/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include // God forgive me doing this... #include "pns_node.h" #include "pns_itemset.h" #include "pns_topology.h" #include "pns_dp_meander_placer.h" #include "pns_diff_pair.h" #include "pns_router.h" #include "pns_solid.h" namespace PNS { DP_MEANDER_PLACER::DP_MEANDER_PLACER( ROUTER* aRouter ) : MEANDER_PLACER_BASE( aRouter ) { m_world = nullptr; m_currentNode = nullptr; m_padToDieP = 0; m_padToDieN = 0; // Init temporary variables (do not leave uninitialized members) m_initialSegment = nullptr; m_lastLength = 0; m_lastStatus = TOO_SHORT; } DP_MEANDER_PLACER::~DP_MEANDER_PLACER() { } const LINE DP_MEANDER_PLACER::Trace() const { return m_currentTraceP; } NODE* DP_MEANDER_PLACER::CurrentNode( bool aLoopsRemoved ) const { if( !m_currentNode ) return m_world; return m_currentNode; } bool DP_MEANDER_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem ) { if( !aStartItem || !aStartItem->OfKind( ITEM::SEGMENT_T | ITEM::ARC_T ) ) { Router()->SetFailureReason( _( "Please select a track whose length you want to tune." ) ); return false; } m_initialSegment = static_cast( aStartItem ); m_currentNode = nullptr; m_currentStart = getSnappedStartPoint( m_initialSegment, aP ); m_world = Router()->GetWorld()->Branch(); TOPOLOGY topo( m_world ); if( !topo.AssembleDiffPair( m_initialSegment, m_originPair ) ) { Router()->SetFailureReason( _( "Unable to find complementary differential pair " "net for length tuning. Make sure the names of the nets " "belonging to a differential pair end with either _N/_P " "or +/-." ) ); return false; } if( m_originPair.Gap() < 0 ) m_originPair.SetGap( Router()->Sizes().DiffPairGap() ); if( !m_originPair.PLine().SegmentCount() || !m_originPair.NLine().SegmentCount() ) return false; SOLID* padA = nullptr; SOLID* padB = nullptr; m_tunedPathP = topo.AssembleTuningPath( m_originPair.PLine().GetLink( 0 ), &padA, &padB ); m_padToDieP = 0; if( padA ) m_padToDieP += padA->GetPadToDie(); if( padB ) m_padToDieP += padB->GetPadToDie(); m_tunedPathN = topo.AssembleTuningPath( m_originPair.NLine().GetLink( 0 ), &padA, &padB ); m_padToDieN = 0; if( padA ) m_padToDieN += padA->GetPadToDie(); if( padB ) m_padToDieN += padB->GetPadToDie(); m_padToDieLength = std::max( m_padToDieP, m_padToDieN ); m_world->Remove( m_originPair.PLine() ); m_world->Remove( m_originPair.NLine() ); m_currentWidth = m_originPair.Width(); return true; } void DP_MEANDER_PLACER::release() { } long long int DP_MEANDER_PLACER::origPathLength() const { long long int totalP = m_padToDieLength + lineLength( m_tunedPathP ); long long int totalN = m_padToDieLength + lineLength( m_tunedPathN ); return std::max( totalP, totalN ); } const SEG DP_MEANDER_PLACER::baselineSegment( const DIFF_PAIR::COUPLED_SEGMENTS& aCoupledSegs ) { const VECTOR2I a( ( aCoupledSegs.coupledP.A + aCoupledSegs.coupledN.A ) / 2 ); const VECTOR2I b( ( aCoupledSegs.coupledP.B + aCoupledSegs.coupledN.B ) / 2 ); return SEG( a, b ); } bool DP_MEANDER_PLACER::pairOrientation( const DIFF_PAIR::COUPLED_SEGMENTS& aPair ) { VECTOR2I midp = ( aPair.coupledP.A + aPair.coupledN.A ) / 2; //DrawDebugPoint(midp, 6); return aPair.coupledP.Side( midp ) > 0; } bool DP_MEANDER_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem ) { // return false; DIFF_PAIR::COUPLED_SEGMENTS_VEC coupledSegments; if( m_currentNode ) delete m_currentNode; m_currentNode = m_world->Branch(); SHAPE_LINE_CHAIN preP, tunedP, postP; SHAPE_LINE_CHAIN preN, tunedN, postN; cutTunedLine( m_originPair.CP(), m_currentStart, aP, preP, tunedP, postP ); cutTunedLine( m_originPair.CN(), m_currentStart, aP, preN, tunedN, postN ); DIFF_PAIR tuned( m_originPair ); tuned.SetShape( tunedP, tunedN ); tuned.CoupledSegmentPairs( coupledSegments ); if( coupledSegments.size() == 0 ) return false; m_result = MEANDERED_LINE( this, true ); m_result.SetWidth( tuned.Width() ); int offset = ( tuned.Gap() + tuned.Width() ) / 2; if( pairOrientation( coupledSegments[0] ) ) offset *= -1; m_result.SetBaselineOffset( offset ); for( const ITEM* item : m_tunedPathP.CItems() ) { if( const LINE* l = dyn_cast( item ) ) PNS_DBG( Dbg(), AddLine, l->CLine(), YELLOW, 10000, "tuned-path-p" ); } for( const ITEM* item : m_tunedPathN.CItems() ) { if( const