/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014-2017 CERN * Copyright (C) 2014-2018 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Włostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zone_filler.h" extern void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer, const D_PAD& aPad, int aThermalGap, int aCopperThickness, int aMinThicknessValue, int aCircleToSegmentsCount, double aCorrectionFactor, double aThermalRot ); static double s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads static const bool s_DumpZonesWhenFilling = false; ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) : m_board( aBoard ), m_commit( aCommit ), m_progressReporter( nullptr ) { } ZONE_FILLER::~ZONE_FILLER() { } void ZONE_FILLER::SetProgressReporter( WX_PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; } bool ZONE_FILLER::Fill( std::vector aZones, bool aCheck ) { std::vector toFill; auto connectivity = m_board->GetConnectivity(); if( !connectivity->TryLock() ) return false; for( auto zone : aZones ) { // Keepout zones are not filled if( zone->GetIsKeepout() ) continue; toFill.emplace_back( CN_ZONE_ISOLATED_ISLAND_LIST(zone) ); } for( unsigned i = 0; i < toFill.size(); i++ ) { if( m_commit ) { m_commit->Modify( toFill[i].m_zone ); } } if( m_progressReporter ) { m_progressReporter->Report( _( "Checking zone fills..." ) ); m_progressReporter->SetMaxProgress( toFill.size() ); } // Remove deprecaded segment zones (only found in very old boards) m_board->m_SegZoneDeprecated.DeleteAll(); std::atomic nextItem( 0 ); size_t parallelThreadCount = std::min( std::thread::hardware_concurrency(), toFill.size() ); std::vector> returns( parallelThreadCount ); auto fill_lambda = [&] ( PROGRESS_REPORTER* aReporter ) -> size_t { size_t num = 0; for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ ) { ZONE_CONTAINER* zone = toFill[i].m_zone; if( zone->GetFillMode() == ZFM_SEGMENTS ) { ZONE_SEGMENT_FILL segFill; fillZoneWithSegments( zone, zone->GetFilledPolysList(), segFill ); zone->SetFillSegments( segFill ); } else { SHAPE_POLY_SET rawPolys, finalPolys; fillSingleZone( zone, rawPolys, finalPolys ); zone->SetRawPolysList( rawPolys ); zone->SetFilledPolysList( finalPolys ); } zone->SetIsFilled( true ); if( m_progressReporter ) m_progressReporter->AdvanceProgress(); num++; } return num; }; if( parallelThreadCount <= 1 ) fill_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, fill_lambda, m_progressReporter ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } } // Now update the connectivity to check for copper islands if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Removing insulated copper islands..." ) ); m_progressReporter->KeepRefreshing(); } connectivity->SetProgressReporter( m_progressReporter ); connectivity->FindIsolatedCopperIslands( toFill ); // Now remove insulated copper islands bool outOfDate = false; for( auto& zone : toFill ) { std::sort( zone.m_islands.begin(), zone.m_islands.end(), std::greater() ); SHAPE_POLY_SET poly = zone.m_zone->GetFilledPolysList(); for( auto idx : zone.m_islands ) { poly.DeletePolygon( idx ); } zone.m_zone->SetFilledPolysList( poly ); if( aCheck && zone.m_lastPolys.GetHash() != poly.GetHash() ) outOfDate = true; } if( aCheck ) { bool refill = false; wxCHECK( m_progressReporter, false ); if( outOfDate ) { m_progressReporter->Hide(); KIDIALOG dlg( m_progressReporter->GetParent(), _( "Zone fills are out-of-date. Refill?" ), _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING ); dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ ); refill = ( dlg.ShowModal() == wxID_OK ); m_progressReporter->Show(); } if( !refill ) { if( m_commit ) m_commit->Revert(); connectivity->SetProgressReporter( nullptr ); connectivity->Unlock(); return false; } } if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Performing polygon fills..." ) ); m_progressReporter->SetMaxProgress( toFill.size() ); } nextItem = 0; auto tri_lambda = [&] ( PROGRESS_REPORTER* aReporter ) -> size_t { size_t num = 0; for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ ) { toFill[i].m_zone->CacheTriangulation(); num++; if( m_progressReporter ) m_progressReporter->AdvanceProgress(); } return num; }; if( parallelThreadCount <= 1 ) tri_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, tri_lambda, m_progressReporter ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } } if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Committing changes..." ) ); m_progressReporter->KeepRefreshing(); } connectivity->SetProgressReporter( nullptr ); if( m_commit ) { m_commit->Push( _( "Fill Zone(s)" ), false ); } else { for( unsigned i = 0; i < toFill.size(); i++ ) { connectivity->Update( toFill[i].m_zone ); } connectivity->RecalculateRatsnest(); } connectivity->Unlock(); return true; } void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aFeatures ) const { int segsPerCircle; double correctionFactor; // Set the number of segments in arc approximations if( aZone->GetArcSegmentCount() > SEGMENT_COUNT_CROSSOVER ) segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF; else segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF; /* calculates the coeff to compensate radius reduction of holes clearance * due to the segment approx. * For a circle the min radius is radius * cos( 2PI / segsPerCircle / 2) * correctionFactor is 1 /cos( PI/segsPerCircle ) */ correctionFactor = GetCircletoPolyCorrectionFactor( segsPerCircle ); aFeatures.RemoveAllContours(); int outline_half_thickness = aZone->GetMinThickness() / 2; // When removing holes, the holes must be expanded by outline_half_thickness // to take in account the thickness of the zone outlines int zone_clearance = aZone->GetClearance() + outline_half_thickness; // When holes are created by non copper items (edge cut items), use only // the m_ZoneClearance parameter (zone clearance with no netclass clearance) int zone_to_edgecut_clearance = aZone->GetZoneClearance() + outline_half_thickness; /* store holes (i.e. tracks and pads areas as polygons outlines) * in a polygon list */ /* items ouside the zone bounding box are skipped * the bounding box is the zone bounding box + the biggest clearance found in Netclass list */ EDA_RECT item_boundingbox; EDA_RECT zone_boundingbox = aZone->GetBoundingBox(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); biggest_clearance = std::max( biggest_clearance, zone_clearance ); zone_boundingbox.Inflate( biggest_clearance ); /* * First : Add pads. Note: pads having the same net as zone are left in zone. * Thermal shapes will be created later if necessary */ /* Use a dummy pad to calculate hole clearance when a pad is not on all copper layers * and this pad has a hole * This dummy pad has the size and shape of the hole * Therefore, this dummy pad is a circle or an oval. * A pad must have a parent because some functions expect a non null parent * to find the parent board, and some other data */ MODULE dummymodule( m_board ); // Creates a dummy parent D_PAD dummypad( &dummymodule ); for( MODULE* module = m_board->m_Modules; module; module = module->Next() ) { D_PAD* nextpad; for( D_PAD* pad = module->PadsList(); pad != NULL; pad = nextpad ) { nextpad = pad->Next(); // pad pointer can be modified by next code, so // calculate the next pad here if( !pad->IsOnLayer( aZone->GetLayer() ) ) { /* Test for pads that are on top or bottom only and have a hole. * There are curious pads but they can be used for some components that are * inside the board (in fact inside the hole. Some photo diodes and Leds are * like this) */ if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) continue; // Use a dummy pad to calculate a hole shape that have the same dimension as // the pad hole dummypad.SetSize( pad->GetDrillSize() ); dummypad.SetOrientation( pad->GetOrientation() ); dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE ); dummypad.SetPosition( pad->GetPosition() ); pad = &dummypad; } // Note: netcode <=0 means not connected item if( ( pad->GetNetCode() != aZone->GetNetCode() ) || ( pad->GetNetCode() <= 0 ) ) { int item_clearance = pad->GetClearance() + outline_half_thickness; item_boundingbox = pad->GetBoundingBox(); item_boundingbox.Inflate( item_clearance ); if( item_boundingbox.Intersects( zone_boundingbox ) ) { int clearance = std::max( zone_clearance, item_clearance ); // PAD_SHAPE_CUSTOM can have a specific keepout, to avoid to break the shape if( pad->GetShape() == PAD_SHAPE_CUSTOM && pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) { // the pad shape in zone can be its convex hull or // the shape itself SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() ); outline.Inflate( KiROUND( clearance * correctionFactor ), segsPerCircle ); pad->CustomShapeAsPolygonToBoardPosition( &outline, pad->GetPosition(), pad->GetOrientation() ); if( pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) { std::vector convex_hull; BuildConvexHull( convex_hull, outline ); aFeatures.NewOutline(); for( unsigned ii = 0; ii < convex_hull.size(); ++ii ) aFeatures.Append( convex_hull[ii] ); } else aFeatures.Append( outline ); } else pad->TransformShapeWithClearanceToPolygon( aFeatures, clearance, segsPerCircle, correctionFactor ); } continue; } // Pads are removed from zone if the setup is PAD_ZONE_CONN_NONE // or if they have a custom shape and not PAD_ZONE_CONN_FULL, // because a thermal relief will break // the shape if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_NONE || ( pad->GetShape() == PAD_SHAPE_CUSTOM && aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_FULL ) ) { int gap = zone_clearance; int thermalGap = aZone->GetThermalReliefGap( pad ); gap = std::max( gap, thermalGap ); item_boundingbox = pad->GetBoundingBox(); item_boundingbox.Inflate( gap ); if( item_boundingbox.Intersects( zone_boundingbox ) ) { // PAD_SHAPE_CUSTOM has a specific keepout, to avoid to break the shape // the pad shape in zone can be its convex hull or the shape itself if( pad->GetShape() == PAD_SHAPE_CUSTOM && pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) { // the pad shape in zone can be its convex hull or // the shape itself SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() ); outline.Inflate( KiROUND( gap * correctionFactor ), segsPerCircle ); pad->CustomShapeAsPolygonToBoardPosition( &outline, pad->GetPosition(), pad->GetOrientation() ); std::vector convex_hull; BuildConvexHull( convex_hull, outline ); aFeatures.NewOutline(); for( unsigned ii = 0; ii < convex_hull.size(); ++ii ) aFeatures.Append( convex_hull[ii] ); } else pad->TransformShapeWithClearanceToPolygon( aFeatures, gap, segsPerCircle, correctionFactor ); } } } } /* Add holes (i.e. tracks and vias areas as polygons outlines) * in cornerBufferPolysToSubstract */ for( auto track : m_board->Tracks() ) { if( !track->IsOnLayer( aZone->GetLayer() ) ) continue; if( track->GetNetCode() == aZone->GetNetCode() && ( aZone->GetNetCode() != 0) ) continue; int item_clearance = track->GetClearance() + outline_half_thickness; item_boundingbox = track->GetBoundingBox(); if( item_boundingbox.Intersects( zone_boundingbox ) ) { int clearance = std::max( zone_clearance, item_clearance ); track->TransformShapeWithClearanceToPolygon( aFeatures, clearance, segsPerCircle, correctionFactor ); } } /* Add graphic items that are on copper layers. These have no net, so we just * use the zone clearance (or edge clearance). */ auto doGraphicItem = [&]( BOARD_ITEM* aItem ) { // A item on the Edge_Cuts is always seen as on any layer: if( !aItem->IsOnLayer( aZone->GetLayer() ) && !aItem->IsOnLayer( Edge_Cuts ) ) return; if( !aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) return; bool ignoreLineWidth = false; int zclearance = zone_clearance; if( aItem->IsOnLayer( Edge_Cuts ) ) { // use