/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014-2017 CERN * Copyright (C) 2014-2023 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Włostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // for KiROUND #include "zone_filler.h" ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) : m_board( aBoard ), m_brdOutlinesValid( false ), m_commit( aCommit ), m_progressReporter( nullptr ), m_maxError( ARC_HIGH_DEF ), m_worstClearance( 0 ) { // To enable add "DebugZoneFiller=1" to kicad_advanced settings file. m_debugZoneFiller = ADVANCED_CFG::GetCfg().m_DebugZoneFiller; } ZONE_FILLER::~ZONE_FILLER() { } void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; wxASSERT_MSG( m_commit, wxT( "ZONE_FILLER must have a valid commit to call " "SetProgressReporter" ) ); } /** * Fills the given list of zones. * * NB: Invalidates connectivity - it is up to the caller to obtain a lock on the connectivity * data before calling Fill to prevent access to stale data by other coroutines (for example, * ratsnest redraw). This will generally be required if a UI-based progress reporter has been * installed. * * Caller is also responsible for re-building connectivity afterwards. */ bool ZONE_FILLER::Fill( std::vector& aZones, bool aCheck, wxWindow* aParent ) { std::lock_guard lock( m_board->GetConnectivity()->GetLock() ); std::vector> toFill; std::map, MD5_HASH> oldFillHashes; std::map> isolatedIslandsMap; std::shared_ptr connectivity = m_board->GetConnectivity(); // Rebuild (from scratch, ignoring dirty flags) just in case. This really needs to be reliable. connectivity->ClearRatsnest(); connectivity->Build( m_board, m_progressReporter ); BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); m_worstClearance = m_board->GetMaxClearanceValue(); if( m_progressReporter ) { m_progressReporter->Report( aCheck ? _( "Checking zone fills..." ) : _( "Building zone fills..." ) ); m_progressReporter->SetMaxProgress( aZones.size() ); m_progressReporter->KeepRefreshing(); } // The board outlines is used to clip solid areas inside the board (when outlines are valid) m_boardOutline.RemoveAllContours(); m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline ); // Update and cache zone bounding boxes and pad effective shapes so that we don't have to // make them thread-safe. // for( ZONE* zone : m_board->Zones() ) zone->CacheBoundingBox(); for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->IsDirty() ) { pad->BuildEffectiveShapes( UNDEFINED_LAYER ); pad->BuildEffectivePolygon(); } } for( ZONE* zone : footprint->Zones() ) zone->CacheBoundingBox(); // Rules may depend on insideCourtyard() or other expressions footprint->BuildCourtyardCaches(); } LSET boardCuMask = m_board->GetEnabledLayers() & LSET::AllCuMask(); auto findHighestPriorityZone = [&]( const BOX2I& aBBox, const PCB_LAYER_ID aItemLayer, const int aNetcode, const std::function aTestFn ) -> ZONE* { unsigned highestPriority = 0; ZONE* highestPriorityZone = nullptr; for( ZONE* zone : m_board->Zones() ) { // Rule areas are not filled if( zone->GetIsRuleArea() ) continue; if( zone->GetAssignedPriority() < highestPriority ) continue; if( !zone->IsOnLayer( aItemLayer ) ) continue; // Degenerate zones will cause trouble; skip them if( zone->GetNumCorners() <= 2 ) continue; if( !zone->GetBoundingBox().Intersects( aBBox ) ) continue; if( !aTestFn( zone ) ) continue; // Prefer highest priority and matching netcode if( zone->GetAssignedPriority() > highestPriority || zone->GetNetCode() == aNetcode ) { highestPriority = zone->GetAssignedPriority(); highestPriorityZone = zone; } } return highestPriorityZone; }; auto isInPourKeepoutArea = [&]( const BOX2I& aBBox, const PCB_LAYER_ID aItemLayer, const VECTOR2I aTestPoint ) -> bool { for( ZONE* zone : m_board->Zones() ) { if( !zone->GetIsRuleArea() ) continue; if( !zone->GetDoNotAllowCopperPour() ) continue; if( !zone->IsOnLayer( aItemLayer ) ) continue; // Degenerate zones will cause trouble; skip them if( zone->GetNumCorners() <= 2 ) continue; if( !zone->GetBoundingBox().Intersects( aBBox ) ) continue; if( zone->Outline()->Contains( aTestPoint ) ) return true; } return false; }; // Determine state of conditional via flashing for( PCB_TRACK* track : m_board->Tracks() ) { if( track->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast( track ); via->ClearZoneLayerOverrides(); if( !via->GetRemoveUnconnected() ) continue; BOX2I bbox = via->GetBoundingBox(); VECTOR2I center = via->GetPosition(); int testRadius = via->GetDrillValue() / 2 + 1; unsigned netcode = via->GetNetCode(); LSET layers = via->GetLayerSet() & boardCuMask; // Checking if the via hole touches the zone outline auto viaTestFn = [&]( const ZONE* aZone ) -> bool { return aZone->Outline()->Contains( center, -1, testRadius ); }; for( PCB_LAYER_ID layer : layers.Seq() ) { if( !via->ConditionallyFlashed( layer ) ) continue; if( isInPourKeepoutArea( bbox, layer, center ) ) { via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION ); } else { ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, viaTestFn ); if( zone && zone->GetNetCode() == via->GetNetCode() ) via->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED ); else via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION ); } } } } // Determine state of conditional pad flashing for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { pad->ClearZoneLayerOverrides(); if( !pad->GetRemoveUnconnected() ) continue; BOX2I bbox = pad->GetBoundingBox(); VECTOR2I center = pad->GetPosition(); unsigned netcode = pad->GetNetCode(); LSET layers = pad->GetLayerSet() & boardCuMask; auto padTestFn = [&]( const ZONE* aZone ) -> bool { return aZone->Outline()->Contains( center ); }; for( PCB_LAYER_ID layer : layers.Seq() ) { if( !pad->ConditionallyFlashed( layer ) ) continue; if( isInPourKeepoutArea( bbox, layer, center ) ) { pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION ); } else { ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, padTestFn ); if( zone && zone->GetNetCode() == pad->GetNetCode() ) pad->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED ); else pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION ); } } } } for( ZONE* zone : aZones ) { // Rule areas are not filled if( zone->GetIsRuleArea() ) continue; // Degenerate zones will cause trouble; skip them if( zone->GetNumCorners() <= 2 ) continue; if( m_commit ) m_commit->Modify( zone ); // calculate the hash value for filled areas. it will be used later to know if the // current filled areas are up to date for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { zone->BuildHashValue( layer ); oldFillHashes[ { zone, layer } ] = zone->GetHashValue( layer ); // Add the zone to the list of zones to test or refill toFill.emplace_back( std::make_pair( zone, layer ) ); isolatedIslandsMap[ zone ][ layer ] = ISOLATED_ISLANDS(); } // Remove existing fill first to prevent drawing invalid polygons on some platforms zone->UnFill(); } auto check_fill_dependency = [&]( ZONE* aZone, PCB_LAYER_ID aLayer, ZONE* aOtherZone ) -> bool { // Check to see if we have to knock-out the filled areas of a higher-priority // zone. If so we have to wait until said zone is filled before we can fill. // If the other zone is already filled on the requested layer then we're // good-to-go if( aOtherZone->GetFillFlag( aLayer ) ) return false; // Even if keepouts exclude copper pours, the exclusion is by outline rather than // filled area, so we're good-to-go here too if( aOtherZone->GetIsRuleArea() ) return false; // If the other zone is never going to be filled then don't wait for it if( aOtherZone->GetNumCorners() <= 2 ) return false; // If the zones share no common layers if( !aOtherZone->GetLayerSet().test( aLayer ) ) return false; if( aZone->HigherPriority( aOtherZone ) ) return false; // Same-net zones always use outlines to produce determinate results if( aOtherZone->SameNet( aZone ) ) return false; // A higher priority zone is found: if we intersect and it's not filled yet // then we have to wait. BOX2I inflatedBBox = aZone->GetBoundingBox(); inflatedBBox.Inflate( m_worstClearance ); if( !inflatedBBox.Intersects( aOtherZone->GetBoundingBox() ) ) return false; return aZone->Outline()->Collide( aOtherZone->Outline(), m_worstClearance ); }; auto fill_lambda = [&]( std::pair aFillItem ) -> int { PCB_LAYER_ID layer = aFillItem.second; ZONE* zone = aFillItem.first; bool canFill = true; // Check for any fill dependencies. If our zone needs to be clipped by // another zone then we can't fill until that zone is filled. for( ZONE* otherZone : aZones ) { if( otherZone == zone ) continue; if( check_fill_dependency( zone, layer, otherZone ) ) { canFill = false; break; } } if( m_progressReporter && m_progressReporter->IsCancelled() ) return 0; if( !canFill ) return 0; // Now we're ready to fill. { std::unique_lock zoneLock( zone->GetLock(), std::try_to_lock ); if( !zoneLock.owns_lock() ) return 0; SHAPE_POLY_SET fillPolys; if( !fillSingleZone( zone, layer, fillPolys ) ) return 0; zone->SetFilledPolysList( layer, fillPolys ); } if( m_progressReporter ) m_progressReporter->AdvanceProgress(); return 1; }; auto tesselate_lambda = [&]( std::pair aFillItem ) -> int { if( m_progressReporter && m_progressReporter->IsCancelled() ) return 0; PCB_LAYER_ID layer = aFillItem.second; ZONE* zone = aFillItem.first; { std::unique_lock zoneLock( zone->GetLock(), std::try_to_lock ); if( !zoneLock.owns_lock() ) return 0; zone->CacheTriangulation( layer ); zone->SetFillFlag( layer, true ); } return 1; }; // Calculate the copper fills (NB: this is multi-threaded) // std::vector, int>> returns; returns.reserve( toFill.size() ); size_t finished = 0; bool cancelled = false; thread_pool& tp = GetKiCadThreadPool(); for( const std::pair& fillItem : toFill ) returns.emplace_back( std::make_pair( tp.submit( fill_lambda, fillItem ), 0 ) ); while( !cancelled && finished != 2 * toFill.size() ) { for( size_t ii = 0; ii < returns.size(); ++ii ) { auto& ret = returns[ii]; if( ret.second > 1 ) continue; std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) ); if( status == std::future_status::ready ) { if( ret.first.get() ) // lambda completed { ++finished; ret.second++; // go to next step } if( !cancelled ) { // Queue the next step (will re-queue the existing step if it didn't complete) if( ret.second == 0 ) returns[ii].first = tp.submit( fill_lambda, toFill[ii] ); else if( ret.second == 1 ) returns[ii].first = tp.submit( tesselate_lambda, toFill[ii] ); } } } std::this_thread::sleep_for( std::chrono::milliseconds( 100 ) ); if( m_progressReporter ) { m_progressReporter->KeepRefreshing(); if( m_progressReporter->IsCancelled() ) cancelled = true; } } // Make sure that all futures have finished. // This can happen when the user cancels the above operation for( auto& ret : returns ) { if( ret.first.valid() ) { std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) ); while( status != std::future_status::ready ) { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); status = ret.first.wait_for( std::chrono::milliseconds( 100 ) ); } } } // Now update the connectivity to check for isolated copper islands // (NB: FindIsolatedCopperIslands() is multi-threaded) // if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false; m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Removing isolated copper islands..." ) ); m_progressReporter->KeepRefreshing(); } connectivity->SetProgressReporter( m_progressReporter ); connectivity->FillIsolatedIslandsMap( isolatedIslandsMap ); connectivity->SetProgressReporter( nullptr ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; for( ZONE* zone : aZones ) { // Keepout zones are not filled if( zone->GetIsRuleArea() ) continue; zone->SetIsFilled( true ); } // Now remove isolated copper islands according to the isolated islands strategy assigned // by the user (always, never, below-certain-size). // for( const auto& [ zone, zoneIslands ] : isolatedIslandsMap ) { // If *all* the polygons are islands, do not remove any of them bool allIslands = true; for( const auto& [ layer, layerIslands ] : zoneIslands ) { if( layerIslands.m_IsolatedOutlines.size() != static_cast( zone->GetFilledPolysList( layer )->OutlineCount() ) ) { allIslands = false; break; } } if( allIslands ) continue; for( const auto& [ layer, layerIslands ] : zoneIslands ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue; if( layerIslands.m_IsolatedOutlines.empty() ) continue; std::vector islands = layerIslands.m_IsolatedOutlines; // The list of polygons to delete must be explored from last to first in list, // to allow deleting a polygon from list without breaking the remaining of the list std::sort( islands.begin(), islands.end(), std::greater() ); std::shared_ptr poly = zone->GetFilledPolysList( layer ); long long int minArea = zone->GetMinIslandArea(); ISLAND_REMOVAL_MODE mode = zone->GetIslandRemovalMode(); for( int idx : islands ) { SHAPE_LINE_CHAIN& outline = poly->Outline( idx ); if( mode == ISLAND_REMOVAL_MODE::ALWAYS ) poly->DeletePolygonAndTriangulationData( idx, false ); else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area( true ) < minArea ) poly->DeletePolygonAndTriangulationData( idx, false ); else zone->SetIsIsland( layer, idx ); } poly->UpdateTriangulationDataHash(); zone->CalculateFilledArea(); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; } } // Now remove islands which are either outside the board edge or fail to meet the minimum // area requirements using island_check_return = std::vector, int>>; std::vector, double>> polys_to_check; // rough estimate to save re-allocation time polys_to_check.reserve( m_board->GetCopperLayerCount() * aZones.size() ); for( ZONE* zone : aZones ) { LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask( MAX_CU_LAYERS ); // Min-thickness is the web thickness. On the other hand, a blob min-thickness by // min-thickness is not useful. Since there's no obvious definition of web vs. blob, we // arbitrarily choose "at least 3X the area". double minArea = (double) zone->GetMinThickness() * zone->GetMinThickness() * 