/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2019 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include ZONE_CONTAINER::ZONE_CONTAINER( BOARD* aBoard ) : BOARD_CONNECTED_ITEM( aBoard, PCB_ZONE_AREA_T ) { m_CornerSelection = nullptr; // no corner is selected m_IsFilled = false; // fill status : true when the zone is filled m_FillMode = ZFM_POLYGONS; m_hatchStyle = DIAGONAL_EDGE; m_hatchPitch = GetDefaultHatchPitch(); m_hv45 = false; m_HatchFillTypeThickness = 0; m_HatchFillTypeGap = 0; m_HatchFillTypeOrientation = 0.0; m_HatchFillTypeSmoothingLevel = 0; // Grid pattern smoothing type. 0 = no smoothing m_HatchFillTypeSmoothingValue = 0.1; // Grid pattern chamfer value relative to the gap value // used only if m_HatchFillTypeSmoothingLevel > 0 m_priority = 0; m_cornerSmoothingType = ZONE_SETTINGS::SMOOTHING_NONE; SetIsKeepout( false ); SetDoNotAllowCopperPour( false ); // has meaning only if m_isKeepout == true SetDoNotAllowVias( true ); // has meaning only if m_isKeepout == true SetDoNotAllowTracks( true ); // has meaning only if m_isKeepout == true m_cornerRadius = 0; SetLocalFlags( 0 ); // flags tempoarry used in zone calculations m_Poly = new SHAPE_POLY_SET(); // Outlines m_FilledPolysUseThickness = true; // set the "old" way to build filled polygon areas (before 6.0.x) aBoard->GetZoneSettings().ExportSetting( *this ); m_needRefill = false; // True only after some edition. } ZONE_CONTAINER::ZONE_CONTAINER( const ZONE_CONTAINER& aZone ) : BOARD_CONNECTED_ITEM( aZone ) { // Should the copy be on the same net? SetNetCode( aZone.GetNetCode() ); m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly ); // For corner moving, corner index to drag, or nullptr if no selection m_CornerSelection = nullptr; m_IsFilled = aZone.m_IsFilled; m_ZoneClearance = aZone.m_ZoneClearance; // clearance value m_ZoneMinThickness = aZone.m_ZoneMinThickness; m_FilledPolysUseThickness = aZone.m_FilledPolysUseThickness; m_FillMode = aZone.m_FillMode; // Filling mode (segments/polygons) m_hv45 = aZone.m_hv45; m_priority = aZone.m_priority; m_PadConnection = aZone.m_PadConnection; m_ThermalReliefGap = aZone.m_ThermalReliefGap; m_ThermalReliefCopperBridge = aZone.m_ThermalReliefCopperBridge; m_FilledPolysList.Append( aZone.m_FilledPolysList ); m_FillSegmList = aZone.m_FillSegmList; // vector <> copy m_isKeepout = aZone.m_isKeepout; m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour; m_doNotAllowVias = aZone.m_doNotAllowVias; m_doNotAllowTracks = aZone.m_doNotAllowTracks; m_cornerSmoothingType = aZone.m_cornerSmoothingType; m_cornerRadius = aZone.m_cornerRadius; m_hatchStyle = aZone.m_hatchStyle; m_hatchPitch = aZone.m_hatchPitch; m_HatchLines = aZone.m_HatchLines; SetLayerSet( aZone.GetLayerSet() ); SetLocalFlags( aZone.GetLocalFlags() ); SetNeedRefill( aZone.NeedRefill() ); } ZONE_CONTAINER& ZONE_CONTAINER::operator=( const ZONE_CONTAINER& aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther ); // Replace the outlines for aOther outlines. delete m_Poly; m_Poly = new SHAPE_POLY_SET( *aOther.m_Poly ); m_CornerSelection = nullptr; // for corner moving, corner index to (null if no selection) m_ZoneClearance = aOther.m_ZoneClearance; // clearance value m_ZoneMinThickness = aOther.m_ZoneMinThickness; m_FilledPolysUseThickness = aOther.m_FilledPolysUseThickness; m_FillMode = aOther.m_FillMode; // filling mode (segments/polygons) m_PadConnection = aOther.m_PadConnection; m_ThermalReliefGap = aOther.m_ThermalReliefGap; m_ThermalReliefCopperBridge = aOther.m_ThermalReliefCopperBridge; SetHatchStyle( aOther.GetHatchStyle() ); SetHatchPitch( aOther.GetHatchPitch() ); m_HatchLines = aOther.m_HatchLines; // copy vector m_FilledPolysList.RemoveAllContours(); m_FilledPolysList.Append( aOther.m_FilledPolysList ); m_FillSegmList.clear(); m_FillSegmList = aOther.m_FillSegmList; SetLayerSet( aOther.GetLayerSet() ); return *this; } ZONE_CONTAINER::~ZONE_CONTAINER() { delete m_Poly; delete m_CornerSelection; } EDA_ITEM* ZONE_CONTAINER::Clone() const { return new ZONE_CONTAINER( *this ); } bool ZONE_CONTAINER::UnFill() { bool change = ( !m_FilledPolysList.IsEmpty() || m_FillSegmList.size() > 0 ); m_FilledPolysList.RemoveAllContours(); m_FillSegmList.clear(); m_IsFilled = false; return change; } const wxPoint ZONE_CONTAINER::GetPosition() const { return (wxPoint) GetCornerPosition( 0 ); } PCB_LAYER_ID ZONE_CONTAINER::GetLayer() const { return BOARD_ITEM::GetLayer(); } bool ZONE_CONTAINER::IsOnCopperLayer() const { if( GetIsKeepout() ) { return ( m_layerSet & LSET::AllCuMask() ).count() > 0; } else { return IsCopperLayer( GetLayer() ); } } bool ZONE_CONTAINER::CommonLayerExists( const LSET aLayerSet ) const { LSET common = GetLayerSet() & aLayerSet; return common.count() > 0; } void ZONE_CONTAINER::SetLayer( PCB_LAYER_ID aLayer ) { SetLayerSet( LSET( aLayer ) ); m_Layer = aLayer; } void ZONE_CONTAINER::SetLayerSet( LSET aLayerSet ) { if( GetIsKeepout() ) { // Keepouts can only exist on copper layers aLayerSet &= LSET::AllCuMask(); } if( aLayerSet.count() == 0 ) return; if( m_layerSet != aLayerSet ) SetNeedRefill( true ); m_layerSet = aLayerSet; // Set the single layer to the first selected layer m_Layer = aLayerSet.Seq()[0]; } LSET ZONE_CONTAINER::GetLayerSet() const { // TODO - Enable multi-layer zones for all zone types // not just keepout zones if( GetIsKeepout() ) { return m_layerSet; } else { return LSET( m_Layer ); } } void ZONE_CONTAINER::ViewGetLayers( int aLayers[], int& aCount ) const { if( GetIsKeepout() ) { LSEQ layers = m_layerSet.Seq(); for( unsigned int idx = 0; idx < layers.size(); idx++ ) aLayers[idx] = layers[idx]; aCount = layers.size(); } else { aLayers[0] = m_Layer; aCount = 1; } } bool ZONE_CONTAINER::IsOnLayer( PCB_LAYER_ID aLayer ) const { if( GetIsKeepout() ) return m_layerSet.test( aLayer ); return BOARD_ITEM::IsOnLayer( aLayer ); } void ZONE_CONTAINER::Print( PCB_BASE_FRAME* aFrame, wxDC* DC, const wxPoint& offset ) { if( !DC ) return; wxPoint seg_start, seg_end; PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) aFrame->GetScreen() )->m_Active_Layer; BOARD* brd = GetBoard(); PCB_LAYER_ID draw_layer = UNDEFINED_LAYER; LSET layers = GetLayerSet() & brd->GetVisibleLayers(); // If there are no visible layers, return if( layers.count() == 0 ) return; /* Keepout zones can exist on multiple layers * Thus, determining which color to use to render them is a bit tricky. * In descending order of priority: * * 1. If in GR_HIGHLIGHT mode: * a. If zone is on selected layer, use layer color! * b. Else, use grey * 1. Not in GR_HIGHLIGHT mode * a. If zone is on selected layer, use layer color * b. Else, use color of top-most (visible) layer * */ if( GetIsKeepout() ) { // At least one layer must be provided! assert( GetLayerSet().count() > 0 ); // Not on any visible layer? if( layers.count() == 0 ) return; // Is keepout zone present on the selected layer? if( layers.test( curr_layer ) ) { draw_layer = curr_layer; } else { // Select the first (top) visible layer if( layers.count() > 0 ) { draw_layer = layers.Seq()[0]; } else { draw_layer = GetLayerSet().Seq()[0]; } } } /* Non-keepout zones are easier to deal with */ else { if( brd->IsLayerVisible( GetLayer() ) == false ) return; draw_layer = GetLayer(); } assert( draw_layer != UNDEFINED_LAYER ); auto color = aFrame->Settings().Colors().GetLayerColor( draw_layer ); auto displ_opts = (PCB_DISPLAY_OPTIONS*)( aFrame->GetDisplayOptions() ); if( displ_opts->m_ContrastModeDisplay ) { if( !IsOnLayer( curr_layer ) ) color = COLOR4D( DARKDARKGRAY ); } color.a = 0.588; // draw the lines std::vector lines; lines.reserve( (GetNumCorners() * 2) + 2 ); // Iterate through the segments of the outline for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ ) { // Create the segment SEG segment = *iterator; lines.push_back( static_cast( segment.A ) + offset ); lines.push_back( static_cast( segment.B ) + offset ); } GRLineArray( nullptr, DC, lines, 0, color ); // draw hatches lines.clear(); lines.reserve( (m_HatchLines.size() * 2) + 2 ); for( unsigned ic = 0; ic < m_HatchLines.size(); ic++ ) { seg_start = static_cast( m_HatchLines[ic].A ) + offset; seg_end = static_cast( m_HatchLines[ic].B ) + offset; lines.push_back( seg_start ); lines.push_back( seg_end ); } GRLineArray( nullptr, DC, lines, 0, color ); } void ZONE_CONTAINER::PrintFilledArea( PCB_BASE_FRAME* aFrame, wxDC* DC, const wxPoint& offset ) { static std::vector CornersBuffer; BOARD* brd = GetBoard(); KIGFX::COLOR4D color = aFrame->Settings().Colors().GetLayerColor( GetLayer() ); PCB_DISPLAY_OPTIONS* displ_opts = (PCB_DISPLAY_OPTIONS*) aFrame->GetDisplayOptions(); bool outline_mode = displ_opts->m_DisplayZonesMode == 2; if( DC == NULL ) return; if( displ_opts->m_DisplayZonesMode == 1 ) // Do not show filled areas return; if( m_FilledPolysList.IsEmpty() ) // Nothing to draw return; if( brd->IsLayerVisible( GetLayer() ) == false ) return; color.a = 0.588; for( int ic = 0; ic < m_FilledPolysList.OutlineCount(); ic++ ) { const SHAPE_LINE_CHAIN& path = m_FilledPolysList.COutline( ic ); CornersBuffer.clear(); wxPoint p0; for( int j = 0; j < path.PointCount(); j++ ) { const VECTOR2I& corner = path.CPoint( j ); wxPoint coord( corner.x + offset.x, corner.y + offset.y ); if( j == 0 ) p0 = coord; CornersBuffer.push_back( coord ); } CornersBuffer.push_back( p0 ); // Draw outlines: int outline_thickness = GetFilledPolysUseThickness() ? GetMinThickness() : 0; if( ( outline_thickness > 1 ) || outline_mode ) { int ilim = CornersBuffer.size() - 1; for( int is = 0, ie = ilim; is <= ilim; ie = is, is++ ) { // Draw only basic outlines, not extra segments. if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) ) { GRCSegm( nullptr, DC, CornersBuffer[is], CornersBuffer[ie], outline_thickness, color ); } else { GRFilledSegment( nullptr, DC, CornersBuffer[is], CornersBuffer[ie], outline_thickness, color ); } } } // Draw fill: if( !outline_mode ) GRPoly( nullptr, DC, CornersBuffer.size(), &CornersBuffer[0], true, 0, color, color ); } } const EDA_RECT ZONE_CONTAINER::GetBoundingBox() const { const int PRELOAD = 0x7FFFFFFF; // Biggest integer (32 bits) int ymax = -PRELOAD; int ymin = PRELOAD; int xmin = PRELOAD; int xmax = -PRELOAD; int count = GetNumCorners(); for( int i = 0; i( GetCornerPosition( i ) ); ymax = std::max( ymax, corner.y ); xmax = std::max( xmax, corner.x ); ymin = std::min( ymin, corner.y ); xmin = std::min( xmin, corner.x ); } EDA_RECT ret( wxPoint( xmin, ymin ), wxSize( xmax - xmin + 1, ymax - ymin + 1 ) ); return ret; } int ZONE_CONTAINER::GetThermalReliefGap( D_PAD* aPad ) const { if( aPad == NULL || aPad->GetThermalGap() == 0 ) return m_ThermalReliefGap; else return aPad->GetThermalGap(); } int ZONE_CONTAINER::GetThermalReliefCopperBridge( D_PAD* aPad ) const { if( aPad == NULL || aPad->GetThermalWidth() == 0 ) return m_ThermalReliefCopperBridge; else return aPad->GetThermalWidth(); } void ZONE_CONTAINER::SetCornerRadius( unsigned int aRadius ) { if( m_cornerRadius != aRadius ) SetNeedRefill( true ); m_cornerRadius = aRadius; } bool ZONE_CONTAINER::HitTest( const wxPoint& aPosition, int aAccuracy ) const { // Normally accuracy is zoom-relative, but for the generic HitTest we just use // a fixed (small) value. int accuracy = std::max( aAccuracy, Millimeter2iu( 0.1 ) ); return HitTestForCorner( aPosition, accuracy * 2 ) || HitTestForEdge( aPosition, accuracy ); } void ZONE_CONTAINER::SetSelectedCorner( const wxPoint& aPosition, int aAccuracy ) { SHAPE_POLY_SET::VERTEX_INDEX corner; // If there is some corner to be selected, assign it to m_CornerSelection if( HitTestForCorner( aPosition, aAccuracy * 2, corner ) || HitTestForEdge( aPosition, aAccuracy, corner ) ) { if( m_CornerSelection == nullptr ) m_CornerSelection = new SHAPE_POLY_SET::VERTEX_INDEX; *m_CornerSelection = corner; } } bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos, int aAccuracy, SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const { return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, aAccuracy ); } bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos, int aAccuracy ) const { SHAPE_POLY_SET::VERTEX_INDEX dummy; return HitTestForCorner( refPos, aAccuracy, dummy ); } bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos, int aAccuracy, SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const { return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, aAccuracy ); } bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos, int aAccuracy ) const { SHAPE_POLY_SET::VERTEX_INDEX dummy; return HitTestForEdge( refPos, aAccuracy, dummy ); } bool ZONE_CONTAINER::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { // Calculate bounding box for zone EDA_RECT bbox = GetBoundingBox(); bbox.Normalize(); EDA_RECT arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); if( aContained ) { return arect.Contains( bbox ); } else // Test for intersection between aBox and the polygon // For a polygon, using its bounding box has no sense here { // Fast test: if aBox is outside the polygon bounding box, rectangles cannot intersect if( !arect.Intersects( bbox ) ) return false; int count = m_Poly->TotalVertices(); for( int ii = 0; ii < count; ii++ ) { auto vertex = m_Poly->Vertex( ii ); auto vertexNext = m_Poly->Vertex( ( ii + 1 ) % count ); // Test if the point is within the rect if( arect.Contains( ( wxPoint ) vertex ) ) { return true; } // Test if this edge intersects the rect if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) ) { return true; } } return false; } } int ZONE_CONTAINER::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const { int myClearance = m_ZoneClearance; #if 1 // Maybe the netclass clearance should not come into play for a zone? // At least the policy decision can be controlled by the zone // itself, i.e. here. On reasons of insufficient documentation, // the user will be less bewildered if we simply respect the // "zone clearance" setting in the zone properties dialog. (At least // until there is a UI boolean for this.) NETCLASSPTR myClass = GetNetClass(); if( myClass ) myClearance = std::max( myClearance, myClass->GetClearance() ); #endif if( aItem ) { int hisClearance = aItem->GetClearance( NULL ); myClearance = std::max( hisClearance, myClearance ); } return myClearance; } bool ZONE_CONTAINER::HitTestFilledArea( const wxPoint& aRefPos ) const { return m_FilledPolysList.Contains( VECTOR2I( aRefPos.x, aRefPos.y ) ); } void ZONE_CONTAINER::GetMsgPanelInfo( EDA_UNITS_T aUnits, std::vector< MSG_PANEL_ITEM >& aList ) { wxString msg; msg = _( "Zone Outline" ); // Display Cutout instead of Outline for holes inside a zone // i.e. when num contour !