only the m_ZoneClearance, not the clearance using // the netclass value, because we do not have a copper item zclearance = zone_to_edgecut_clearance; #if 0 // 6.0 TODO: we're leaving this off for 5.1 so that people can continue to use the board // edge width as a hack for edge clearance. // edge cuts by definition don't have a width ignoreLineWidth = true; #endif } switch( aItem->Type() ) { case PCB_LINE_T: ( (DRAWSEGMENT*) aItem )->TransformShapeWithClearanceToPolygon( aFeatures, zclearance, segsPerCircle, correctionFactor, ignoreLineWidth ); break; case PCB_TEXT_T: ( (TEXTE_PCB*) aItem )->TransformBoundingBoxWithClearanceToPolygon( &aFeatures, zclearance ); break; case PCB_MODULE_EDGE_T: ( (EDGE_MODULE*) aItem )->TransformShapeWithClearanceToPolygon( aFeatures, zclearance, segsPerCircle, correctionFactor, ignoreLineWidth ); break; case PCB_MODULE_TEXT_T: ( (TEXTE_PCB*) aItem )->TransformBoundingBoxWithClearanceToPolygon( &aFeatures, zclearance ); break; default: break; } }; for( auto module : m_board->Modules() ) { doGraphicItem( &module->Reference() ); doGraphicItem( &module->Value() ); for( auto item : module->GraphicalItems() ) doGraphicItem( item ); } for( auto item : m_board->Drawings() ) doGraphicItem( item ); /* Add zones outlines having an higher priority and keepout */ for( int ii = 0; ii < m_board->GetAreaCount(); ii++ ) { ZONE_CONTAINER* zone = m_board->GetArea( ii ); // If the zones share no common layers if( !aZone->CommonLayerExists( zone->GetLayerSet() ) ) continue; if( !zone->GetIsKeepout() && zone->GetPriority() <= aZone->GetPriority() ) continue; if( zone->GetIsKeepout() && !zone->GetDoNotAllowCopperPour() ) continue; // A highter priority zone or keepout area is found: remove this area item_boundingbox = zone->GetBoundingBox(); if( !item_boundingbox.Intersects( zone_boundingbox ) ) continue; // Add the zone outline area. // However if the zone has the same net as the current zone, // do not add any clearance. // the zone will be connected to the current zone, but filled areas // will use different parameters (clearance, thermal shapes ) bool same_net = aZone->GetNetCode() == zone->GetNetCode(); bool use_net_clearance = true; int min_clearance = zone_clearance; // Do not forget to make room to draw the thick outlines // of the hole created by the area of the zone to remove int holeclearance = zone->GetClearance() + outline_half_thickness; // The final clearance is obviously the max value of each zone clearance min_clearance = std::max( min_clearance, holeclearance ); if( zone->GetIsKeepout() || same_net ) { // Just take in account the fact the outline has a thickness, so // the actual area to substract is inflated to take in account this fact min_clearance = outline_half_thickness; use_net_clearance = false; } zone->TransformOutlinesShapeWithClearanceToPolygon( aFeatures, min_clearance, use_net_clearance ); } /* Remove thermal symbols */ for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { // Rejects non-standard pads with tht-only thermal reliefs if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL && pad->GetAttribute() != PAD_ATTRIB_STANDARD ) continue; if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL && aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL ) continue; if( !pad->IsOnLayer( aZone->GetLayer() ) ) continue; if( pad->GetNetCode() != aZone->GetNetCode() ) continue; item_boundingbox = pad->GetBoundingBox(); int thermalGap = aZone->GetThermalReliefGap( pad ); item_boundingbox.Inflate( thermalGap, thermalGap ); if( item_boundingbox.Intersects( zone_boundingbox ) ) { CreateThermalReliefPadPolygon( aFeatures, *pad, thermalGap, aZone->GetThermalReliefCopperBridge( pad ), aZone->GetMinThickness(), segsPerCircle, correctionFactor, s_thermalRot ); } } } } /** * Function ComputeRawFilledAreas * Supports a min thickness area constraint. * Add non copper areas polygons (pads and tracks with