/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2016-2018 CERN * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #ifdef PROFILE #include #endif using namespace std::placeholders; bool operator<( const CN_ANCHOR_PTR& a, const CN_ANCHOR_PTR& b ) { if( a->Pos().x == b->Pos().x ) return a->Pos().y < b->Pos().y; else return a->Pos().x < b->Pos().x; } bool CN_ANCHOR::IsDirty() const { return m_item->Dirty(); } CN_CLUSTER::CN_CLUSTER() { m_items.reserve( 64 ); m_originPad = nullptr; m_originNet = -1; m_conflicting = false; } CN_CLUSTER::~CN_CLUSTER() { } wxString CN_CLUSTER::OriginNetName() const { if( !m_originPad || !m_originPad->Valid() ) return ""; else return m_originPad->Parent()->GetNetname(); } bool CN_CLUSTER::Contains( const CN_ITEM* aItem ) { return std::find( m_items.begin(), m_items.end(), aItem ) != m_items.end(); } bool CN_CLUSTER::Contains( const BOARD_CONNECTED_ITEM* aItem ) { for( auto item : m_items ) { if( item->Valid() && item->Parent() == aItem ) return true; } return false; } void CN_ITEM::Dump() { printf(" valid: %d, connected: \n", !!Valid()); for( auto i : m_connected ) { TRACK* t = static_cast( i->Parent() ); printf( " - %p %d\n", t, t->Type() ); } } void CN_CLUSTER::Dump() { for( auto item : m_items ) { wxLogTrace( "CN", " - item : %p bitem : %p type : %d inet %s\n", item, item->Parent(), item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() ); printf( "- item : %p bitem : %p type : %d inet %s\n", item, item->Parent(), item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() ); item->Dump(); } } void CN_CLUSTER::Add( CN_ITEM* item ) { m_items.push_back( item ); if( m_originNet < 0 ) { m_originNet = item->Net(); } if( item->Parent()->Type() == PCB_PAD_T ) { if( !m_originPad ) { m_originPad = item; m_originNet = item->Net(); } if( m_originPad && item->Net() != m_originNet ) { m_conflicting = true; } } } CN_CONNECTIVITY_ALGO::CN_CONNECTIVITY_ALGO() { } CN_CONNECTIVITY_ALGO::~CN_CONNECTIVITY_ALGO() { Clear(); } bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem ) { markItemNetAsDirty( aItem ); switch( aItem->Type() ) { case PCB_MODULE_T: for( auto pad : static_cast( aItem ) -> Pads() ) { m_itemMap[ static_cast( pad ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast( pad ) ); } m_itemList.SetDirty( true ); break; case PCB_PAD_T: m_itemMap[ static_cast( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast( aItem ) ); m_itemList.SetDirty( true ); break; case PCB_TRACE_T: m_itemMap[ static_cast( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast( aItem ) ); m_itemList.SetDirty( true ); break; case PCB_VIA_T: m_itemMap[ static_cast( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast( aItem ) ); m_itemList.SetDirty( true ); break; case PCB_ZONE_AREA_T: case PCB_ZONE_T: { m_itemMap[ static_cast( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase ( static_cast( aItem ) ); m_itemList.SetDirty( true ); break; } default: return false; } // Once we delete an item, it may connect between lists, so mark both as potentially invalid m_itemList.SetHasInvalid( true ); return true; } void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem ) { if( aItem->IsConnected() ) { auto citem = static_cast( aItem ); MarkNetAsDirty( citem->GetNetCode() ); } else { if( aItem->Type() == PCB_MODULE_T ) { auto mod = static_cast ( aItem ); for( D_PAD* pad = mod->PadsList(); pad; pad = pad->Next() ) MarkNetAsDirty( pad->GetNetCode() ); } } } bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem ) { if( !IsCopperLayer( aItem->GetLayer() ) ) return false; markItemNetAsDirty ( aItem ); switch( aItem->Type() ) { case PCB_NETINFO_T: { MarkNetAsDirty( static_cast( aItem )->GetNet() ); break; } case PCB_MODULE_T: for( auto pad : static_cast( aItem ) -> Pads() ) { if( m_itemMap.find( pad ) != m_itemMap.end() ) return false; add( m_itemList, pad ); } break; case PCB_PAD_T: if( m_itemMap.find ( static_cast( aItem ) ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_TRACE_T: { if( m_itemMap.find( static_cast( aItem ) ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; } case PCB_VIA_T: if( m_itemMap.find( static_cast( aItem ) ) != m_itemMap.end() ) return false; add( m_itemList, static_cast( aItem ) ); break; case PCB_ZONE_AREA_T: case PCB_ZONE_T: { auto zone = static_cast( aItem ); if( m_itemMap.find( static_cast( aItem ) ) != m_itemMap.end() ) return false; m_itemMap[zone] = ITEM_MAP_ENTRY(); for( auto zitem : m_itemList.Add( zone ) ) m_itemMap[zone].Link(zitem); break; } default: return false; } return true; } void CN_CONNECTIVITY_ALGO::searchConnections() { #ifdef CONNECTIVITY_DEBUG printf("Search start\n"); #endif #ifdef PROFILE PROF_COUNTER garbage_collection( "garbage-collection" ); #endif std::vector garbage; garbage.reserve( 1024 ); m_itemList.RemoveInvalidItems( garbage ); for( auto item : garbage ) delete item; #ifdef PROFILE garbage_collection.Show(); PROF_COUNTER search_basic( "search-basic" ); #endif size_t numDirty = std::count_if( m_itemList.begin(), m_itemList.end(), [] ( CN_ITEM* aItem ) { return aItem->Dirty(); } ); if( m_progressReporter ) { m_progressReporter->SetMaxProgress( numDirty ); m_progressReporter->KeepRefreshing(); } if( m_itemList.IsDirty() ) { std::atomic nextItem( 0 ); std::atomic threadsFinished( 0 ); size_t parallelThreadCount = std::min( std::max( std::thread::hardware_concurrency(), 2 ), numDirty ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { std::thread t = std::thread( [&nextItem, &threadsFinished, this]() { for( int i = nextItem.fetch_add( 1 ); i < m_itemList.Size(); i = nextItem.fetch_add( 1 ) ) { auto item = m_itemList[i]; if( item->Dirty() ) { CN_VISITOR visitor( item, &m_listLock ); m_itemList.FindNearby( item, visitor ); if( m_progressReporter ) m_progressReporter->AdvanceProgress(); } } threadsFinished++; } ); t.detach(); } // Finalize the connectivity threads while( threadsFinished < parallelThreadCount ) { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); // This routine is called every click while routing so keep the sleep time minimal std::this_thread::sleep_for( std::chrono::milliseconds( 1 ) ); } } #ifdef PROFILE search_basic.Show(); #endif m_itemList.ClearDirtyFlags(); #ifdef CONNECTIVITY_DEBUG printf("Search end\n"); #endif } void CN_ITEM::RemoveInvalidRefs() { for( auto it = m_connected.begin(); it != m_connected.end(); ) { if( !(*it)->Valid() ) it = m_connected.erase( it ); else ++it; } } void CN_LIST::RemoveInvalidItems( std::vector& aGarbage ) { if( !m_hasInvalid ) return; auto lastItem = std::remove_if(m_items.begin(), m_items.end(), [&aGarbage] ( CN_ITEM* item ) { if( !item->Valid() ) { aGarbage.push_back ( item ); return true; } return false; } ); m_items.resize( lastItem - m_items.begin() ); // fixme: mem leaks for( auto item : m_items ) item->RemoveInvalidRefs(); for( auto item : aGarbage ) m_index.Remove( item ); m_hasInvalid = false; } bool CN_CONNECTIVITY_ALGO::isDirty() const { return m_itemList.IsDirty(); } const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode ) { constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_AREA_T, PCB_MODULE_T, EOT }; constexpr KICAD_T no_zones[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_MODULE_T, EOT }; if( aMode == CSM_PROPAGATE ) return SearchClusters( aMode, no_zones, -1 ); else return SearchClusters( aMode, types, -1 ); } const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode, const KICAD_T aTypes[], int aSingleNet ) { bool withinAnyNet = ( aMode != CSM_PROPAGATE ); std::deque Q; CN_ITEM* head = nullptr; CLUSTERS clusters; if( isDirty() ) searchConnections(); auto