3; for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue; polys_to_check.emplace_back( zone->GetFilledPolysList( layer ), minArea ); } } auto island_lambda = [&]( int aStart, int aEnd ) -> island_check_return { island_check_return retval; for( int ii = aStart; ii < aEnd && !cancelled; ++ii ) { auto [poly, minArea] = polys_to_check[ii]; for( int jj = poly->OutlineCount() - 1; jj >= 0; jj-- ) { SHAPE_POLY_SET island; SHAPE_POLY_SET intersection; const SHAPE_LINE_CHAIN& test_poly = poly->Polygon( jj ).front(); double island_area = test_poly.Area(); if( island_area < minArea ) continue; island.AddOutline( test_poly ); intersection.BooleanIntersection( m_boardOutline, island, SHAPE_POLY_SET::POLYGON_MODE::PM_FAST ); // Nominally, all of these areas should be either inside or outside the // board outline. So this test should be able to just compare areas (if // they are equal, you are inside). But in practice, we sometimes have // slight overlap at the edges, so testing against half-size area acts as // a fail-safe. if( intersection.Area() < island_area / 2.0 ) retval.emplace_back( poly, jj ); } } return retval; }; auto island_returns = tp.parallelize_loop( 0, polys_to_check.size(), island_lambda ); cancelled = false; // Allow island removal threads to finish for( size_t ii = 0; ii < island_returns.size(); ++ii ) { std::future& ret = island_returns[ii]; if( ret.valid() ) { std::future_status status = ret.wait_for( std::chrono::seconds( 0 ) ); while( status != std::future_status::ready ) { if( m_progressReporter ) { m_progressReporter->KeepRefreshing(); if( m_progressReporter->IsCancelled() ) cancelled = true; } status = ret.wait_for( std::chrono::milliseconds( 100 ) ); } } } if( cancelled ) return false; for( size_t ii = 0; ii < island_returns.size(); ++ii ) { std::future& ret = island_returns[ii]; if( ret.valid() ) { for( auto& action_item : ret.get() ) action_item.first->DeletePolygonAndTriangulationData( action_item.second, true ); } } for( ZONE* zone : aZones ) zone->CalculateFilledArea(); if( aCheck ) { bool outOfDate = false; for( ZONE* zone : aZones ) { // Keepout zones are not filled if( zone->GetIsRuleArea() ) continue; for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { zone->BuildHashValue( layer ); if( oldFillHashes[ { zone, layer } ] != zone->GetHashValue( layer ) ) outOfDate = true; } } if( outOfDate ) { KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ), _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING ); dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ ); if( dlg.ShowModal() == wxID_CANCEL ) return false; } else { // No need to commit something that hasn't changed (and committing will set // the modified flag). return false; } } if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false; m_progressReporter->AdvancePhase(); m_progressReporter->KeepRefreshing(); } return true; } /** * Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be * either the thermal clearance or the electrical clearance). */ void ZONE_FILLER::addKnockout( PAD* aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles ) { if( aPad->GetShape() == PAD_SHAPE::CUSTOM ) { SHAPE_POLY_SET poly; aPad->TransformShapeToPolygon( poly, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); // the pad shape in zone can be its convex hull or the shape itself if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) { std::vector convex_hull; BuildConvexHull( convex_hull, poly ); aHoles.NewOutline(); for( const VECTOR2I& pt : convex_hull ) aHoles.Append( pt ); } else aHoles.Append( poly ); } else { aPad->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); } } /** * Add a knockout for a pad's hole. */ void ZONE_FILLER::addHoleKnockout( PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles ) { aPad->TransformHoleToPolygon( aHoles, aGap, m_maxError, ERROR_OUTSIDE ); } /** * Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which * might be either the electrical clearance or the board edge clearance). */ void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap, bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles ) { switch( aItem->Type() ) { case PCB_FIELD_T: case PCB_TEXT_T: { PCB_TEXT* text = static_cast( aItem ); if( text->IsVisible() ) { if( text->IsKnockout() ) { int antiGap = -m_maxError * 2; // Don't leave gaps around knockout text text->TransformShapeToPolygon( aHoles, aLayer, antiGap, m_maxError, ERROR_OUTSIDE ); } else { text->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); } } break; } case PCB_TEXTBOX_T: { PCB_TEXTBOX* textbox = static_cast( aItem ); if( textbox->IsVisible() ) textbox->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); break; } case PCB_SHAPE_T: case PCB_TARGET_T: aItem->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, aIgnoreLineWidth ); break; default: break; } } /** * Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add * in spokes, which must be done later. */ void ZONE_FILLER::knockoutThermalReliefs( const ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFill, std::vector& aThermalConnectionPads, std::vector& aNoConnectionPads ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); ZONE_CONNECTION connection; DRC_CONSTRAINT constraint; int padClearance; int holeClearance; SHAPE_POLY_SET holes; for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { BOX2I padBBox = pad->GetBoundingBox(); padBBox.Inflate( m_worstClearance ); if( !padBBox.Intersects( aZone->GetBoundingBox() ) ) continue; if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 || pad->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION ) { // collect these for knockout in buildCopperItemClearances() aNoConnectionPads.push_back( pad ); continue; } if( aZone->IsTeardropArea() ) { connection = ZONE_CONNECTION::FULL; } else { constraint = bds.m_DRCEngine->EvalZoneConnection( pad, aZone, aLayer ); connection = constraint.m_ZoneConnection; } switch( connection ) { case ZONE_CONNECTION::THERMAL: constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer ); padClearance = constraint.GetValue().Min(); if( pad->CanFlashLayer( aLayer ) ) { aThermalConnectionPads.push_back( pad ); addKnockout( pad, aLayer, padClearance, holes ); } else if( pad->GetDrillSize().x > 0 ) { pad->TransformHoleToPolygon( holes, padClearance, m_maxError, ERROR_OUTSIDE ); } break; case ZONE_CONNECTION::NONE: constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, pad, aZone, aLayer ); if( constraint.GetValue().Min() > aZone->GetLocalClearance() ) padClearance = constraint.GetValue().Min(); else padClearance = aZone->GetLocalClearance(); if( pad->FlashLayer( aLayer ) ) { addKnockout( pad, aLayer, padClearance, holes ); } else if( pad->GetDrillSize().x > 0 ) { constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, pad, aZone, aLayer ); if( constraint.GetValue().Min() > padClearance ) holeClearance = constraint.GetValue().Min(); else holeClearance = padClearance; pad->TransformHoleToPolygon( holes, holeClearance, m_maxError, ERROR_OUTSIDE ); } break; default: // No knockout