LINE* l = dyn_cast( item ) ) PNS_DBG( Dbg(), AddLine, l->CLine(), YELLOW, 10000, "tuned-path-n" ); } int curIndexP = 0, curIndexN = 0; for( const DIFF_PAIR::COUPLED_SEGMENTS& sp : coupledSegments ) { SEG base = baselineSegment( sp ); PNS_DBG( Dbg(), AddSegment, base, GREEN, "dp-baseline" ); while( sp.indexP >= curIndexP ) { m_result.AddCorner( tunedP.CPoint( curIndexP ), tunedN.CPoint( curIndexN ) ); curIndexP++; } while( sp.indexN >= curIndexN ) { m_result.AddCorner( tunedP.CPoint( sp.indexP ), tunedN.CPoint( curIndexN ) ); curIndexN++; } m_result.MeanderSegment( base ); } while( curIndexP < tunedP.PointCount() ) m_result.AddCorner( tunedP.CPoint( curIndexP++ ), tunedN.CPoint( curIndexN ) ); while( curIndexN < tunedN.PointCount() ) m_result.AddCorner( tunedP.CPoint( -1 ), tunedN.CPoint( curIndexN++ ) ); long long int dpLen = origPathLength(); m_lastStatus = TUNED; if( dpLen - m_settings.m_targetLength > m_settings.m_lengthTolerance ) { m_lastStatus = TOO_LONG; m_lastLength = dpLen; } else { m_lastLength = dpLen - std::max( tunedP.Length(), tunedN.Length() ); tuneLineLength( m_result, m_settings.m_targetLength - dpLen ); } if( m_lastStatus != TOO_LONG ) { tunedP.Clear(); tunedN.Clear(); for( MEANDER_SHAPE* m : m_result.Meanders() ) { if( m->Type() != MT_EMPTY ) { tunedP.Append( m->CLine( 0 ) ); tunedN.Append( m->CLine( 1 ) ); } } m_lastLength += std::max( tunedP.Length(), tunedN.Length() ); int comp = compareWithTolerance( m_lastLength - m_settings.m_targetLength, 0, m_settings.m_lengthTolerance ); if( comp > 0 ) m_lastStatus = TOO_LONG; else if( comp < 0 ) m_lastStatus = TOO_SHORT; else m_lastStatus = TUNED; } m_finalShapeP.Clear(); m_finalShapeP.Append( preP ); m_finalShapeP.Append( tunedP ); m_finalShapeP.Append( postP ); m_finalShapeP.Simplify(); m_finalShapeN.Clear(); m_finalShapeN.Append( preN ); m_finalShapeN.Append( tunedN ); m_finalShapeN.Append( postN ); m_finalShapeN.Simplify(); return true; } bool DP_MEANDER_PLACER::FixRoute( const VECTOR2I& aP, ITEM* aEndItem, bool aForceFinish ) { LINE lP( m_originPair.PLine(), m_finalShapeP ); LINE lN( m_originPair.NLine(), m_finalShapeN ); m_currentNode->Add( lP ); m_currentNode->Add( lN ); CommitPlacement(); return true; } bool DP_MEANDER_PLACER::AbortPlacement() { m_world->KillChildren(); return true; } bool DP_MEANDER_PLACER::HasPlacedAnything() const { return m_originPair.CP().SegmentCount() > 0 || m_originPair.CN().SegmentCount() > 0; } bool DP_MEANDER_PLACER::CommitPlacement() { if( m_currentNode ) Router()->CommitRouting( m_currentNode ); m_currentNode = nullptr; return true; } bool DP_MEANDER_PLACER::CheckFit( MEANDER_SHAPE* aShape ) { LINE l1( m_originPair.PLine(), aShape->CLine( 0 ) ); LINE l2( m_originPair.NLine(), aShape->CLine( 1 ) ); if( m_currentNode->CheckColliding( &l1 ) ) return false; if( m_currentNode->CheckColliding( &l2 ) ) return false; int w = aShape->Width(); int clearance = w + m_settings.m_spacing; return m_result.CheckSelfIntersections( aShape, clearance ); } const ITEM_SET DP_MEANDER_PLACER::Traces() { m_currentTraceP = LINE( m_originPair.PLine(), m_finalShapeP ); m_currentTraceN = LINE( m_originPair.NLine(), m_finalShapeN ); ITEM_SET traces; traces.Add( &m_currentTraceP ); traces.Add( &m_currentTraceN ); return traces; } const VECTOR2I& DP_MEANDER_PLACER::CurrentEnd() const { return m_currentEnd; } int DP_MEANDER_PLACER::CurrentLayer() const { return m_initialSegment->Layers().Start(); } const wxString DP_MEANDER_PLACER::TuningInfo( EDA_UNITS aUnits ) const { wxString status; switch( m_lastStatus ) { case TOO_LONG: status = _( "Too long: " ); break; case TOO_SHORT: status = _("Too short: " ); break; case TUNED: status = _( "Tuned: " ); break; default: return _( "?" ); } status += ::MessageTextFromValue( aUnits, m_lastLength ); status += "/"; status += ::MessageTextFromValue( aUnits, m_settings.m_targetLength ); status += " (gap: "; status += ::MessageTextFromValue( aUnits, m_originPair.Gap() ); status += ")"; return status; } DP_MEANDER_PLACER::TUNING_STATUS DP_MEANDER_PLACER::TuningStatus() const { return m_lastStatus; } const std::vector DP_MEANDER_PLACER::CurrentNets() const { std::vector rv; rv.push_back( m_originPair.NetP() ); rv.push_back( m_originPair.NetN() ); return rv; } }