addToSearchList = [&head, withinAnyNet, aSingleNet, aTypes] ( CN_ITEM *aItem ) { if( withinAnyNet && aItem->Net() <= 0 ) return; if( !aItem->Valid() ) return; if( aSingleNet >=0 && aItem->Net() != aSingleNet ) return; bool found = false; for( int i = 0; aTypes[i] != EOT; i++ ) { if( aItem->Parent()->Type() == aTypes[i] ) { found = true; break; } } if( !found ) return; aItem->ListClear(); aItem->SetVisited( false ); if( !head ) head = aItem; else head->ListInsert( aItem ); }; std::for_each( m_itemList.begin(), m_itemList.end(), addToSearchList ); while( head ) { CN_CLUSTER_PTR cluster ( new CN_CLUSTER() ); Q.clear(); CN_ITEM* root = head; root->SetVisited ( true ); head = root->ListRemove(); Q.push_back( root ); while( Q.size() ) { CN_ITEM* current = Q.front(); Q.pop_front(); cluster->Add( current ); for( auto n : current->ConnectedItems() ) { if( withinAnyNet && n->Net() != root->Net() ) continue; if( !n->Visited() && n->Valid() ) { n->SetVisited( true ); Q.push_back( n ); head = n->ListRemove(); } } } clusters.push_back( cluster ); } std::sort( clusters.begin(), clusters.end(), []( CN_CLUSTER_PTR a, CN_CLUSTER_PTR b ) { return a->OriginNet() < b->OriginNet(); } ); #ifdef CONNECTIVITY_DEBUG printf("Active clusters: %d\n", clusters.size() ); for( auto cl : clusters ) { printf( "Net %d\n", cl->OriginNet() ); cl->Dump(); } #endif return clusters; } void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard ) { for( int i = 0; iGetAreaCount(); i++ ) { auto zone = aBoard->GetArea( i ); Add( zone ); } for( auto tv : aBoard->Tracks() ) Add( tv ); for( auto mod : aBoard->Modules() ) { for( auto pad : mod->Pads() ) Add( pad ); } /*wxLogTrace( "CN", "zones : %lu, pads : %lu vias : %lu tracks : %lu\n", m_zoneList.Size(), m_padList.Size(), m_viaList.Size(), m_trackList.Size() );*/ } void CN_CONNECTIVITY_ALGO::Build( const std::vector& aItems ) { for( auto item : aItems ) { switch( item->Type() ) { case PCB_TRACE_T: case PCB_VIA_T: case PCB_ZONE_T: case PCB_PAD_T: Add( item ); break; case PCB_MODULE_T: { for( auto pad : static_cast( item )->Pads() ) { Add( pad ); } break; } default: break; } } } void CN_CONNECTIVITY_ALGO::propagateConnections() { for( const auto& cluster : m_connClusters ) { if( cluster->IsConflicting() ) { wxLogTrace( "CN", "Conflicting nets in cluster %p\n", cluster.get() ); } else if( cluster->IsOrphaned() ) { wxLogTrace( "CN", "Skipping orphaned cluster %p [net: %s]\n", cluster.get(), (const char*) cluster->OriginNetName().c_str() ); } else if( cluster->HasValidNet() ) { // normal cluster: just propagate from the pads int n_changed = 0; for( auto item : *cluster ) { if( item->CanChangeNet() ) { if( item->Valid() && item->Parent()->GetNetCode() != cluster->OriginNet() ) { MarkNetAsDirty( item->Parent()->GetNetCode() ); MarkNetAsDirty( cluster->OriginNet() ); item->Parent()->SetNetCode( cluster->OriginNet() ); n_changed++; } } } if( n_changed ) wxLogTrace( "CN", "Cluster %p : net : %d %s\n", cluster.get(), cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() ); else wxLogTrace( "CN", "Cluster %p : nothing to propagate\n", cluster.get() ); } else { wxLogTrace( "CN", "Cluster %p : connected to unused net\n", cluster.get() ); } } } void CN_CONNECTIVITY_ALGO::PropagateNets() { m_connClusters = SearchClusters( CSM_PROPAGATE ); propagateConnections(); } void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE_CONTAINER* aZone, std::vector& aIslands ) { if( aZone->GetFilledPolysList().IsEmpty() ) return; aIslands.clear(); Remove( aZone ); Add( aZone ); m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK ); for( const auto& cluster : m_connClusters ) { if( cluster->Contains( aZone ) && cluster->IsOrphaned() ) { for( auto z : *cluster ) { if( z->Parent() == aZone ) { aIslands.push_back( static_cast(z)->SubpolyIndex() ); } } } } wxLogTrace( "CN", "Found %u isolated islands\n", (unsigned)aIslands.size() ); } void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( std::vector& aZones ) { for ( auto& z : aZones ) Remove( z.m_zone ); for ( auto& z : aZones ) { if( !z.m_zone->GetFilledPolysList().IsEmpty() ) Add( z.m_zone ); } m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK ); for ( auto& zone : aZones ) { if( zone.m_zone->GetFilledPolysList().IsEmpty() ) continue; for( const auto& cluster : m_connClusters ) { if( cluster->Contains( zone.m_zone ) && cluster->IsOrphaned() ) { for( auto z : *cluster ) { if( z->Parent() == zone.m_zone ) { zone.m_islands.push_back( static_cast(z)->SubpolyIndex() ); } } } } } } const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters() { m_ratsnestClusters = SearchClusters( CSM_RATSNEST ); return m_ratsnestClusters; } void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet ) { if( aNet < 0 ) return; if( (int) m_dirtyNets.size() <= aNet ) { int lastNet = m_dirtyNets.size() - 1; if( lastNet < 0 ) lastNet = 0; m_dirtyNets.resize( aNet + 1 ); for( int i = lastNet; i < aNet + 1; i++ ) m_dirtyNets[i] = true; } m_dirtyNets[aNet] = true; } void CN_VISITOR::checkZoneItemConnection( CN_ZONE* aZone, CN_ITEM* aItem ) { auto zoneItem = static_cast ( aZone ); if( zoneItem->Net() != aItem->Net() && !aItem->CanChangeNet() ) return; if( zoneItem->ContainsPoint( aItem->GetAnchor( 0 ) ) || ( aItem->Parent()->Type() == PCB_TRACE_T && zoneItem->ContainsPoint( aItem->GetAnchor( 1 ) ) ) ) { std::lock_guard lock( *m_listLock ); CN_ITEM::Connect( zoneItem, aItem ); } } void CN_VISITOR::checkZoneZoneConnection( CN_ZONE* aZoneA, CN_ZONE* aZoneB ) { const auto refParent = static_cast( aZoneA->Parent() ); const auto testedParent = static_cast( aZoneB->Parent() ); if( testedParent->Type () != PCB_ZONE_AREA_T ) return; if( aZoneB == aZoneA || refParent == testedParent ) return; if( aZoneB->Net() != aZoneA->Net() ) return; // we only test zones belonging to the same net const auto& outline = refParent->GetFilledPolysList().COutline( aZoneA->SubpolyIndex() ); for( int i = 0; i < outline.PointCount(); i++ ) { if( aZoneB->ContainsPoint( outline.CPoint( i ) ) ) { std::lock_guard lock( *m_listLock ); CN_ITEM::Connect( aZoneA, aZoneB ); return; } } const auto& outline2 = testedParent->GetFilledPolysList().COutline( aZoneB->SubpolyIndex() ); for( int i = 0; i < outline2.PointCount(); i++ ) { if( aZoneA->ContainsPoint( outline2.CPoint( i ) ) ) { std::lock_guard lock( *m_listLock ); CN_ITEM::Connect( aZoneA, aZoneB ); return; } } } bool CN_VISITOR::operator()( CN_ITEM* aCandidate ) { const auto parentA = aCandidate->Parent(); const auto parentB = m_item->Parent(); if( !aCandidate->Valid() || !m_item->Valid() ) return true; if( parentA == parentB ) return true; if( !( parentA->GetLayerSet() & parentB->GetLayerSet() ).any() ) return true; // If both m_item and aCandidate are marked dirty, they will both be searched // Since we are reciprocal in our connection, we arbitrarily pick one of the connections // to conduct the expensive search if( aCandidate->Dirty() && aCandidate < m_item ) return true; // We should handle zone-zone connection separately if ( ( parentA->Type() == PCB_ZONE_AREA_T || parentA->Type() == PCB_ZONE_T ) && ( parentB->Type() == PCB_ZONE_AREA_T || parentB->Type() == PCB_ZONE_T ) ) { checkZoneZoneConnection( static_cast( m_item ), static_cast( aCandidate ) ); return true; } if( parentA->Type() == PCB_ZONE_AREA_T || parentA->Type() == PCB_ZONE_T) { checkZoneItemConnection( static_cast( aCandidate ), m_item ); return true; } if( parentB->Type() == PCB_ZONE_AREA_T || parentB->Type() == PCB_ZONE_T) { checkZoneItemConnection( static_cast( m_item ), aCandidate ); return true; } // Items do not necessarily have reciprocity as we