clearance) * to the filled copper area found * in BuildFilledPolysListData after calculating filled areas in a zone * Non filled copper areas are pads and track and their clearance areas * The filled copper area must be computed just before. * BuildFilledPolysListData() call this function just after creating the * filled copper area polygon (without clearance areas) * to do that this function: * 1 - Creates the main outline (zone outline) using a correction to shrink the resulting area * with m_ZoneMinThickness/2 value. * The result is areas with a margin of m_ZoneMinThickness/2 * When drawing outline with segments having a thickness of m_ZoneMinThickness, the * outlines will match exactly the initial outlines * 3 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance + * m_ZoneMinThickness/2 * in a buffer * - If Thermal shapes are wanted, add non filled area, in order to create these thermal shapes * 4 - calculates the polygon A - B * 5 - put resulting list of polygons (filled areas) in m_FilledPolysList * This zone contains pads with the same net. * 6 - Remove insulated copper islands * 7 - If Thermal shapes are wanted, remove unconnected stubs in thermal shapes: * creates a buffer of polygons corresponding to stubs to remove * sub them to the filled areas. * Remove new insulated copper islands */ void ZONE_FILLER::computeRawFilledAreas( const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aSmoothedOutline, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ) const { int segsPerCircle; double correctionFactor; int outline_half_thickness = aZone->GetMinThickness() / 2; std::unique_ptr dumper( new SHAPE_FILE_IO( s_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) ); // Set the number of segments in arc approximations if( aZone->GetArcSegmentCount() == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF ) segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF; else segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF; /* calculates the coeff to compensate radius reduction of holes clearance */ correctionFactor = GetCircletoPolyCorrectionFactor( segsPerCircle ); if( s_DumpZonesWhenFilling ) dumper->BeginGroup( "clipper-zone" ); SHAPE_POLY_SET solidAreas = aSmoothedOutline; solidAreas.Inflate( -outline_half_thickness, segsPerCircle ); solidAreas.Simplify( SHAPE_POLY_SET::PM_FAST ); SHAPE_POLY_SET holes; if( s_DumpZonesWhenFilling ) dumper->Write( &solidAreas, "solid-areas" ); buildZoneFeatureHoleList( aZone, holes ); if( s_DumpZonesWhenFilling ) dumper->Write( &holes, "feature-holes" ); holes.Simplify( SHAPE_POLY_SET::PM_FAST ); if( s_DumpZonesWhenFilling ) dumper->Write( &holes, "feature-holes-postsimplify" ); // Generate the filled areas (currently, without thermal shapes, which will // be created later). // Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons // needed by Gerber files and Fracture() solidAreas.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); if( s_DumpZonesWhenFilling ) dumper->Write( &solidAreas, "solid-areas-minus-holes" ); SHAPE_POLY_SET areas_fractured = solidAreas; areas_fractured.Fracture( SHAPE_POLY_SET::PM_FAST ); if( s_DumpZonesWhenFilling ) dumper->Write( &areas_fractured, "areas_fractured" ); aFinalPolys = areas_fractured; SHAPE_POLY_SET thermalHoles; // Test thermal stubs connections and add polygons to remove unconnected stubs. // (this is a refinement for thermal relief shapes) if( aZone->GetNetCode() > 0 ) { buildUnconnectedThermalStubsPolygonList( thermalHoles, aZone, aFinalPolys, correctionFactor, s_thermalRot ); } // remove copper areas corresponding to not connected stubs if( !thermalHoles.IsEmpty() ) { thermalHoles.Simplify( SHAPE_POLY_SET::PM_FAST ); // Remove unconnected stubs. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to // generate strictly simple polygons // needed by Gerber files and Fracture() solidAreas.BooleanSubtract( thermalHoles, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); if( s_DumpZonesWhenFilling ) dumper->Write( &thermalHoles, "thermal-holes" ); // put these areas in m_FilledPolysList SHAPE_POLY_SET th_fractured = solidAreas; th_fractured.Fracture( SHAPE_POLY_SET::PM_FAST ); if( s_DumpZonesWhenFilling ) dumper->Write( &th_fractured, "th_fractured" ); aFinalPolys = th_fractured; } aRawPolys = aFinalPolys; if( s_DumpZonesWhenFilling ) dumper->EndGroup(); } /* Build the filled solid areas data from real outlines (stored in m_Poly) * The solid areas can be more than one on copper layers, and do not have holes * ( holes are linked by overlapping segments to the main outline) */ bool ZONE_FILLER::fillSingleZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ) const { SHAPE_POLY_SET smoothedPoly; /* convert outlines + holes to outlines without holes (adding extra segments if necessary) * m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building * this zone */ if ( !aZone->BuildSmoothedPoly( smoothedPoly ) ) return false; if( aZone->IsOnCopperLayer() ) { computeRawFilledAreas( aZone, smoothedPoly, aRawPolys, aFinalPolys ); } else { aRawPolys = smoothedPoly; aFinalPolys = smoothedPoly; aFinalPolys.Inflate( -aZone->GetMinThickness() / 2, 16 ); aFinalPolys.Fracture( SHAPE_POLY_SET::PM_FAST ); } return true; } bool ZONE_FILLER::fillZoneWithSegments( const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aFilledPolys, ZONE_SEGMENT_FILL& aFillSegs ) const { bool success = true; // segments are on something like a grid. Give it a minimal size // to avoid too many segments, and use the m_ZoneMinThickness when (this is usually the case) // the size is > mingrid_size. // This is not perfect, but the actual purpose of this code // is to allow filling zones on a grid, with grid size > m_ZoneMinThickness, // in order to have really a grid. // // Using a user selectable grid size is for future Kicad versions. // For now the area is fully filled. int mingrid_size = Millimeter2iu( 0.05 ); int grid_size = std::max( mingrid_size, aZone->GetMinThickness() ); // Make segments slightly overlapping to ensure a good full filling grid_size -= grid_size/20; // Creates the horizontal segments for ( int index = 0; index < aFilledPolys.OutlineCount(); index++ ) { const SHAPE_LINE_CHAIN& outline0 = aFilledPolys.COutline( index ); success = fillPolygonWithHorizontalSegments( outline0, aFillSegs, grid_size ); if( !success ) break; // Creates the vertical segments. Because the filling algo creates horizontal segments, // to reuse the fillPolygonWithHorizontalSegments function, we rotate the polygons to fill // then fill them, then inverse rotate the result SHAPE_LINE_CHAIN outline90; outline90.Append( outline0 ); // Rotate 90 degrees the outline: for( int ii = 0; ii < outline90.PointCount(); ii++ ) { VECTOR2I& point = outline90.Point( ii ); std::swap( point.x, point.y ); point.y = -point.y; } int first_point = aFillSegs.size(); success = fillPolygonWithHorizontalSegments( outline90, aFillSegs, grid_size ); if( !success ) break; // Rotate -90 degrees the segments: for( unsigned ii = first_point; ii < aFillSegs.size(); ii++ ) { SEG& segm = aFillSegs[ii]; std::swap( segm.A.x, segm.A.y ); std::swap( segm.B.x, segm.B.y ); segm.A.x = - segm.A.x; segm.B.x = - segm.B.x; } } return success; } /** Helper function fillPolygonWithHorizontalSegments * fills a polygon with horizontal segments. * It can be used for any angle, if the zone outline to fill is rotated by this angle * and the result is rotated by -angle * @param aPolygon = a SHAPE_LINE_CHAIN polygon to fill * @param aFillSegmList = a std::vector\ which will be populated by filling segments * @param aStep = the horizontal grid size */ bool ZONE_FILLER::fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon, ZONE_SEGMENT_FILL& aFillSegmList, int aStep ) const { std::vector x_coordinates; bool success = true; // Creates the horizontal segments const