/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 2015-2024 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file camera.cpp */ #include #include #include #include <3d_enums.h> // A helper function to normalize aAngle between -2PI and +2PI inline void normalise2PI( float& aAngle ) { while( aAngle > 0.0 ) aAngle -= static_cast( M_PI * 2.0f ); while( aAngle < 0.0 ) aAngle += static_cast( M_PI * 2.0f ); } /** * @ingroup trace_env_vars */ const wxChar *CAMERA::m_logTrace = wxT( "KI_TRACE_CAMERA" ); const float CAMERA::DEFAULT_MIN_ZOOM = 0.020f; const float CAMERA::DEFAULT_MAX_ZOOM = 2.0f; CAMERA::CAMERA( float aInitialDistance ) : CAMERA( SFVEC3F( 0.0f, 0.0f, -aInitialDistance ), SFVEC3F( 0.0f ), PROJECTION_TYPE::PERSPECTIVE ) { } CAMERA::CAMERA( SFVEC3F aInitPos, SFVEC3F aLookat, PROJECTION_TYPE aProjectionType ) { wxLogTrace( m_logTrace, wxT( "CAMERA::CAMERA" ) ); m_camera_pos_init = aInitPos; m_board_lookat_pos_init = aLookat; m_windowSize = SFVEC2I( 0, 0 ); m_projectionType = aProjectionType; m_interpolation_mode = CAMERA_INTERPOLATION::BEZIER; m_minZoom = DEFAULT_MIN_ZOOM; m_maxZoom = DEFAULT_MAX_ZOOM; Reset(); } void CAMERA::Reset() { m_parametersChanged = true; m_projectionMatrix = glm::mat4( 1.0f ); m_projectionMatrixInv = glm::mat4( 1.0f ); m_rotationMatrix = glm::mat4( 1.0f ); m_rotationMatrixAux = glm::mat4( 1.0f ); m_lastPosition = wxPoint( 0, 0 ); m_zoom = 1.0f; m_zoom_t0 = 1.0f; m_zoom_t1 = 1.0f; m_camera_pos = m_camera_pos_init; m_camera_pos_t0 = m_camera_pos_init; m_camera_pos_t1 = m_camera_pos_init; m_lookat_pos = m_board_lookat_pos_init; m_lookat_pos_t0 = m_board_lookat_pos_init; m_lookat_pos_t1 = m_board_lookat_pos_init; m_rotate_aux = SFVEC3F( 0.0f ); m_rotate_aux_t0 = SFVEC3F( 0.0f ); m_rotate_aux_t1 = SFVEC3F( 0.0f ); updateRotationMatrix(); updateViewMatrix(); m_viewMatrixInverse = glm::inverse( m_viewMatrix ); m_scr_nX.clear(); m_scr_nY.clear(); rebuildProjection(); } bool CAMERA::ViewCommand_T1( VIEW3D_TYPE aRequestedView ) { switch( aRequestedView ) { case VIEW3D_TYPE::VIEW3D_RIGHT: SetT0_and_T1_current_T(); Reset_T1(); RotateZ_T1( glm::radians( -90.0f ) ); RotateX_T1( glm::radians( -90.0f ) ); return true; case VIEW3D_TYPE::VIEW3D_LEFT: Reset_T1(); RotateZ_T1( glm::radians( 90.0f ) ); RotateX_T1( glm::radians( -90.0f ) ); return true; case VIEW3D_TYPE::VIEW3D_FRONT: Reset_T1(); RotateX_T1( glm::radians( -90.0f ) ); return true; case VIEW3D_TYPE::VIEW3D_BACK: Reset_T1(); RotateX_T1( glm::radians( -90.0f ) ); // The rotation angle should be 180. // We use 179.999 (180 - epsilon) to avoid a full 360 deg rotation when // using 180 deg if the previous rotated position was already 180 deg RotateZ_T1( glm::radians( 179.999f ) ); return true; case VIEW3D_TYPE::VIEW3D_TOP: Reset_T1(); return true; case VIEW3D_TYPE::VIEW3D_BOTTOM: Reset_T1(); RotateY_T1( glm::radians( 179.999f ) ); // Rotation = 180 - epsilon return true; case VIEW3D_TYPE::VIEW3D_FLIP: RotateY_T1( glm::radians( 179.999f ) ); return true; default: return false; } } void CAMERA::Reset_T1() { m_camera_pos_t1 = m_camera_pos_init; m_zoom_t1 = 1.0f; m_rotate_aux_t1 = SFVEC3F( 0.0f ); m_lookat_pos_t1 = m_board_lookat_pos_init; // Since 0 = 2pi, we want