continue; } } } aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST ); } /** * Removes clearance from the shape for copper items which share the zone's layer but are * not connected to it. */ void ZONE_FILLER::buildCopperItemClearances( const ZONE* aZone, PCB_LAYER_ID aLayer, const std::vector aNoConnectionPads, SHAPE_POLY_SET& aHoles ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); long ticker = 0; auto checkForCancel = [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool { return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled(); }; // A small extra clearance to be sure actual track clearances are not smaller than // requested clearance due to many approximations in calculations, like arc to segment // approx, rounding issues, etc. BOX2I zone_boundingbox = aZone->GetBoundingBox(); int extra_margin = pcbIUScale.mmToIU( ADVANCED_CFG::GetCfg().m_ExtraClearance ); // Items outside the zone bounding box are skipped, so it needs to be inflated by the // largest clearance value found in the netclasses and rules zone_boundingbox.Inflate( m_worstClearance + extra_margin ); auto evalRulesForItems = [&bds]( DRC_CONSTRAINT_T aConstraint, const BOARD_ITEM* a, const BOARD_ITEM* b, PCB_LAYER_ID aEvalLayer ) -> int { DRC_CONSTRAINT c = bds.m_DRCEngine->EvalRules( aConstraint, a, b, aEvalLayer ); return c.GetValue().Min(); }; // Add non-connected pad clearances // auto knockoutPadClearance = [&]( PAD* aPad ) { int init_gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ); int gap = init_gap; bool hasHole = aPad->GetDrillSize().x > 0; bool flashLayer = aPad->FlashLayer( aLayer ); bool platedHole = hasHole && aPad->GetAttribute() == PAD_ATTRIB::PTH; if( flashLayer || platedHole ) { gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ) ); } if( flashLayer && gap > 0 ) addKnockout( aPad, aLayer, gap + extra_margin, aHoles ); if( hasHole ) { // NPTH do not need copper clearance gaps to their holes if( aPad->GetAttribute() == PAD_ATTRIB::NPTH ) gap = init_gap; gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ) ); gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ) ); if( gap > 0 ) addHoleKnockout( aPad, gap + extra_margin, aHoles ); } }; for( PAD* pad : aNoConnectionPads ) { if( checkForCancel( m_progressReporter ) ) return; knockoutPadClearance( pad ); } // Add non-connected track clearances // auto knockoutTrackClearance = [&]( PCB_TRACK* aTrack ) { if( aTrack->GetBoundingBox().Intersects( zone_boundingbox ) ) { bool sameNet = aTrack->GetNetCode() == aZone->GetNetCode() && aZone->GetNetCode() != 0; int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aTrack, aLayer ); if( aTrack->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast( aTrack ); if( via->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION ) sameNet = false; } if( !sameNet ) { gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aTrack, aLayer ) ); } if( aTrack->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast( aTrack ); if( via->FlashLayer( aLayer ) && gap > 0 ) { via->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin, m_maxError, ERROR_OUTSIDE ); } gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, aZone, via, aLayer ) ); if( !sameNet ) { gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, aZone, via, aLayer ) ); } if( gap > 0 ) { int radius = via->GetDrillValue() / 2; TransformCircleToPolygon( aHoles, via->GetPosition(), radius + gap + extra_margin, m_maxError, ERROR_OUTSIDE ); } } else { if( gap > 0 ) { aTrack->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin, m_maxError, ERROR_OUTSIDE ); } } } }; for( PCB_TRACK* track : m_board->Tracks() ) { if( !track->IsOnLayer( aLayer ) ) continue; if( checkForCancel( m_progressReporter ) ) return; knockoutTrackClearance( track ); } // Add graphic item clearances. They are by definition unconnected, and have no clearance // definitions of their own. // auto knockoutGraphicClearance = [&]( BOARD_ITEM* aItem ) { // A item on the Edge_Cuts or Margin is always seen as on any layer: if( aItem->IsOnLayer( aLayer ) || aItem->IsOnLayer( Edge_Cuts ) || aItem->IsOnLayer( Margin ) ) { if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) { bool ignoreLineWidths = false; int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aItem, aLayer ); if( aItem->IsOnLayer( aLayer ) ) { gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aItem, aLayer ) ); } else if( aItem->IsOnLayer( Edge_Cuts ) ) { gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT, aZone, aItem, Edge_Cuts ) ); ignoreLineWidths = true; } else if( aItem->IsOnLayer( Margin ) ) { gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT, aZone, aItem, Margin ) ); } addKnockout( aItem, aLayer, gap + extra_margin, ignoreLineWidths, aHoles ); } } }; for( FOOTPRINT* footprint : m_board->Footprints() ) { knockoutGraphicClearance( &footprint->Reference() ); knockoutGraphicClearance( &footprint->Value() ); std::set allowedNetTiePads; // Don't knock out holes for graphic items which implement a net-tie to the zone's net // on the layer being filled. if( footprint->IsNetTie() ) { for( PAD* pad : footprint->Pads() ) { if( pad->GetNetCode() == aZone->GetNetCode() ) { if( pad->IsOnLayer( aLayer ) ) allowedNetTiePads.insert( pad ); for( PAD* other : footprint->GetNetTiePads( pad ) ) { if( other->IsOnLayer( aLayer ) ) allowedNetTiePads.insert( other ); } } } } for( BOARD_ITEM* item : footprint->GraphicalItems() ) { if( checkForCancel( m_progressReporter ) ) return; BOX2I itemBBox = item->GetBoundingBox(); if( !zone_boundingbox.Intersects( itemBBox ) ) continue; bool skipItem = false; if( item->IsOnLayer( aLayer ) ) { std::shared_ptr itemShape = item->GetEffectiveShape(); for( PAD* pad : allowedNetTiePads ) { if( pad->GetBoundingBox().Intersects( itemBBox ) && pad->GetEffectiveShape()->Collide( itemShape.get() ) ) { skipItem = true; break; } } } if( !skipItem ) knockoutGraphicClearance( item ); } } for( BOARD_ITEM* item : m_board->Drawings() ) { if( checkForCancel( m_progressReporter ) ) return; knockoutGraphicClearance( item ); } // Add non-connected zone clearances // auto knockoutZoneClearance = [&]( ZONE* aKnockout ) { // If the zones share no common layers if( !aKnockout->GetLayerSet().test( aLayer ) ) return; if( aKnockout->GetBoundingBox().Intersects( zone_boundingbox ) ) { if( aKnockout->GetIsRuleArea() ) { // Keepouts use outline with no clearance aKnockout->TransformSmoothedOutlineToPolygon( aHoles, 0, m_maxError, ERROR_OUTSIDE, nullptr ); } else { int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aKnockout, aLayer ); gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aKnockout, aLayer ) ); SHAPE_POLY_SET poly; aKnockout->TransformShapeToPolygon( poly, aLayer, gap + extra_margin, m_maxError, ERROR_OUTSIDE ); aHoles.Append( poly ); } } }; for( ZONE* otherZone : m_board->Zones() ) { if( checkForCancel( m_progressReporter ) ) return; // Negative clearance permits zones to short if( evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, otherZone, aLayer ) < 0 ) continue; if( otherZone->GetIsRuleArea() ) { if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() ) knockoutZoneClearance( otherZone ); } else if( otherZone->HigherPriority( aZone ) ) { if( !otherZone->SameNet( aZone ) ) knockoutZoneClearance( otherZone ); } } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( ZONE* otherZone : footprint->Zones() ) { if( checkForCancel( m_progressReporter ) ) return; if( otherZone->GetIsRuleArea() ) { if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() ) knockoutZoneClearance( otherZone ); } else if( otherZone->HigherPriority( aZone ) ) { if( !otherZone->SameNet( aZone ) ) knockoutZoneClearance( otherZone ); } } } aHoles.Simplify( SHAPE_POLY_SET::PM_FAST ); } /** * Removes the outlines of higher-proirity zones with the same net. These zones should be * in charge of the fill parameters within their own outlines. */ void ZONE_FILLER::subtractHigherPriorityZones( const ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aRawFill ) { BOX2I zoneBBox = aZone->GetBoundingBox(); auto knockoutZoneOutline = [&]( ZONE* aKnockout ) { // If the zones share no common layers if( !aKnockout->GetLayerSet().test( aLayer ) ) return; if( aKnockout->GetBoundingBox().Intersects( zoneBBox ) ) { // Processing of arc shapes in zones is not yet supported because Clipper // can't do boolean operations on them. The poly outline must be converted to // segments first. SHAPE_POLY_SET outline = aKnockout->Outline()->CloneDropTriangulation(); outline.ClearArcs(); aRawFill.BooleanSubtract( outline, SHAPE_POLY_SET::PM_FAST ); } }; for( ZONE* otherZone : m_board->Zones() ) { // Don't use the `HigherPriority()` check here because we _only_ want to knock out zones // with explicitly higher priorities, not those with equal priorities if( otherZone->SameNet( aZone ) && otherZone->GetAssignedPriority() > aZone->GetAssignedPriority() ) { // Do not remove teardrop area: it is not useful and not good if( !otherZone->IsTeardropArea() ) knockoutZoneOutline( otherZone ); } } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( ZONE* otherZone : footprint->Zones() ) { if( otherZone->SameNet( aZone ) && otherZone->HigherPriority( aZone ) ) { // Do not remove teardrop area: it is not useful and not good if( !otherZone->IsTeardropArea() ) knockoutZoneOutline( otherZone ); } } } } #define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \ { if( m_debugZoneFiller && aDebugLayer == b ) \ { \ m_board->SetLayerName( b, c ); \ SHAPE_POLY_SET d = a; \ d.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \ aFillPolys = d; \ return false; \ } \ } /** * 1 - Creates the main zone outline using a correction to shrink the resulting area by * m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2 * so that when drawing outline with segments having a thickness of m_ZoneMinThickness the * outlines will match exactly the initial outlines * 2 - Knocks out thermal reliefs around thermally-connected pads * 3 - Builds a set of thermal spoke for the whole zone * 4 - Knocks out unconnected copper items, deleting any affected spokes * 5 - Removes unconnected copper islands, deleting any affected spokes * 6 - Adds in the remaining spokes */ bool ZONE_FILLER::fillCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, const SHAPE_POLY_SET& aSmoothedOutline, const SHAPE_POLY_SET& aMaxExtents, SHAPE_POLY_SET& aFillPolys ) { m_maxError = m_board->GetDesignSettings().m_MaxError; // Features which are min_width should survive pruning; features that are *less* than // min_width should not. Therefore we subtract epsilon from the min_width when // deflating/inflating. int half_min_width = aZone->GetMinThickness() / 2; int epsilon = pcbIUScale.mmToIU( 0.001 ); // Solid polygons are deflated and inflated during calculations. Deflating doesn't cause // issues, but inflate is tricky as it can create excessively long and narrow spikes for // acute angles. // ALLOW_ACUTE_CORNERS cannot be used due to the spike problem. // CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual // circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581). // It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided // as a "less-safe" option. // ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments. // CHAMFER_ALL_CORNERS improves the segment count. SHAPE_POLY_SET::CORNER_STRATEGY fastCornerStrategy = SHAPE_POLY_SET::CHAMFER_ALL_CORNERS; SHAPE_POLY_SET::CORNER_STRATEGY cornerStrategy = SHAPE_POLY_SET::ROUND_ALL_CORNERS; std::vector thermalConnectionPads; std::vector noConnectionPads; std::deque thermalSpokes; SHAPE_POLY_SET clearanceHoles; aFillPolys = aSmoothedOutline; DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In1_Cu, wxT( "smoothed-outline" ) ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; /* ------------------------------------------------------------------------------------- * Knockout thermal reliefs. */ knockoutThermalReliefs( aZone, aLayer, aFillPolys, thermalConnectionPads, noConnectionPads ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In2_Cu, wxT( "minus-thermal-reliefs" ) ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; /* ------------------------------------------------------------------------------------- * Knockout electrical clearances. */ buildCopperItemClearances( aZone, aLayer, noConnectionPads, clearanceHoles ); for( PAD* pad : thermalConnectionPads ) addHoleKnockout( pad, 0, clearanceHoles ); DUMP_POLYS_TO_COPPER_LAYER( clearanceHoles, In3_Cu, wxT( "clearance-holes" ) ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; /* ------------------------------------------------------------------------------------- * Add thermal relief spokes. */ buildThermalSpokes( aZone, aLayer, thermalConnectionPads, thermalSpokes ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; // Create a temporary zone that we can hit-test spoke-ends against. It's only temporary // because the "real" subtract-clearance-holes has to be done after the spokes are added. static const bool USE_BBOX_CACHES = true; SHAPE_POLY_SET testAreas = aFillPolys.CloneDropTriangulation(); testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, wxT( "minus-clearance-holes" ) ); // Prune features that don't meet minimum-width criteria if( half_min_width - epsilon > epsilon ) { testAreas.