=0 // Check whether the selected corner is in a hole; i.e., in any contour but the first one. if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) msg << wxT( " " ) << _( "(Cutout)" ); aList.emplace_back( MSG_PANEL_ITEM( _( "Type" ), msg, DARKCYAN ) ); if( GetIsKeepout() ) { msg.Empty(); if( GetDoNotAllowVias() ) AccumulateDescription( msg, _( "No via" ) ); if( GetDoNotAllowTracks() ) AccumulateDescription( msg, _("No track") ); if( GetDoNotAllowCopperPour() ) AccumulateDescription( msg, _("No copper pour") ); aList.emplace_back( MSG_PANEL_ITEM( _( "Keepout" ), msg, RED ) ); } else if( IsOnCopperLayer() ) { if( GetNetCode() >= 0 ) { NETINFO_ITEM* net = GetNet(); if( net ) msg = UnescapeString( net->GetNetname() ); else // Should not occur msg = _( "" ); } else // a netcode < 0 is an error msg = wxT( "" ); aList.emplace_back( MSG_PANEL_ITEM( _( "NetName" ), msg, RED ) ); // Display net code : (useful in test or debug) msg.Printf( wxT( "%d" ), GetNetCode() ); aList.emplace_back( MSG_PANEL_ITEM( _( "NetCode" ), msg, RED ) ); // Display priority level msg.Printf( wxT( "%d" ), GetPriority() ); aList.emplace_back( MSG_PANEL_ITEM( _( "Priority" ), msg, BLUE ) ); } else { aList.emplace_back( MSG_PANEL_ITEM( _( "Non Copper Zone" ), wxEmptyString, RED ) ); } aList.emplace_back( MSG_PANEL_ITEM( _( "Layer" ), GetLayerName(), BROWN ) ); msg.Printf( wxT( "%d" ), (int) m_Poly->TotalVertices() ); aList.emplace_back( MSG_PANEL_ITEM( _( "Vertices" ), msg, BLUE ) ); switch( m_FillMode ) { case ZFM_POLYGONS: msg = _( "Solid" ); break; case ZFM_HATCH_PATTERN: msg = _( "Hatched" ); break; default: msg = _( "Unknown" ); break; } aList.emplace_back( MSG_PANEL_ITEM( _( "Fill Mode" ), msg, BROWN ) ); // Useful for statistics : msg.Printf( wxT( "%d" ), (int) m_HatchLines.size() ); aList.emplace_back( MSG_PANEL_ITEM( _( "Hatch Lines" ), msg, BLUE ) ); if( !m_FilledPolysList.IsEmpty() ) { msg.Printf( wxT( "%d" ), m_FilledPolysList.TotalVertices() ); aList.emplace_back( MSG_PANEL_ITEM( _( "Corner Count" ), msg, BLUE ) ); } } /* Geometric transforms: */ void ZONE_CONTAINER::Move( const wxPoint& offset ) { /* move outlines */ m_Poly->Move( offset ); Hatch(); m_FilledPolysList.Move( offset ); for( SEG& seg : m_FillSegmList ) { seg.A += VECTOR2I( offset ); seg.B += VECTOR2I( offset ); } } void ZONE_CONTAINER::MoveEdge( const wxPoint& offset, int aEdge ) { int next_corner; if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) ) { m_Poly->Vertex( aEdge ) += VECTOR2I( offset ); m_Poly->Vertex( next_corner ) += VECTOR2I( offset ); Hatch(); SetNeedRefill( true ); } } void ZONE_CONTAINER::Rotate( const wxPoint& centre, double angle ) { wxPoint pos; for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ ) { pos = static_cast( *iterator ); RotatePoint( &pos, centre, angle ); iterator->x = pos.x; iterator->y = pos.y; } Hatch(); /* rotate filled areas: */ for( auto ic = m_FilledPolysList.Iterate(); ic; ++ic ) RotatePoint( &ic->x, &ic->y, centre.x, centre.y, angle ); for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) { wxPoint a( m_FillSegmList[ic].A ); RotatePoint( &a, centre, angle ); m_FillSegmList[ic].A = a; wxPoint b( m_FillSegmList[ic].B ); RotatePoint( &b, centre, angle ); m_FillSegmList[ic].B = a; } } void ZONE_CONTAINER::Flip( const wxPoint& aCentre, bool aFlipLeftRight ) { Mirror( aCentre, aFlipLeftRight ); int copperLayerCount = GetBoard()->GetCopperLayerCount(); if( GetIsKeepout() ) { SetLayerSet( FlipLayerMask( GetLayerSet(), copperLayerCount ) ); } else { SetLayer( FlipLayer( GetLayer(), copperLayerCount ) ); } } void ZONE_CONTAINER::Mirror( const wxPoint& aMirrorRef, bool