/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013 CERN * Copyright (C) 2021 KiCad Developers, see AUTHORS.txt for contributors. * * @author Jacobo Aragunde PĂ©rez * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef __SHAPE_INDEX_H #define __SHAPE_INDEX_H #include #include #include #include /** * Used by #SHAPE_INDEX to get a SHAPE* from another type. * * By default relies on T::GetShape() method, should be specialized if the T object * doesn't allow that method. * * @param aItem generic T object. * @return a SHAPE* object equivalent to object. */ template static const SHAPE* shapeFunctor( T aItem ) { return aItem->Shape(); } /** * Used by #SHAPE_INDEX to get the bounding box of a generic T object. * * By default relies on T::BBox() method, should be specialized if the T object * doesn't allow that method. * * @param aObject is a generic T object. * @return a BOX2I object containing the bounding box of the T object. */ template BOX2I boundingBox( T aObject ) { BOX2I bbox = shapeFunctor( aObject )->BBox(); return bbox; } /** * Used by #SHAPE_INDEX to implement Accept(). * * By default relies on V::operation() redefinition, should be specialized if V class * doesn't have its () operation defined to accept T objects. * * @param aObject is a generic T object. * @param aVisitor is a visitor object. */ template void acceptVisitor( T aObject, V aVisitor ) { aVisitor( aObject ); } /** * Used by #SHAPE_INDEX to implement Query(). * * By default relies on T::Collide(U) method, should be specialized if the T object * doesn't allow that method. * * @param aObject is a generic T object. * @param aAnotherObject is a generic U object. * @param aMinDistance is the minimum collision distance. * @return true if object and anotherObject collide. */ template bool collide( T aObject, U aAnotherObject, int aMinDistance ) { return shapeFunctor( aObject )->Collide( aAnotherObject, aMinDistance ); } template bool queryCallback( T aShape, void* aContext ) { V* visitor = (V*) aContext; acceptVisitor( aShape, *visitor ); return true; } template class SHAPE_INDEX { public: class Iterator { private: typedef typename RTree::Iterator RTreeIterator; RTreeIterator iterator; /** * Setup the internal tree iterator. * * @param aTree is a #RTREE object/ */ void Init( RTree* aTree ) { aTree->GetFirst( iterator ); } public: /** * Create an iterator for the index object. * * @param aIndex is a #SHAPE_INDEX object to iterate. */ Iterator( SHAPE_INDEX* aIndex ) { Init( aIndex->m_tree ); } /** * Return the next data element. */ T operator*() { return *iterator; } /** * Shift the iterator to the next element. */ bool operator++() { return ++iterator; } /** * Shift the iterator to the next element. */ bool operator++( int ) { return ++iterator; } /** * Check if the iterator has reached the end. * * @return true if it is in an invalid position (data finished). */ bool IsNull() const { return iterator.IsNull(); } /** * Check if the iterator has not reached the end. * * @return true if it is in an valid position (data not finished). */ bool IsNotNull() const { return iterator.IsNotNull(); } /** * Return the current element of the iterator and moves to the next position. * * @return a #SHAPE object pointed by the iterator before moving to the next position. */ T Next() { T object = *iterator; ++iterator; return object; } }; SHAPE_INDEX(); ~SHAPE_INDEX(); /** * Add a #SHAPE to the index. * * @param aShape is the new SHAPE. */ void Add( T aShape ); /** * Add a shape with alternate BBox. * * @param aShape Shape (Item) to add. * @param aBbox alternate bounding box. This should be a subset of the item's bbox */ void Add( T aShape, const BOX2I& aBbox ); /** * Remove a #SHAPE from the index. * * @param aShape is the #SHAPE to remove. */ void Remove( T aShape ); /** * Remove all the contents of the index. */ void RemoveAll(); /** * Accept a visitor for every #SHAPE object contained in this INDEX. * * @param aVisitor is the visitor object to be run. */ template void Accept( V aVisitor ) { Iterator iter = this->Begin(); while( !iter.IsNull() ) { T shape = *iter; acceptVisitor( shape, aVisitor ); iter++; } } /** * Rebuild the index. * * This should be used if the geometry of the objects contained by the index has changed. */ void Reindex(); /** * Run a callback on every #SHAPE object contained in the bounding box of (shape). * * @param aShape is the shape to search against. * @param aMinDistance is the distance threshold. * @param aVisitor is the object to be invoked on every object contained in the search area. */ template int Query( const SHAPE *aShape, int aMinDistance, V& aVisitor) const { BOX2I box = aShape->BBox(); box.Inflate( aMinDistance ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; return this->m_tree->Search( min, max, aVisitor ); } /** * Create an iterator for the current index object. * * @return iterator to the first object. */ Iterator Begin(); private: RTree* m_tree; }; /* * Class members implementation */ template SHAPE_INDEX::SHAPE_INDEX() { this->m_tree = new RTree(); } template SHAPE_INDEX::~SHAPE_INDEX() { delete this->m_tree; } template void SHAPE_INDEX::Add( T aShape, const BOX2I& aBbox ) { int min[2] = { aBbox.GetX(), aBbox.GetY() }; int max[2] = { aBbox.GetRight(), aBbox.GetBottom() }; this->m_tree->Insert( min, max, aShape ); } template void SHAPE_INDEX::Add( T aShape ) { BOX2I box = boundingBox( aShape ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; this->m_tree->Insert( min, max, aShape ); } template void SHAPE_INDEX::Remove( T aShape ) { BOX2I box = boundingBox( aShape ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; this->m_tree->Remove( min, max, aShape ); } template void SHAPE_INDEX::RemoveAll() { this->m_tree->RemoveAll(); } template void SHAPE_INDEX::Reindex() { RTree* newTree; newTree = new RTree(); Iterator iter = this->Begin(); while( !iter.IsNull() ) { T shape = *iter; BOX2I box = boundingBox( shape ); int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() }; newTree->Insert( min, max, shape ); iter++; } delete this->m_tree; this->m_tree = newTree; } template typename SHAPE_INDEX::Iterator SHAPE_INDEX::Begin() { return Iterator( this ); } #endif /* __SHAPE_INDEX_H */