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, wxT( "spoke-test-deflated" ) ); testAreas.Inflate( half_min_width - epsilon, fastCornerStrategy, m_maxError ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In6_Cu, wxT( "spoke-test-reinflated" ) ); } if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; // Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed // things up a bit. testAreas.BuildBBoxCaches(); int interval = 0; SHAPE_POLY_SET debugSpokes; for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes ) { const VECTOR2I& testPt = spoke.CPoint( 3 ); // Hit-test against zone body if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) ) { if( m_debugZoneFiller ) debugSpokes.AddOutline( spoke ); aFillPolys.AddOutline( spoke ); continue; } if( interval++ > 400 ) { if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; interval = 0; } // Hit-test against other spokes for( const SHAPE_LINE_CHAIN& other : thermalSpokes ) { // Hit test in both directions to avoid interactions with round-off errors. // (See https://gitlab.com/kicad/code/kicad/-/issues/13316.) if( &other != &spoke && other.PointInside( testPt, 1, USE_BBOX_CACHES ) && spoke.PointInside( other.CPoint( 3 ), 1, USE_BBOX_CACHES ) ) { if( m_debugZoneFiller ) debugSpokes.AddOutline( spoke ); aFillPolys.AddOutline( spoke ); break; } } } DUMP_POLYS_TO_COPPER_LAYER( debugSpokes, In7_Cu, wxT( "spokes" ) ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In8_Cu, wxT( "after-spoke-trimming" ) ); /* ------------------------------------------------------------------------------------- * Prune features that don't meet minimum-width criteria */ if( half_min_width - epsilon > epsilon ) aFillPolys.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError ); // Min-thickness is the web thickness. On the other hand, a blob min-thickness by // min-thickness is not useful. Since there's no obvious definition of web vs. blob, we // arbitrarily choose "at least 2X min-thickness on one axis". (Since we're doing this // during the deflated state, that means we test for "at least min-thickness".) for( int ii = aFillPolys.OutlineCount() - 1; ii >= 0; ii-- ) { std::vector& island = aFillPolys.Polygon( ii ); BOX2I islandExtents; for( const VECTOR2I& pt : island.front().CPoints() ) { islandExtents.Merge( pt ); if( islandExtents.GetSizeMax() > aZone->GetMinThickness() ) break; } if( islandExtents.GetSizeMax() < aZone->GetMinThickness() ) aFillPolys.DeletePolygon( ii ); } DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In9_Cu, wxT( "deflated" ) ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; /* ------------------------------------------------------------------------------------- * Process the hatch pattern (note that we do this while deflated) */ if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) { if( !addHatchFillTypeOnZone( aZone, aLayer, aDebugLayer, aFillPolys ) ) return false; } if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; /* ------------------------------------------------------------------------------------- * Finish minimum-width pruning by re-inflating */ if( half_min_width - epsilon > epsilon ) aFillPolys.Inflate( half_min_width - epsilon, cornerStrategy, m_maxError, true ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In15_Cu, wxT( "after-reinflating" ) ); /* ------------------------------------------------------------------------------------- * Ensure additive changes (thermal stubs and inflating acute corners) do not add copper * outside the zone boundary, inside the clearance holes, or between otherwise isolated * islands */ aFillPolys.BooleanIntersection( aMaxExtents, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In16_Cu, wxT( "after-trim-to-outline" ) ); aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In17_Cu, wxT( "after-trim-to-clearance-holes" ) ); /* ------------------------------------------------------------------------------------- * Lastly give any same-net but higher-priority zones control over their own area. */ subtractHigherPriorityZones( aZone, aLayer, aFillPolys ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In18_Cu, wxT( "minus-higher-priority-zones" ) ); aFillPolys.Fracture( SHAPE_POLY_SET::PM_FAST ); return true; } bool ZONE_FILLER::fillNonCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, const SHAPE_POLY_SET& aSmoothedOutline, SHAPE_POLY_SET& aFillPolys ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); BOX2I zone_boundingbox = aZone->GetBoundingBox(); SHAPE_POLY_SET clearanceHoles; long ticker = 0; auto checkForCancel = [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool { return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled(); }; auto knockoutGraphicClearance = [&]( BOARD_ITEM* aItem ) { if( aItem->IsKnockout() && aItem->IsOnLayer( aLayer ) && aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) { DRC_CONSTRAINT cc = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aItem, aLayer ); addKnockout( aItem, aLayer, cc.GetValue().Min(), false, clearanceHoles ); } }; for( FOOTPRINT* footprint : m_board->Footprints() ) { if( checkForCancel( m_progressReporter ) ) return false; knockoutGraphicClearance( &footprint->Reference() ); knockoutGraphicClearance( &footprint->Value() ); for( BOARD_ITEM* item : footprint->GraphicalItems() ) knockoutGraphicClearance( item ); } for( BOARD_ITEM* item : m_board->Drawings() ) { if( checkForCancel( m_progressReporter ) ) return false; knockoutGraphicClearance( item ); } aFillPolys = aSmoothedOutline; aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); for( ZONE* keepout : m_board->Zones() ) { if( !keepout->GetIsRuleArea() ) continue; if( keepout->GetDoNotAllowCopperPour() && keepout->IsOnLayer( aLayer ) ) { if( keepout->GetBoundingBox().Intersects( zone_boundingbox ) ) aFillPolys.BooleanSubtract( *keepout->Outline(), SHAPE_POLY_SET::PM_FAST ); } } // Features which are min_width should survive pruning; features that are *less* than // min_width should not. Therefore we subtract epsilon from the min_width when // deflating/inflating. int half_min_width = aZone->GetMinThickness() / 2; int epsilon = pcbIUScale.mmToIU( 0.001 ); aFillPolys.Deflate( half_min_width - epsilon, SHAPE_POLY_SET::CHAMFER_ALL_CORNERS, m_maxError ); // Remove the non filled areas due to the hatch pattern if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) { if( !addHatchFillTypeOnZone( aZone, aLayer, aLayer, aFillPolys ) ) return false; } // Re-inflate after pruning of areas that don't meet minimum-width criteria if( half_min_width - epsilon > epsilon ) aFillPolys.Inflate( half_min_width - epsilon, SHAPE_POLY_SET::ROUND_ALL_CORNERS, m_maxError ); aFillPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); return true; } /* * Build the filled solid areas data from real outlines (stored in m_Poly) * The solid areas can be more than one on copper layers, and do not have holes * ( holes are linked by overlapping segments to the main outline) */ bool ZONE_FILLER::fillSingleZone( ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFillPolys ) { SHAPE_POLY_SET* boardOutline = m_brdOutlinesValid ? &m_boardOutline : nullptr; SHAPE_POLY_SET maxExtents; SHAPE_POLY_SET smoothedPoly; PCB_LAYER_ID debugLayer = UNDEFINED_LAYER; if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) ) { debugLayer = aLayer; aLayer = F_Cu; } if( !aZone->BuildSmoothedPoly( maxExtents, aLayer, boardOutline, &smoothedPoly ) ) return false; if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; if( aZone->IsOnCopperLayer() ) { if( fillCopperZone( aZone, aLayer, debugLayer, smoothedPoly, maxExtents, aFillPolys ) ) aZone->SetNeedRefill( false ); } else { if( fillNonCopperZone( aZone, aLayer, smoothedPoly, aFillPolys ) ) aZone->SetNeedRefill( false ); } return true; } /** * Function buildThermalSpokes */ void ZONE_FILLER::buildThermalSpokes( const ZONE* aZone, PCB_LAYER_ID aLayer, const std::vector& aSpokedPadsList, std::deque& aSpokesList ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); BOX2I zoneBB = aZone->GetBoundingBox(); DRC_CONSTRAINT constraint; zoneBB.Inflate( std::max( bds.GetBiggestClearanceValue(), aZone->GetLocalClearance() ) ); // Is a point on the boundary of the polygon inside or outside? This small epsilon lets // us avoid the question. int epsilon = KiROUND( pcbIUScale.IU_PER_MM * 0.04 ); // about 1.5 mil for( PAD* pad : aSpokedPadsList ) { // We currently only connect to pads, not pad holes if( !pad->IsOnLayer( aLayer ) ) continue; constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer ); int thermalReliefGap = constraint.GetValue().Min(); constraint = bds.m_DRCEngine->EvalRules( THERMAL_SPOKE_WIDTH_CONSTRAINT, pad, aZone, aLayer ); int spoke_w = constraint.GetValue().Opt(); // Spoke width should ideally be smaller than the pad minor axis. // Otherwise the thermal shape is not really a thermal relief, // and the algo to count the actual number of spokes can fail int spoke_max_allowed_w = std::min( pad->GetSize().x, pad->GetSize().y ); spoke_w = std::max( spoke_w, constraint.Value().Min() ); spoke_w = std::min( spoke_w, constraint.Value().Max() ); // ensure the spoke width is smaller than the pad minor size spoke_w = std::min( spoke_w, spoke_max_allowed_w ); // Cannot create stubs having a width < zone min thickness if( spoke_w < aZone->GetMinThickness() ) continue; int spoke_half_w = spoke_w / 2; // Quick test here to possibly save us some work BOX2I itemBB = pad->GetBoundingBox(); itemBB.Inflate( thermalReliefGap + epsilon ); if( !( itemBB.Intersects( zoneBB ) ) ) continue; // Thermal spokes consist of square-ended segments from the pad center to points just // outside the thermal relief. The outside end has an extra center point (which must be // at idx 3) which is used for testing whether or not the spoke connects to copper in the // parent zone. auto buildSpokesFromOrigin = [&]( const BOX2I& box ) { for( int i = 0; i < 4; i++ ) { SHAPE_LINE_CHAIN spoke; switch( i ) { case 0: // lower stub spoke.Append( +spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, box.GetBottom() ); spoke.Append( 0, box.GetBottom() ); // test pt spoke.Append( +spoke_half_w, box.GetBottom() ); break; case 1: // upper stub spoke.Append( +spoke_half_w, +spoke_half_w ); spoke.Append( -spoke_half_w, +spoke_half_w ); spoke.Append( -spoke_half_w, box.GetTop() ); spoke.Append( 0, box.GetTop() ); // test pt spoke.Append( +spoke_half_w, box.GetTop() ); break; case 2: // right stub spoke.Append( -spoke_half_w, +spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( box.GetRight(), -spoke_half_w ); spoke.Append( box.GetRight(), 0 ); // test pt spoke.Append( box.GetRight(), +spoke_half_w ); break; case 3: // left stub spoke.Append( +spoke_half_w, +spoke_half_w ); spoke.Append( +spoke_half_w, -spoke_half_w ); spoke.Append( box.GetLeft(), -spoke_half_w ); spoke.Append( box.GetLeft(), 0 ); // test pt spoke.Append( box.GetLeft(), +spoke_half_w ); break; } spoke.SetClosed( true ); aSpokesList.push_back( std::move( spoke ) ); } }; // If the spokes are at a cardinal angle then we can generate them from a bounding box // without trig. if( ( pad->GetOrientation() + pad->GetThermalSpokeAngle() ).IsCardinal() ) { BOX2I spokesBox = pad->GetBoundingBox(); spokesBox.Inflate( thermalReliefGap + epsilon ); // Spokes are from center of pad shape, not from hole. spokesBox.Offset( - pad->ShapePos() ); buildSpokesFromOrigin( spokesBox ); auto spokeIter = aSpokesList.rbegin(); for( int ii = 0; ii < 4; ++ii, ++spokeIter ) spokeIter->Move( pad->ShapePos() ); } // Even if the spokes are rotated, we can fudge it for round and square pads by rotating // the bounding box to match the spokes. else if( pad->GetSizeX() == pad->GetSizeY() && pad->GetShape() != PAD_SHAPE::CUSTOM ) { // Since the bounding-box needs to be correclty rotated we use a dummy pad to keep // from dirtying the real pad's cached shapes. PAD dummy_pad( *pad ); dummy_pad.SetOrientation( pad->GetThermalSpokeAngle() ); // Spokes are from center of pad shape, not from hole. So the dummy pad has no shape // offset and is at position 0,0 dummy_pad.SetPosition( VECTOR2I( 0, 0 ) ); dummy_pad.SetOffset( VECTOR2I( 0, 0 ) ); BOX2I spokesBox = dummy_pad.GetBoundingBox(); spokesBox.Inflate( thermalReliefGap + epsilon ); buildSpokesFromOrigin( spokesBox ); auto spokeIter = aSpokesList.rbegin(); for( int ii = 0; ii < 4; ++ii, ++spokeIter ) { spokeIter->Rotate( pad->GetOrientation() + pad->GetThermalSpokeAngle() ); spokeIter->Move( pad->ShapePos() ); } } // And lastly, even when we have to resort to trig, we can use it only in a post-process // after the rotated-bounding-box trick from above. else { // Since the bounding-box needs to be correclty rotated we use a dummy pad to keep // from dirtying the real pad's cached shapes. PAD dummy_pad( *pad ); dummy_pad.SetOrientation( pad->GetThermalSpokeAngle() ); // Spokes are from center of pad shape, not from hole. So the dummy pad has no shape // offset and is at position 0,0 dummy_pad.SetPosition( VECTOR2I( 0, 0 ) ); dummy_pad.SetOffset( VECTOR2I( 0, 0 ) ); BOX2I spokesBox = dummy_pad.GetBoundingBox(); // In this case make the box -big-; we're going to clip to the "real" bbox later. spokesBox.Inflate( thermalReliefGap + spokesBox.GetWidth() + spokesBox.GetHeight() ); buildSpokesFromOrigin( spokesBox ); BOX2I realBBox = pad->GetBoundingBox(); realBBox.Inflate( thermalReliefGap + epsilon ); auto spokeIter = aSpokesList.rbegin(); for( int ii = 0; ii < 4; ++ii, ++spokeIter ) { spokeIter->Rotate( pad->GetOrientation() + pad->GetThermalSpokeAngle() ); spokeIter->Move( pad->ShapePos() ); VECTOR2I origin_p = spokeIter->GetPoint( 0 ); VECTOR2I origin_m = spokeIter->GetPoint( 1 ); VECTOR2I origin = ( origin_p + origin_m ) / 2; VECTOR2I end_m = spokeIter->GetPoint( 2 ); VECTOR2I end = spokeIter->GetPoint( 3 ); VECTOR2I end_p = spokeIter->GetPoint( 4 ); ClipLine( &realBBox, origin_p.x, origin_p.y, end_p.x, end_p.y ); ClipLine( &realBBox, origin_m.x, origin_m.y, end_m.x, end_m.y ); ClipLine( &realBBox, origin.x, origin.y, end.x, end.y ); spokeIter->SetPoint( 2, end_m ); spokeIter->SetPoint( 3, end ); spokeIter->SetPoint( 4, end_p ); } } } for( size_t ii = 0; ii < aSpokesList.size(); ++ii ) aSpokesList[ii].GenerateBBoxCache(); } bool ZONE_FILLER::addHatchFillTypeOnZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET& aFillPolys ) { // Build grid: // obviously line thickness must be > zone min thickness. // It can happens if a board file was edited by hand by a python script // Use 1 micron margin to be *sure* there is no issue in Gerber files // (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations // This margin also avoid problems due to rounding coordinates in next calculations // that can create incorrect polygons int thickness = std::max( aZone->GetHatchThickness(), aZone->GetMinThickness() + pcbIUScale.mmToIU( 