only check for anchors // therefore, we check HitTest both directions A->B & B->A // TODO: Check for collision geometry on extended features wxPoint ptA1( aCandidate->GetAnchor( 0 ).x, aCandidate->GetAnchor( 0 ).y ); wxPoint ptA2( aCandidate->GetAnchor( 1 ).x, aCandidate->GetAnchor( 1 ).y ); wxPoint ptB1( m_item->GetAnchor( 0 ).x, m_item->GetAnchor( 0 ).y ); wxPoint ptB2( m_item->GetAnchor( 1 ).x, m_item->GetAnchor( 1 ).y ); if( parentA->HitTest( ptB1 ) || parentB->HitTest( ptA1 ) || ( parentA->Type() == PCB_TRACE_T && parentB->HitTest( ptA2 ) ) || ( parentB->Type() == PCB_TRACE_T && parentA->HitTest( ptB2 ) ) ) { std::lock_guard lock( *m_listLock ); CN_ITEM::Connect( m_item, aCandidate ); } return true; }; int CN_ITEM::AnchorCount() const { if( !m_valid ) return 0; return m_parent->Type() == PCB_TRACE_T ? 2 : 1; } const VECTOR2I CN_ITEM::GetAnchor( int n ) const { if( !m_valid ) return VECTOR2I(); switch( m_parent->Type() ) { case PCB_PAD_T: return static_cast( m_parent )->ShapePos(); break; case PCB_TRACE_T: { auto tr = static_cast( m_parent ); return ( n == 0 ? tr->GetStart() : tr->GetEnd() ); break; } case PCB_VIA_T: return static_cast( m_parent )->GetStart(); default: assert( false ); return VECTOR2I(); } } int CN_ZONE::AnchorCount() const { if( !Valid() ) return 0; const auto zone = static_cast( Parent() ); const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex ); return outline.PointCount() ? 1 : 0; } const VECTOR2I CN_ZONE::GetAnchor( int n ) const { if( !Valid() ) return VECTOR2I(); const auto zone = static_cast ( Parent() ); const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex ); return outline.CPoint( 0 ); } int CN_ITEM::Net() const { if( !m_parent || !m_valid ) return -1; return m_parent->GetNetCode(); } BOARD_CONNECTED_ITEM* CN_ANCHOR::Parent() const { assert( m_item->Valid() ); return m_item->Parent(); } bool CN_ANCHOR::Valid() const { if( !m_item ) return false; return m_item->Valid(); } void CN_CONNECTIVITY_ALGO::Clear() { m_ratsnestClusters.clear(); m_connClusters.clear(); m_itemMap.clear(); m_itemList.Clear(); } void CN_CONNECTIVITY_ALGO::ForEachItem( const std::function& aFunc ) { for( auto item : m_itemList ) aFunc( *item ); } void CN_CONNECTIVITY_ALGO::ForEachAnchor( const std::function& aFunc ) { ForEachItem( [aFunc] ( CN_ITEM& item ) { for( const auto& anchor : item.Anchors() ) aFunc( *anchor ); } ); } bool CN_ANCHOR::IsDangling() const { if( !m_cluster ) return true; // Calculate the item count connected to this anchor. // m_cluster groups all items connected, but they are not necessary connected // at this coordinate point (they are only candidates) BOARD_CONNECTED_ITEM* item_ref = Parent(); LSET layers = item_ref->GetLayerSet() & LSET::AllCuMask(); // the number of items connected to item_ref at ths anchor point int connected_items_count = 0; // the minimal number of items connected to item_ref // at this anchor point to decide the anchor is *not* dangling int minimal_count = 1; // a via can be removed if connected to only one other item. // the minimal_count is therefore 2 if( item_ref->Type() == PCB_VIA_T ) minimal_count = 2; for( CN_ITEM* item : *m_cluster ) { if( !item->Valid() ) continue; BOARD_CONNECTED_ITEM* brd_item = item->Parent(); if( brd_item == item_ref ) continue; // count only items on the same layer at this coordinate (especially for zones) if( !( brd_item->GetLayerSet() & layers ).any() ) continue; if( brd_item->Type() == PCB_ZONE_AREA_T ) { ZONE_CONTAINER* zone = static_cast( brd_item ); if( zone->HitTestInsideZone( wxPoint( Pos() ) ) ) connected_items_count++; } else if( brd_item->HitTest( wxPoint( Pos() ) ) ) connected_items_count++; } return connected_items_count < minimal_count; } void CN_CONNECTIVITY_ALGO::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; }