aMirrorLeftRight ) { for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ ) { if( aMirrorLeftRight ) iterator->x = ( aMirrorRef.x - iterator->x ) + aMirrorRef.x; else iterator->y = ( aMirrorRef.y - iterator->y ) + aMirrorRef.y; } Hatch(); for( auto ic = m_FilledPolysList.Iterate(); ic; ++ic ) { if( aMirrorLeftRight ) ic->x = ( aMirrorRef.x - ic->x ) + aMirrorRef.x; else ic->y = ( aMirrorRef.y - ic->y ) + aMirrorRef.y; } for( SEG& seg : m_FillSegmList ) { if( aMirrorLeftRight ) { MIRROR( seg.A.x, aMirrorRef.x ); MIRROR( seg.B.x, aMirrorRef.x ); } else { MIRROR( seg.A.y, aMirrorRef.y ); MIRROR( seg.B.y, aMirrorRef.y ); } } } ZoneConnection ZONE_CONTAINER::GetPadConnection( D_PAD* aPad ) const { if( aPad == NULL || aPad->GetZoneConnection() == PAD_ZONE_CONN_INHERITED ) return m_PadConnection; else return aPad->GetZoneConnection(); } void ZONE_CONTAINER::AddPolygon( const SHAPE_LINE_CHAIN& aPolygon ) { wxASSERT( aPolygon.IsClosed() ); // Add the outline as a new polygon in the polygon set if( m_Poly->OutlineCount() == 0 ) m_Poly->AddOutline( aPolygon ); else m_Poly->AddHole( aPolygon ); SetNeedRefill( true ); } void ZONE_CONTAINER::AddPolygon( std::vector< wxPoint >& aPolygon ) { if( aPolygon.empty() ) return; SHAPE_LINE_CHAIN outline; // Create an outline and populate it with the points of aPolygon for( unsigned i = 0; i < aPolygon.size(); i++ ) { outline.Append( VECTOR2I( aPolygon[i] ) ); } outline.SetClosed( true ); // Add the outline as a new polygon in the polygon set if( m_Poly->OutlineCount() == 0 ) m_Poly->AddOutline( outline ); else m_Poly->AddHole( outline ); SetNeedRefill( true ); } bool ZONE_CONTAINER::AppendCorner( wxPoint aPosition, int aHoleIdx, bool aAllowDuplication ) { // Ensure the main outline exists: if( m_Poly->OutlineCount() == 0 ) m_Poly->NewOutline(); // If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx. // (remember: the index of the first hole is 0) // Return error if if does dot exist. if( aHoleIdx >= m_Poly->HoleCount( 0 ) ) return false; m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication ); SetNeedRefill( true ); return true; } wxString ZONE_CONTAINER::GetSelectMenuText( EDA_UNITS_T aUnits ) const { wxString text; // Check whether the selected contour is a hole (contour index > 0) if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) text << wxT( " " ) << _( "(Cutout)" ); if( GetIsKeepout() ) text << wxT( " " ) << _( "(Keepout)" ); else text << GetNetnameMsg(); return wxString::Format( _( "Zone Outline %s on %s" ), text, GetLayerName() ); } int ZONE_CONTAINER::GetHatchPitch() const { return m_hatchPitch; } void ZONE_CONTAINER::SetHatch( int aHatchStyle, int aHatchPitch, bool aRebuildHatch ) { SetHatchPitch( aHatchPitch ); m_hatchStyle = (ZONE_CONTAINER::HATCH_STYLE) aHatchStyle; if( aRebuildHatch ) Hatch(); } void ZONE_CONTAINER::SetHatchPitch( int aPitch ) { m_hatchPitch = aPitch; } void ZONE_CONTAINER::UnHatch() { m_HatchLines.clear(); } // Creates hatch lines inside the outline of the complex polygon // sort function used in ::Hatch to sort points by descending wxPoint.x values bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst ) { return tst.x < ref.x; } void ZONE_CONTAINER::Hatch() { UnHatch(); if( m_hatchStyle == NO_HATCH || m_hatchPitch == 0 || m_Poly->IsEmpty() ) return; // define range for hatch lines int min_x = m_Poly->Vertex( 0 ).x; int max_x = m_Poly->Vertex( 0 ).x; int min_y = m_Poly->Vertex( 0 ).y; int max_y = m_Poly->Vertex( 0 ).y; for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ ) { if( iterator->x < min_x ) min_x = iterator->x; if( iterator->x > max_x ) max_x = iterator->x; if( iterator->y < min_y ) min_y = iterator->y; if( iterator->y > max_y ) max_y = iterator->y; } // Calculate spacing between 2 hatch lines int spacing; if( m_hatchStyle == DIAGONAL_EDGE ) spacing = m_hatchPitch; else spacing = m_hatchPitch * 2; // set the "length" of hatch lines (the length on horizontal axis) int hatch_line_len = m_hatchPitch; // To have a better look, give a slope depending on the layer LAYER_NUM layer = GetLayer(); int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1 double slope = 0.707106 * slope_flag; // 45 degrees slope int max_a, min_a; if( slope_flag == 1 ) { max_a = KiROUND( max_y - slope * min_x ); min_a = KiROUND( min_y - slope * max_x ); } else { max_a = KiROUND( max_y - slope * max_x ); min_a = KiROUND( min_y - slope * min_x ); } min_a = (min_a / spacing) * spacing; // calculate an offset depending on layer number, // for a better look of hatches on a multilayer board int offset = (layer * 7) / 8; min_a += offset; // loop through hatch lines #define MAXPTS 200 // Usually we store only few values per one hatch line // depending on the complexity of the zone outline static std::vector pointbuffer; pointbuffer.clear(); pointbuffer.reserve( MAXPTS + 2 ); for( int a = min_a; a < max_a; a += spacing ) { // get intersection points for this hatch line // Note: because we should have an even number of intersections with the // current hatch line and the zone outline (a closed polygon, // or a set of closed polygons), if an odd count is found // we skip this line (should not occur) pointbuffer.clear(); // Iterate through all vertices for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ ) { double x, y, x2, y2; int ok; SEG segment = *iterator; ok = FindLineSegmentIntersection( a, slope, segment.A.x, segment.A.y, segment.B.x, segment.B.y, &x, &y, &x2, &y2 ); if( ok ) { VECTOR2I point( KiROUND( x ), KiROUND( y ) ); pointbuffer.push_back( point ); } if( ok == 2 ) { VECTOR2I point( KiROUND( x2 ), KiROUND( y2 ) ); pointbuffer.push_back( point ); } if( pointbuffer.size() >= MAXPTS ) // overflow { wxASSERT( 0 ); break; } } // ensure we have found an even intersection points count // because intersections are the ends of segments // inside the polygon(s) and a segment has 2 ends. // if not, this is a strange case (a bug ?) so skip this hatch if( pointbuffer.size() % 2 != 0 ) continue; // sort points in order of descending x (if more than 2) to // ensure the starting point and the ending point of the same segment // are stored one just after the other. if( pointbuffer.size() > 2 ) sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX ); // creates lines or short segments inside the complex polygon for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 ) { int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x; // Push only one line for diagonal hatch, // or for small lines < twice the line length // else push 2 small lines if( m_hatchStyle == DIAGONAL_FULL || std::abs( dx ) < 2 * hatch_line_len ) { m_HatchLines.emplace_back( SEG( pointbuffer[ip], pointbuffer[ip + 1] ) ); } else { double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y; slope = dy / dx; if( dx > 0 ) dx = hatch_line_len; else dx = -hatch_line_len; int x1 = KiROUND( pointbuffer[ip].x + dx ); int x2 = KiROUND( pointbuffer[ip + 1].x - dx ); int y1 = KiROUND( pointbuffer[ip].y + dx * slope ); int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope ); m_HatchLines.emplace_back( SEG( pointbuffer[ip].x, pointbuffer[ip].y, x1, y1 ) ); m_HatchLines.emplace_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y, x2, y2 ) ); } } } } int ZONE_CONTAINER::GetDefaultHatchPitch() { return Mils2iu( 20 ); } BITMAP_DEF ZONE_CONTAINER::GetMenuImage() const { return add_zone_xpm; } void ZONE_CONTAINER::SwapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_ZONE_AREA_T ); std::swap( *((ZONE_CONTAINER*) this), *((ZONE_CONTAINER*) aImage) ); } void ZONE_CONTAINER::CacheTriangulation() { m_FilledPolysList.CacheTriangulation(); } /* * Some intersecting zones, despite being on the same layer with the same net, cannot be * merged due to other parameters such as fillet radius. The copper pour will end up * effectively merged though, so we want to keep the corners of such intersections sharp. */ void ZONE_CONTAINER::GetColinearCorners( BOARD* aBoard, std::set& aCorners ) { int epsilon = Millimeter2iu( 0.001 ); for( ZONE_CONTAINER* candidate : aBoard->Zones() ) { if( candidate != this && candidate->GetNetCode() == GetNetCode() && candidate->GetLayerSet() == GetLayerSet() && candidate->GetIsKeepout() == GetIsKeepout() ) { for( auto iter = m_Poly->CIterate(); iter; iter++ ) { if( candidate->m_Poly->Collide( iter.Get(), epsilon ) ) aCorners.insert( VECTOR2I( iter.Get() ) ); } } } } bool ZONE_CONTAINER::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly, std::set* aPreserveCorners ) const { if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ... return false; // Make a smoothed polygon out of the user-drawn polygon if required switch( m_cornerSmoothingType ) { case ZONE_SETTINGS::SMOOTHING_CHAMFER: aSmoothedPoly = m_Poly->Chamfer( m_cornerRadius, aPreserveCorners ); break; case ZONE_SETTINGS::SMOOTHING_FILLET: { auto board = GetBoard(); int maxError = ARC_HIGH_DEF; if( board ) maxError = board->GetDesignSettings().m_MaxError; aSmoothedPoly = m_Poly->Fillet( m_cornerRadius, maxError, aPreserveCorners ); break; } default: // Acute angles between adjacent edges can create issues in calculations, // in inflate/deflate outlines transforms, especially when the angle is very small. // We can avoid issues by creating a very small chamfer which remove acute angles, // or left it without chamfer and use only CPOLYGONS_LIST::InflateOutline to create // clearance areas aSmoothedPoly = m_Poly->Chamfer( Millimeter2iu( 0.0 ), aPreserveCorners ); break; } return true; }; /* Function TransformOutlinesShapeWithClearanceToPolygon * Convert the zone filled areas polygons to polygons * inflated (optional) by max( aClearanceValue, the zone clearance) * and copy them in aCornerBuffer * @param aMinClearanceValue the min clearance around outlines * @param aUseNetClearance true to use a clearance which is the max value between * aMinClearanceValue and the net clearance * false to use aMinClearanceValue only * @param aPreserveCorners an optional set of corners which should not be chamfered/filleted */ void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aMinClearanceValue, bool aUseNetClearance, std::set* aPreserveCorners ) const { // Creates the zone outline polygon (with holes if any) SHAPE_POLY_SET polybuffer; BuildSmoothedPoly( polybuffer, aPreserveCorners ); // add clearance to outline int clearance = aMinClearanceValue; if( aUseNetClearance && IsOnCopperLayer() ) { clearance = GetClearance(); if( aMinClearanceValue > clearance ) clearance = aMinClearanceValue; } // Calculate the polygon with clearance // holes are linked to the main outline, so only one polygon is created. if( clearance ) { BOARD* board = GetBoard(); int maxError = ARC_HIGH_DEF; if( board ) maxError = board->GetDesignSettings().m_MaxError; int segCount = std::max( GetArcToSegmentCount( clearance, maxError, 360.0 ), 3 ); polybuffer.Inflate( clearance, segCount ); } polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( polybuffer ); }