're probing is bigger than what the screen width will be // after the zoom, then punt and use the KiCad zoom algorithm since it guarantees the // part's width will be encompassed within the screen. This will apply to parts that are // much wider than they are tall. if( bbSize.x > screenSize.x * ratio * compRatioBent ) { ratio = kicadRatio; // Use standard KiCad zoom algorithm for parts too wide to fit screen compRatioBent = 1.0; // Reset so we don't modify the "KiCad" ratio wxLogTrace( "CROSS_PROBE_SCALE", "Part TOO WIDE for screen. Using normal KiCad zoom ratio: %1.5f", ratio ); } // Now that "compRatioBent" holds our final scaling factor we apply it to the original // fullscreen zoom ratio to arrive at the final ratio itself. ratio *= compRatioBent; bool alwaysZoom = false; // DEBUG - allows us to minimize zooming or not // Try not to zoom on every cross-probe; it gets very noisy if( ( ratio < 0.5 || ratio > 1.0 ) || alwaysZoom ) view->SetScale( view->GetScale() / ratio ); #endif // ifndef DEFAULT_PCBNEW_CODE } view->SetCenter( bbox.Centre() ); } view->UpdateAllLayersColor(); // Ensure the display is refreshed, because in some installs the refresh is done only // when the gal canvas has the focus, and that is not the case when crossprobing from // Eeschema: GetCanvas()->Refresh(); } std::string FormatProbeItem( BOARD_ITEM* aItem ) { FOOTPRINT* footprint; if( !aItem ) return "$CLEAR: \"HIGHLIGHTED\""; // message to clear highlight state switch( aItem->Type() ) { case PCB_FOOTPRINT_T: footprint = (FOOTPRINT*) aItem; return StrPrintf( "$PART: \"%s\"", TO_UTF8( footprint->GetReference() ) ); case PCB_PAD_T: { footprint = static_cast( aItem->GetParent() ); wxString pad = static_cast( aItem )->GetName(); return StrPrintf( "$PART: \"%s\" $PAD: \"%s\"", TO_UTF8( footprint->GetReference() ), TO_UTF8( pad ) ); } case PCB_FP_TEXT_T: { footprint = static_cast( aItem->GetParent() ); FP_TEXT* text = static_cast( aItem ); const char* text_key; /* This can't be a switch since the break need to pull out * from the outer switch! */ if( text->GetType() == FP_TEXT::TEXT_is_REFERENCE ) text_key = "$REF:"; else if( text->GetType() == FP_TEXT::TEXT_is_VALUE ) text_key = "$VAL:"; else break; return StrPrintf( "$PART: \"%s\" %s \"%s\"", TO_UTF8( footprint->GetReference() ), text_key, TO_UTF8( text->GetText() ) ); } default: break; } return ""; } /* Send a remote command to Eeschema via a socket, * aSyncItem = item to be located on schematic (footprint, pin or text) * Commands are * $PART: "reference" put cursor on component anchor * $PART: "reference" $PAD: "pad number" put cursor on the component pin * $PART: "reference" $REF: "reference" put cursor on the component ref * $PART: "reference" $VAL: "value" put cursor on the component value */ void PCB_EDIT_FRAME::SendMessageToEESCHEMA( BOARD_ITEM* aSyncItem ) { std::string packet = FormatProbeItem( aSyncItem ); if( !packet.empty() ) { if( Kiface().IsSingle() ) SendCommand( MSG_TO_SCH, packet ); else { // Typically ExpressMail is going to be s-expression packets, but since // we have existing interpreter of the cross probe packet on the other // side in place, we use that here. Kiway().ExpressMail( FRAME_SCH, MAIL_CROSS_PROBE, packet, this ); } } } void PCB_EDIT_FRAME::SendCrossProbeNetName( const wxString& aNetName ) { std::string packet = StrPrintf( "$NET: \"%s\"", TO_UTF8( aNetName ) ); if( !packet.empty() ) { if( Kiface().IsSingle() ) SendCommand( MSG_TO_SCH, packet ); else { // Typically ExpressMail is going to be s-expression packets, but since // we have existing interpreter of the cross probe packet on the other // side in place, we use that here. Kiway().ExpressMail( FRAME_SCH, MAIL_CROSS_PROBE, packet, this ); } } } void PCB_EDIT_FRAME::KiwayMailIn( KIWAY_EXPRESS& mail ) { std::string& payload = mail.GetPayload(); switch( mail.Command() ) { case MAIL_PCB_GET_NETLIST: { NETLIST netlist; STRING_FORMATTER sf; for( FOOTPRINT* footprint : GetBoard()->Footprints() ) { if( footprint->GetAttributes() & FP_BOARD_ONLY ) continue; // Don't add board-only footprints to the netlist COMPONENT* component = new COMPONENT( footprint->GetFPID(), footprint->GetReference(), footprint->GetValue(), footprint->GetPath(), {} ); for( PAD* pad : footprint->Pads() ) { const wxString& netname = pad->GetShortNetname(); if( !netname.IsEmpty() ) { component->AddNet( pad->GetName(), netname, pad->GetPinFunction(), pad->GetPinType() ); } } netlist.AddComponent( component ); } netlist.Format( "pcb_netlist", &sf, 0, CTL_OMIT_FILTERS ); payload = sf.GetString(); } break; case MAIL_PCB_UPDATE_LINKS: try { NETLIST netlist; FetchNetlistFromSchematic( netlist, wxEmptyString ); BOARD_NETLIST_UPDATER updater( this, GetBoard() ); updater.SetLookupByTimestamp( false ); updater.SetDeleteUnusedFootprints( false ); updater.SetReplaceFootprints( false ); updater.SetDeleteSinglePadNets( false ); updater.SetWarnPadNoNetInNetlist( false ); updater.UpdateNetlist( netlist ); bool dummy; OnNetlistChanged( updater, &dummy ); } catch( const IO_ERROR& ) { assert( false ); // should never happen return; } break; case MAIL_CROSS_PROBE: ExecuteRemoteCommand( payload.c_str() ); break; case MAIL_PCB_UPDATE: m_toolManager->RunAction( ACTIONS::updatePcbFromSchematic, true ); break; case MAIL_IMPORT_FILE: { // Extract file format type and path (plugin type and path separated with \n) size_t split = payload.find( '\n' ); wxCHECK( split != std::string::npos, /*void*/ ); int importFormat; try { importFormat = std::stoi( payload.substr( 0, split ) ); } catch( std::invalid_argument& ) { wxFAIL; importFormat = -1; } std::string path = payload.substr( split + 1 ); wxASSERT( !path.empty() ); if( importFormat >= 0 ) importFile( path, importFormat ); } break; // many many others. default: ; } }