0.001 ) ); int linethickness = thickness - aZone->GetMinThickness(); int gridsize = thickness + aZone->GetHatchGap(); int maxError = m_board->GetDesignSettings().m_MaxError; SHAPE_POLY_SET filledPolys = aFillPolys.CloneDropTriangulation(); // Use a area that contains the rotated bbox by orientation, and after rotate the result // by -orientation. if( !aZone->GetHatchOrientation().IsZero() ) filledPolys.Rotate( - aZone->GetHatchOrientation() ); BOX2I bbox = filledPolys.BBox( 0 ); // Build hole shape // the hole size is aZone->GetHatchGap(), but because the outline thickness // is aZone->GetMinThickness(), the hole shape size must be larger SHAPE_LINE_CHAIN hole_base; int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness(); VECTOR2I corner( 0, 0 );; hole_base.Append( corner ); corner.x += hole_size; hole_base.Append( corner ); corner.y += hole_size; hole_base.Append( corner ); corner.x = 0; hole_base.Append( corner ); hole_base.SetClosed( true ); // Calculate minimal area of a grid hole. // All holes smaller than a threshold will be removed double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea(); // Now convert this hole to a smoothed shape: if( aZone->GetHatchSmoothingLevel() > 0 ) { // the actual size of chamfer, or rounded corner radius is the half size // of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue() // aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the // radius of corner (radius = half size of the hole) int smooth_value = KiROUND( aZone->GetHatchGap() * aZone->GetHatchSmoothingValue() / 2 ); // Minimal optimization: // make smoothing only for reasonable smooth values, to avoid a lot of useless segments // and if the smooth value is small, use chamfer even if fillet is requested #define SMOOTH_MIN_VAL_MM 0.02 #define SMOOTH_SMALL_VAL_MM 0.04 if( smooth_value > pcbIUScale.mmToIU( SMOOTH_MIN_VAL_MM ) ) { SHAPE_POLY_SET smooth_hole; smooth_hole.AddOutline( hole_base ); int smooth_level = aZone->GetHatchSmoothingLevel(); if( smooth_value < pcbIUScale.mmToIU( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 ) smooth_level = 1; // Use a larger smooth_value to compensate the outline tickness // (chamfer is not visible is smooth value < outline thickess) smooth_value += aZone->GetMinThickness() / 2; // smooth_value cannot be bigger than the half size oh the hole: smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 ); // the error to approximate a circle by segments when smoothing corners by a arc maxError = std::max( maxError * 2, smooth_value / 20 ); switch( smooth_level ) { case 1: // Chamfer() uses the distance from a corner to create a end point // for the chamfer. hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 ); break; default: if( aZone->GetHatchSmoothingLevel() > 2 ) maxError /= 2; // Force better smoothing hole_base = smooth_hole.Fillet( smooth_value, maxError ).Outline( 0 ); break; case 0: break; }; } } // Build holes SHAPE_POLY_SET holes; for( int xx = 0; ; xx++ ) { int xpos = xx * gridsize; if( xpos > bbox.GetWidth() ) break; for( int yy = 0; ; yy++ ) { int ypos = yy * gridsize; if( ypos > bbox.GetHeight() ) break; // Generate hole SHAPE_LINE_CHAIN hole( hole_base ); hole.Move( VECTOR2I( xpos, ypos ) ); holes.AddOutline( hole ); } } holes.Move( bbox.GetPosition() ); if( !aZone->GetHatchOrientation().IsZero() ) holes.Rotate( aZone->GetHatchOrientation() ); DUMP_POLYS_TO_COPPER_LAYER( holes, In10_Cu, wxT( "hatch-holes" ) ); int outline_margin = aZone->GetMinThickness() * 1.1; // Using GetHatchThickness() can look more consistent than GetMinThickness(). if( aZone->GetHatchBorderAlgorithm() && aZone->GetHatchThickness() > outline_margin ) outline_margin = aZone->GetHatchThickness(); // The fill has already been deflated to ensure GetMinThickness() so we just have to // account for anything beyond that. SHAPE_POLY_SET deflatedFilledPolys = aFillPolys.CloneDropTriangulation(); deflatedFilledPolys.Deflate( outline_margin - aZone->GetMinThickness(), SHAPE_POLY_SET::CHAMFER_ALL_CORNERS, maxError ); holes.BooleanIntersection( deflatedFilledPolys, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( holes, In11_Cu, wxT( "fill-clipped-hatch-holes" ) ); SHAPE_POLY_SET deflatedOutline = aZone->Outline()->CloneDropTriangulation(); deflatedOutline.Deflate( outline_margin, SHAPE_POLY_SET::CHAMFER_ALL_CORNERS, maxError ); holes.BooleanIntersection( deflatedOutline, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( holes, In12_Cu, wxT( "outline-clipped-hatch-holes" ) ); if( aZone->GetNetCode() != 0 ) { // Vias and pads connected to the zone must not be allowed to become isolated inside // one of the holes. Effectively this means their copper outline needs to be expanded // to be at least as wide as the gap so that it is guaranteed to touch at least one // edge. BOX2I zone_boundingbox = aZone->GetBoundingBox(); SHAPE_POLY_SET aprons; int min_apron_radius = ( aZone->GetHatchGap() * 10 ) / 19; for( PCB_TRACK* track : m_board->Tracks() ) { if( track->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast( track ); if( via->GetNetCode() == aZone->GetNetCode() && via->IsOnLayer( aLayer ) && via->GetBoundingBox().Intersects( zone_boundingbox ) ) { int r = std::max( min_apron_radius, via->GetDrillValue() / 2 + outline_margin ); TransformCircleToPolygon( aprons, via->GetPosition(), r, maxError, ERROR_OUTSIDE ); } } } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->GetNetCode() == aZone->GetNetCode() && pad->IsOnLayer( aLayer ) && pad->GetBoundingBox().Intersects( zone_boundingbox ) ) { // What we want is to bulk up the pad shape so that the narrowest bit of // copper between the hole and the apron edge is at least outline_margin // wide (and that the apron itself meets min_apron_radius. But that would // take a lot of code and math, and the following approximation is close // enough. int pad_width = std::min( pad->GetSize().x, pad->GetSize().y ); int slot_width = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y ); int min_annular_ring_width = ( pad_width - slot_width ) / 2; int clearance = std::max( min_apron_radius - pad_width / 2, outline_margin - min_annular_ring_width ); clearance = std::max( 0, clearance - linethickness / 2 ); pad->TransformShapeToPolygon( aprons, aLayer, clearance, maxError, ERROR_OUTSIDE ); } } } holes.BooleanSubtract( aprons, SHAPE_POLY_SET::PM_FAST ); } DUMP_POLYS_TO_COPPER_LAYER( holes, In13_Cu, wxT( "pad-via-clipped-hatch-holes" ) ); // Now filter truncated holes to avoid small holes in pattern // It happens for holes near the zone outline for( int ii = 0; ii < holes.OutlineCount(); ) { double area = holes.Outline( ii ).Area(); if( area < minimal_hole_area ) // The current hole is too small: remove it holes.DeletePolygon( ii ); else ++ii; } // create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to // generate strictly simple polygons needed by Gerber files and Fracture() aFillPolys.BooleanSubtract( aFillPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In14_Cu, wxT( "after-hatching" ) ); return true; }