SHAPE_LINE_CHAIN& outline = aPolygon; const BOX2I& rect = outline.BBox(); // Calculate the y limits of the zone for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += aStep ) { // find all intersection points of an infinite line with polyline sides x_coordinates.clear(); for( int v = 0; v < outline.PointCount(); v++ ) { int seg_startX = outline.CPoint( v ).x; int seg_startY = outline.CPoint( v ).y; int seg_endX = outline.CPoint( v + 1 ).x; int seg_endY = outline.CPoint( v + 1 ).y; /* Trivial cases: skip if ref above or below the segment to test */ if( ( seg_startY > refy ) && ( seg_endY > refy ) ) continue; // segment below ref point, or its Y end pos on Y coordinate ref point: skip if( ( seg_startY <= refy ) && (seg_endY <= refy ) ) continue; /* at this point refy is between seg_startY and seg_endY * see if an horizontal line at Y = refy is intersecting this segment */ // calculate the x position of the intersection of this segment and the // infinite line this is more easier if we move the X,Y axis origin to // the segment start point: seg_endX -= seg_startX; seg_endY -= seg_startY; double newrefy = (double) ( refy - seg_startY ); double intersec_x; if ( seg_endY == 0 ) // horizontal segment on the same line: skip continue; // Now calculate the x intersection coordinate of the horizontal line at // y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the // horizontal line at the new refy position the line slope is: // slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY // and the x pos relative to the new origin is: // intersec_x = refy/slope = refy * inv_slope // Note: because horizontal segments are already tested and skipped, slope // exists (seg_end_y not O) double inv_slope = (double) seg_endX / seg_endY; intersec_x = newrefy * inv_slope; x_coordinates.push_back( (int) intersec_x + seg_startX ); } // A line scan is finished: build list of segments // Sort intersection points by increasing x value: // So 2 consecutive points are the ends of a segment std::sort( x_coordinates.begin(), x_coordinates.end() ); // An even number of coordinates is expected, because a segment has 2 ends. // An if this algorithm always works, it must always find an even count. if( ( x_coordinates.size() & 1 ) != 0 ) { success = false; break; } // Create segments having the same Y coordinate int iimax = x_coordinates.size() - 1; for( int ii = 0; ii < iimax; ii += 2 ) { VECTOR2I seg_start, seg_end; seg_start.x = x_coordinates[ii]; seg_start.y = refy; seg_end.x = x_coordinates[ii + 1]; seg_end.y = refy; SEG segment( seg_start, seg_end ); aFillSegmList.push_back( segment ); } } // End examine segments in one area return success; } /** * Function buildUnconnectedThermalStubsPolygonList * Creates a set of polygons corresponding to stubs created by thermal shapes on pads * which are not connected to a zone (dangling bridges) * @param aCornerBuffer = a SHAPE_POLY_SET where to store polygons * @param aZone = a pointer to the ZONE_CONTAINER to examine. * @param aArcCorrection = arc correction factor. * @param aRoundPadThermalRotation = the rotation in 1.0 degree for thermal stubs in round pads */ void ZONE_FILLER::buildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer, const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aRawFilledArea, double aArcCorrection, double aRoundPadThermalRotation ) const { SHAPE_LINE_CHAIN spokes; BOX2I itemBB; VECTOR2I ptTest[4]; auto zoneBB = aRawFilledArea.BBox(); int zone_clearance = aZone->GetZoneClearance(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); biggest_clearance = std::max( biggest_clearance, zone_clearance ); zoneBB.Inflate( biggest_clearance ); // half size of the pen used to draw/plot zones outlines int pen_radius = aZone->GetMinThickness() / 2; for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { // Rejects non-standard pads with tht-only thermal reliefs if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL && pad->GetAttribute() != PAD_ATTRIB_STANDARD ) continue; if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL && aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL ) continue; if( !pad->IsOnLayer( aZone->GetLayer() ) ) continue; if( pad->GetNetCode() != aZone->GetNetCode() ) continue; // Calculate thermal bridge half width int thermalBridgeWidth = aZone->GetThermalReliefCopperBridge( pad ) - aZone->GetMinThickness(); if( thermalBridgeWidth <= 0 ) continue; // we need the thermal bridge half width // with a small extra size to be sure we create a stub // slightly larger than the actual stub thermalBridgeWidth = ( thermalBridgeWidth + 4 ) / 2; int thermalReliefGap = aZone->GetThermalReliefGap( pad ); itemBB = pad->GetBoundingBox(); itemBB.Inflate( thermalReliefGap ); if( !( itemBB.Intersects( zoneBB ) ) ) continue; // Thermal bridges are like a segment from a starting point inside the pad // to an ending point outside the pad // calculate the ending point of the thermal pad, outside the pad VECTOR2I endpoint; endpoint.x = ( pad->GetSize().x / 2 ) + thermalReliefGap; endpoint.y = ( pad->GetSize().y / 2 ) + thermalReliefGap; // Calculate the starting point of the thermal stub // inside the pad VECTOR2I startpoint; int copperThickness = aZone->GetThermalReliefCopperBridge( pad ) - aZone->GetMinThickness(); if( copperThickness < 0 ) copperThickness = 0; // Leave a small extra size to the copper area inside to pad copperThickness += KiROUND( IU_PER_MM * 0.04 ); startpoint.x = std::min( pad->GetSize().x, copperThickness ); startpoint.y = std::min( pad->GetSize().y, copperThickness ); startpoint.x /= 2; startpoint.y /= 2; // This is a CIRCLE pad tweak // for circle pads, the thermal stubs orientation is 45 deg double fAngle = pad->GetOrientation(); if( pad->GetShape() == PAD_SHAPE_CIRCLE ) { endpoint.x = KiROUND( endpoint.x * aArcCorrection ); endpoint.y = endpoint.x; fAngle = aRoundPadThermalRotation; } // contour line width has to be taken into calculation to avoid "thermal stub bleed" endpoint.x += pen_radius; endpoint.y += pen_radius; // compute north, south, west and east points for zone connection. ptTest[0] = VECTOR2I( 0, endpoint.y ); // lower point ptTest[1] = VECTOR2I( 0, -endpoint.y ); // upper point ptTest[2] = VECTOR2I( endpoint.x, 0 ); // right point ptTest[3] = VECTOR2I( -endpoint.x, 0 ); // left point // Test all sides for( int i = 0; i < 4; i++ ) { // rotate point RotatePoint( ptTest[i], fAngle ); // translate point ptTest[i] += pad->ShapePos(); if( aRawFilledArea.Contains( ptTest[i] ) ) continue; spokes.Clear(); // polygons are rectangles with width of copper bridge value switch( i ) { case 0: // lower stub spokes.Append( -thermalBridgeWidth, endpoint.y ); spokes.Append( +thermalBridgeWidth, endpoint.y ); spokes.Append( +thermalBridgeWidth, startpoint.y ); spokes.Append( -thermalBridgeWidth, startpoint.y ); break; case 1: // upper stub spokes.Append( -thermalBridgeWidth, -endpoint.y ); spokes.Append( +thermalBridgeWidth, -endpoint.y ); spokes.Append( +thermalBridgeWidth, -startpoint.y ); spokes.Append( -thermalBridgeWidth, -startpoint.y ); break; case 2: // right stub spokes.Append( endpoint.x, -thermalBridgeWidth ); spokes.Append( endpoint.x, thermalBridgeWidth ); spokes.Append( +startpoint.x, thermalBridgeWidth ); spokes.Append( +startpoint.x, -thermalBridgeWidth ); break; case 3: // left stub spokes.Append( -endpoint.x, -thermalBridgeWidth ); spokes.Append( -endpoint.x, thermalBridgeWidth ); spokes.Append( -startpoint.x, thermalBridgeWidth ); spokes.Append( -startpoint.x, -thermalBridgeWidth ); break; } aCornerBuffer.NewOutline(); // add computed polygon to list for( int ic = 0; ic < spokes.PointCount(); ic++ ) { auto cpos = spokes.CPoint( ic ); RotatePoint( cpos, fAngle ); // Rotate according to module orientation cpos += pad->ShapePos(); // Shift origin to position aCornerBuffer.Append( cpos ); } } } } }