to reset the angle to be the closest // one to where we currently are. That ensures that we rotate // the board around the smallest distance getting there. if( m_rotate_aux_t0.x > M_PI ) m_rotate_aux_t1.x = static_cast( 2.0f * M_PI ); if( m_rotate_aux_t0.y > M_PI ) m_rotate_aux_t1.y = static_cast( 2.0f * M_PI ); if( m_rotate_aux_t0.z > M_PI ) m_rotate_aux_t1.z = static_cast( 2.0f * M_PI ); } void CAMERA::SetBoardLookAtPos( const SFVEC3F& aBoardPos ) { if( m_board_lookat_pos_init != aBoardPos ) { m_board_lookat_pos_init = aBoardPos; m_lookat_pos = aBoardPos; m_parametersChanged = true; updateViewMatrix(); updateFrustum(); } } void CAMERA::zoomChanged() { if( m_zoom < m_minZoom ) m_zoom = m_minZoom; if( m_zoom > m_maxZoom ) m_zoom = m_maxZoom; m_camera_pos.z = m_camera_pos_init.z * m_zoom; updateViewMatrix(); rebuildProjection(); } void CAMERA::updateViewMatrix() { m_viewMatrix = glm::translate( glm::mat4( 1.0f ), m_camera_pos ) * m_rotationMatrix * m_rotationMatrixAux * glm::translate( glm::mat4( 1.0f ), -m_lookat_pos ); } void CAMERA::updateRotationMatrix() { m_rotationMatrixAux = glm::rotate( glm::mat4( 1.0f ), m_rotate_aux.x, SFVEC3F( 1.0f, 0.0f, 0.0f ) ); normalise2PI( m_rotate_aux.x ); m_rotationMatrixAux = glm::rotate( m_rotationMatrixAux, m_rotate_aux.y, SFVEC3F( 0.0f, 1.0f, 0.0f ) ); normalise2PI( m_rotate_aux.y ); m_rotationMatrixAux = glm::rotate( m_rotationMatrixAux, m_rotate_aux.z, SFVEC3F( 0.0f, 0.0f, 1.0f ) ); normalise2PI( m_rotate_aux.z ); m_parametersChanged = true; updateViewMatrix(); updateFrustum(); } glm::mat4 CAMERA::GetRotationMatrix() const { return m_rotationMatrix * m_rotationMatrixAux; } void CAMERA::SetRotationMatrix( const glm::mat4& aRotation ) { m_parametersChanged = true; std::copy_n( glm::value_ptr( aRotation * glm::inverse( m_rotationMatrixAux ) ), 12, glm::value_ptr( m_rotationMatrix ) ); } void CAMERA::rebuildProjection() { if( ( m_windowSize.x == 0 ) || ( m_windowSize.y == 0 ) ) return; m_frustum.ratio = (float) m_windowSize.x / (float)m_windowSize.y; m_frustum.farD = glm::length( m_camera_pos_init ) * m_maxZoom * 2.0f; switch( m_projectionType ) { default: case PROJECTION_TYPE::PERSPECTIVE: m_frustum.nearD = 0.10f; m_frustum.angle = 45.0f; m_projectionMatrix = glm::perspective( glm::radians( m_frustum.angle ), m_frustum.ratio, m_frustum.nearD, m_frustum.farD ); m_projectionMatrixInv = glm::inverse( m_projectionMatrix ); m_frustum.tang = glm::tan( glm::radians( m_frustum.angle ) * 0.5f ); m_focalLen.x = ( (float)m_windowSize.y / (float)m_windowSize.x ) / m_frustum.tang; m_focalLen.y = 1.0f / m_frustum.tang; m_frustum.nh = 2.0f * m_frustum.nearD * m_frustum.tang; m_frustum.nw = m_frustum.nh * m_frustum.ratio; m_frustum.fh = 2.0f * m_frustum.farD * m_frustum.tang; m_frustum.fw = m_frustum.fh * m_frustum.ratio; break; case PROJECTION_TYPE::ORTHO: // Keep the viewed plane at (m_camera_pos_init * m_zoom) the same dimensions in both projections. m_frustum.angle = 45.0f; m_frustum.tang = glm::tan( glm::radians( m_frustum.angle ) * 0.5f ); m_frustum.nearD = -m_frustum.farD; // Use a symmetrical clip plane for ortho projection const float orthoReductionFactor = glm::length( m_camera_pos_init ) * m_zoom * m_frustum.tang; // Initialize Projection Matrix for Orthographic View m_projectionMatrix = glm::ortho( -m_frustum.ratio * orthoReductionFactor, m_frustum.ratio * orthoReductionFactor, -orthoReductionFactor, orthoReductionFactor, m_frustum.nearD, m_frustum.farD ); m_projectionMatrixInv = glm::inverse( m_projectionMatrix ); m_frustum.nw = orthoReductionFactor * 2.0f * m_frustum.ratio; m_frustum.nh = orthoReductionFactor * 2.0f; m_frustum.fw = m_frustum.nw; m_frustum.fh = m_frustum.nh; break; } if( ( m_windowSize.x > 0 ) && ( m_windowSize.y > 0 ) ) { m_scr_nX.resize( m_windowSize.x + 1 ); m_scr_nY.resize( m_windowSize.y + 1 ); // Precalc X values for camera -> ray generation for( unsigned int x = 0; x < (unsigned int)m_windowSize.x + 1; ++x ) { // Converts 0.0 .. 1.0 const float xNormalizedDeviceCoordinates = ( ( (float)x + 0.5f ) / (m_windowSize.x - 0.0f) ); // Converts -1.0 .. 1.0 m_scr_nX[x] = 2.0f * xNormalizedDeviceCoordinates - 1.0f; } // Precalc Y values for camera -> ray generation for( unsigned int y = 0; y < (unsigned int)m_windowSize.y + 1 ; ++y ) { // Converts 0.0 .. 1.0 const float yNormalizedDeviceCoordinates = ( ( (float)y + 0.5f ) / (m_windowSize.y - 0.0f) ); // Converts -1.0 .. 1.0 m_scr_nY[y] = 2.0f * yNormalizedDeviceCoordinates - 1.0f; } updateFrustum(); } } void CAMERA::updateFrustum() { // Update matrix and vectors m_viewMatrixInverse = glm::inverse( m_viewMatrix ); m_right = glm::normalize( SFVEC3F( m_viewMatrixInverse * glm::vec4( SFVEC3F( 1.0, 0.0, 0.0 ), 0.0 ) ) ); m_up = glm::normalize( SFVEC3F( m_viewMatrixInverse * glm::vec4( SFVEC3F( 0.0, 1.0, 0.0 ), 0.0 ) ) ); m_dir = glm::normalize( SFVEC3F( m_viewMatrixInverse * glm::vec4( SFVEC3F( 0.0, 0.0, 1.0 ), 0.0 ) ) ); m_pos = SFVEC3F( m_viewMatrixInverse * glm::vec4( SFVEC3F( 0.0, 0.0, 0.0 ), 1.0 ) ); /* * Frustum is a implementation based on a tutorial by * http://www.lighthouse3d.com/tutorials/view-frustum-culling/ */ const SFVEC3F half_right_nw = m_right * m_frustum.nw * 0.5f; const SFVEC3F half_right_fw = m_right * m_frustum.fw * 0.5f; const SFVEC3F half_up_nh = m_up * m_frustum.nh * 0.5f; const SFVEC3F half_up_fh = m_up * m_frustum.fh * 0.5f; // compute the centers of the near and far planes m_frustum.nc = m_pos - m_dir * m_frustum.nearD; m_frustum.fc = m_pos - m_dir * m_frustum.farD; // compute the 4 corners of the frustum on the near plane m_frustum.ntl = m_frustum.nc + half_up_nh - half_right_nw; m_frustum.ntr = m_frustum.nc + half_up_nh + half_right_nw; m_frustum.nbl = m_frustum.nc - half_up_nh - half_right_nw; m_frustum.nbr = m_frustum.nc - half_up_nh + half_right_nw; // compute the 4 corners of the frustum on the far plane m_frustum.ftl = m_frustum.fc + half_up_fh - half_right_fw; m_frustum.ftr = m_frustum.fc + half_up_fh + half_right_fw; m_frustum.fbl = m_frustum.fc - half_up_fh - half_right_fw; m_frustum.fbr = m_frustum.fc - half_up_fh + half_right_fw; if( ( m_windowSize.x > 0 ) && ( m_windowSize.y > 0 ) ) { // Reserve size for precalc values m_right_nX.resize( m_windowSize.x + 1 ); m_up_nY.resize( m_windowSize.y + 1 ); // Precalc X values for camera -> ray generation for( unsigned int x = 0; x < ( (unsigned int) m_windowSize.x + 1 ); ++x ) m_right_nX[x] = half_right_nw * m_scr_nX[x]; // Precalc Y values for camera -> ray generation for( unsigned int y = 0; y < ( (unsigned int) m_windowSize.y + 1 ); ++y ) m_up_nY[y] = half_up_nh * m_scr_nY[y]; } } void CAMERA::MakeRay( const SFVEC2I& aWindowPos, SFVEC3F& aOutOrigin, SFVEC3F& aOutDirection ) const { wxASSERT( aWindowPos.x < m_windowSize.x ); wxASSERT( aWindowPos.y < m_windowSize.y ); aOutOrigin = m_frustum.nc + m_up_nY[aWindowPos.y] + m_right_nX[aWindowPos.x]; switch( m_projectionType ) { default: case PROJECTION_TYPE::PERSPECTIVE: aOutDirection = glm::normalize( aOutOrigin - m_pos ); break; case PROJECTION_TYPE::ORTHO: aOutDirection = -m_dir + SFVEC3F( FLT_EPSILON ); break; } } void CAMERA::MakeRay( const SFVEC2F& aWindowPos, SFVEC3F& aOutOrigin, SFVEC3F& aOutDirection ) const { wxASSERT( aWindowPos.x < (float)m_windowSize.x ); wxASSERT( aWindowPos.y < (float)m_windowSize.y ); const SFVEC2F floorWinPos_f = glm::floor( aWindowPos ); const SFVEC2I floorWinPos_i = (SFVEC2I)floorWinPos_f; const SFVEC2F relativeWinPos = aWindowPos - floorWinPos_f; // Note: size of vectors m_up and m_right are m_windowSize + 1 const SFVEC3F up_plus_right = m_up_nY[floorWinPos_i.y] * (1.0f - relativeWinPos.y) + m_up_nY[floorWinPos_i.y + 1] * relativeWinPos.y + m_right_nX[floorWinPos_i.x] * (1.0f - relativeWinPos.x) + m_right_nX[floorWinPos_i.x + 1] * relativeWinPos.x; aOutOrigin = up_plus_right + m_frustum.nc; switch( m_projectionType ) { default: case PROJECTION_TYPE::PERSPECTIVE: aOutDirection = glm::normalize( aOutOrigin - m_pos ); break; case PROJECTION_TYPE::ORTHO: aOutDirection = -m_dir + SFVEC3F( FLT_EPSILON ); break; } } void CAMERA::MakeRayAtCurrentMousePosition( SFVEC3F& aOutOrigin, SFVEC3F& aOutDirection ) const { const SFVEC2I windowPos = SFVEC2I( m_lastPosition.x, m_windowSize.y - m_lastPosition.y ); if( ( 0 < windowPos.x ) && ( windowPos.x < m_windowSize.x ) && ( 0 < windowPos.y ) && ( windowPos.y < m_windowSize.y ) ) { MakeRay( windowPos, aOutOrigin, aOutDirection ); } } const glm::mat4& CAMERA::GetProjectionMatrix() const { return m_projectionMatrix; } const glm::mat4& CAMERA::GetProjectionMatrixInv() const { return m_projectionMatrixInv; } float CAMERA::GetCameraMinDimension() const { return -m_camera_pos_init.z * m_frustum.tang; } void CAMERA::ResetXYpos() { m_parametersChanged = true; m_camera_pos.x = 0.0f; m_camera_pos.y = 0.0f; updateViewMatrix(); updateFrustum(); } void CAMERA::ResetXYpos_T1() { m_camera_pos_t1.x = 0.0f; m_camera_pos_t1.y = 0.0f; } const glm::mat4& CAMERA::GetViewMatrix() const { return m_viewMatrix; } void CAMERA::SetViewMatrix( glm::mat4 aViewMatrix ) { SetRotationMatrix( aViewMatrix ); // The look at position in the view frame. glm::vec4 lookat = aViewMatrix * glm::vec4( m_lookat_pos, 1.0f ); wxLogTrace( m_logTrace, wxT( "CAMERA::SetViewMatrix aViewMatrix[3].z =%f, old_zoom=%f, new_zoom=%f, " "m[3].z=%f" ), aViewMatrix[3].z, m_zoom, lookat.z / m_camera_pos_init.z, lookat.z ); m_zoom = lookat.z / m_camera_pos_init.z; if( m_zoom > m_maxZoom ) { m_zoom = m_maxZoom; aViewMatrix[3].z += -lookat.z + m_maxZoom * m_camera_pos_init.z; } else if( m_zoom < m_minZoom ) { m_zoom = m_minZoom; aViewMatrix[3].z += -lookat.z + m_minZoom * m_camera_pos_init.z; } m_viewMatrix = std::move( aViewMatrix ); m_camera_pos = m_viewMatrix * glm::inverse( m_rotationMatrix * m_rotationMatrixAux * glm::translate( glm::mat4( 1.0f ), -m_lookat_pos ) )[3]; } const glm::mat4& CAMERA::GetViewMatrix_Inv() const { return m_viewMatrixInverse; } void CAMERA::SetCurMousePosition( const wxPoint& aNewMousePosition ) { m_lastPosition = aNewMousePosition; } void CAMERA::ToggleProjection() { if( m_projectionType == PROJECTION_TYPE::ORTHO ) m_projectionType = PROJECTION_TYPE::PERSPECTIVE; else m_projectionType = PROJECTION_TYPE::ORTHO; rebuildProjection(); } bool CAMERA::SetCurWindowSize( const wxSize& aSize ) { const SFVEC2I newSize = SFVEC2I( aSize.x, aSize.y ); if( m_windowSize != newSize ) { m_windowSize = newSize; rebuildProjection(); return true; } return false; } void CAMERA::ZoomReset() { m_zoom = 1.0f; m_camera_pos.z = m_camera_pos_init.z; updateViewMatrix(); rebuildProjection(); } bool CAMERA::Zoom( float aFactor ) { if( ( m_zoom <= m_minZoom && aFactor > 1 ) || ( m_zoom >= m_maxZoom && aFactor < 1 ) || aFactor == 1 ) { return false; } float zoom = m_zoom; m_zoom /= aFactor; if( m_zoom <= m_minZoom && aFactor > 1 ) { aFactor = zoom / m_minZoom; m_zoom = m_minZoom; } else if( m_zoom >= m_maxZoom && aFactor < 1 ) { aFactor = zoom / m_maxZoom; m_zoom = m_maxZoom; } m_camera_pos.z /= aFactor; updateViewMatrix(); rebuildProjection(); return true; } bool CAMERA::Zoom_T1( float aFactor ) { if( ( m_zoom <= m_minZoom && aFactor > 1 ) || ( m_zoom >= m_maxZoom && aFactor < 1 ) || aFactor == 1 ) { return false; } m_zoom_t1 = m_zoom / aFactor; if( m_zoom_t1 < m_minZoom ) m_zoom_t1 = m_minZoom; if( m_zoom_t1 > m_maxZoom ) m_zoom_t1 = m_maxZoom; m_camera_pos_t1.z = m_camera_pos_init.z * m_zoom_t1; return true; } void CAMERA::RotateX( float aAngleInRadians ) { m_rotate_aux.x += aAngleInRadians; updateRotationMatrix(); } void CAMERA::RotateY( float aAngleInRadians ) { m_rotate_aux.y += aAngleInRadians; updateRotationMatrix(); } void CAMERA::RotateZ( float aAngleInRadians ) { m_rotate_aux.z += aAngleInRadians; updateRotationMatrix(); } void CAMERA::RotateX_T1( float aAngleInRadians ) { m_rotate_aux_t1.x += aAngleInRadians; } void CAMERA::RotateY_T1( float aAngleInRadians ) { m_rotate_aux_t1.y += aAngleInRadians; } void CAMERA::RotateZ_T1( float aAngleInRadians ) { m_rotate_aux_t1.z += aAngleInRadians; } void CAMERA::SetT0_and_T1_current_T() { m_camera_pos_t0 = m_camera_pos; m_lookat_pos_t0 = m_lookat_pos; m_rotate_aux_t0 = m_rotate_aux; m_zoom_t0 = m_zoom; m_camera_pos_t1 = m_camera_pos; m_lookat_pos_t1 = m_lookat_pos; m_rotate_aux_t1 = m_rotate_aux; m_zoom_t1 = m_zoom; } void CAMERA::Interpolate( float t ) { wxASSERT( t >= 0.0f ); const float t0 = 1.0f - t; m_camera_pos = m_camera_pos_t0 * t0 + m_camera_pos_t1 * t; m_lookat_pos = m_lookat_pos_t0 * t0 + m_lookat_pos_t1 * t; m_rotate_aux = m_rotate_aux_t0 * t0 + m_rotate_aux_t1 * t; m_zoom = m_zoom_t0 * t0 + m_zoom_t1 * t; m_parametersChanged = true; updateRotationMatrix(); rebuildProjection(); } bool CAMERA::ParametersChanged() { const bool parametersChanged = m_parametersChanged; m_parametersChanged = false; return parametersChanged; }