/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SENTRY_REMOVED #include #endif // SENTRY_REMOVED #include #include #include #include #ifdef SENTRY_REMOVED #include #endif // SENTRY_REMOVED #include #include namespace unwindstack { // The largest user structure. #ifdef SENTRY_REMOVED // constexpr size_t MAX_USER_REGS_SIZE = sizeof(mips64_user_regs) + 10; #endif // SENTRY_REMOVED static constexpr size_t kMaxUserRegsSize = std::max( sizeof(arm_user_regs), std::max(sizeof(arm64_user_regs), std::max(sizeof(x86_user_regs), sizeof(x86_64_user_regs)))); // This function assumes that reg_data is already aligned to a 64 bit value. // If not this could crash with an unaligned access. Regs* Regs::RemoteGet(pid_t pid, ErrorCode* error_code) { // Make the buffer large enough to contain the largest registers type. std::vector buffer(kMaxUserRegsSize / sizeof(uint64_t)); struct iovec io; io.iov_base = buffer.data(); io.iov_len = buffer.size() * sizeof(uint64_t); if (ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, reinterpret_cast(&io)) == -1) { Log::Error("PTRACE_GETREGSET failed for pid %d: %s", pid, strerror(errno)); if (error_code != nullptr) { *error_code = ERROR_PTRACE_CALL; } return nullptr; } // Infer the process architecture from the size of its register structure. switch (io.iov_len) { case sizeof(x86_user_regs): return RegsX86::Read(buffer.data()); case sizeof(x86_64_user_regs): return RegsX86_64::Read(buffer.data()); case sizeof(arm_user_regs): return RegsArm::Read(buffer.data()); case sizeof(arm64_user_regs): return RegsArm64::Read(buffer.data()); #ifdef SENTRY_REMOVED case sizeof(riscv64_user_regs): return RegsRiscv64::Read(buffer.data()); #endif // SENTRY_REMOVED } Log::Error("No matching size of user regs structure for pid %d: size %zu", pid, io.iov_len); if (error_code != nullptr) { *error_code = ERROR_UNSUPPORTED; } return nullptr; } ArchEnum Regs::RemoteGetArch(pid_t pid, ErrorCode* error_code) { // Make the buffer large enough to contain the largest registers type. std::vector buffer(kMaxUserRegsSize / sizeof(uint64_t)); struct iovec io; io.iov_base = buffer.data(); io.iov_len = buffer.size() * sizeof(uint64_t); if (ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, reinterpret_cast(&io)) == -1) { Log::Error("PTRACE_GETREGSET failed for pid %d: %s", pid, strerror(errno)); if (error_code != nullptr) { *error_code = ERROR_PTRACE_CALL; } return ARCH_UNKNOWN; } // Infer the process architecture from the size of its register structure. switch (io.iov_len) { case sizeof(x86_user_regs): return ARCH_X86; case sizeof(x86_64_user_regs): return ARCH_X86_64; case sizeof(arm_user_regs): return ARCH_ARM; case sizeof(arm64_user_regs): return ARCH_ARM64; } Log::Error("No matching size of user regs structure for pid %d: size %zu", pid, io.iov_len); if (error_code != nullptr) { *error_code = ERROR_UNSUPPORTED; } return ARCH_UNKNOWN; } Regs* Regs::CreateFromUcontext(ArchEnum arch, void* ucontext) { switch (arch) { case ARCH_X86: return RegsX86::CreateFromUcontext(ucontext); case ARCH_X86_64: return RegsX86_64::CreateFromUcontext(ucontext); case ARCH_ARM: return RegsArm::CreateFromUcontext(ucontext); case ARCH_ARM64: return RegsArm64::CreateFromUcontext(ucontext); #ifdef SENTRY_REMOVED case ARCH_RISCV64: return RegsRiscv64::CreateFromUcontext(ucontext); #endif // SENTRY_REMOVED case ARCH_UNKNOWN: default: return nullptr; } } ArchEnum Regs::CurrentArch() { #if defined(__arm__) return ARCH_ARM; #elif defined(__aarch64__) return ARCH_ARM64; #elif defined(__i386__) return ARCH_X86; #elif defined(__x86_64__) return ARCH_X86_64; #ifdef SENTRY_REMOVED //#elif defined(__riscv) return ARCH_RISCV64; #endif // SENTRY_REMOVED #else abort(); #endif } Regs* Regs::CreateFromLocal() { Regs* regs; #if defined(__arm__) regs = new RegsArm(); #elif defined(__aarch64__) regs = new RegsArm64(); #elif defined(__i386__) regs = new RegsX86(); #elif defined(__x86_64__) regs = new RegsX86_64(); #ifdef SENTRY_REMOVED //#elif defined(__riscv) regs = new RegsRiscv64(); #endif // SENTRY_REMOVED #else abort(); #endif return regs; } uint64_t GetPcAdjustment(uint64_t rel_pc, Elf* elf, ArchEnum arch) { switch (arch) { case ARCH_ARM: { if (!elf->valid()) { return 2; } uint64_t load_bias = elf->GetLoadBias(); if (rel_pc < load_bias) { if (rel_pc < 2) { return 0; } return 2; } uint64_t adjusted_rel_pc = rel_pc - load_bias; if (adjusted_rel_pc < 5) { if (adjusted_rel_pc < 2) { return 0; } return 2; } if (adjusted_rel_pc & 1) { // This is a thumb instruction, it could be 2 or 4 bytes. uint32_t value; if (!elf->memory()->ReadFully(adjusted_rel_pc - 5, &value, sizeof(value)) || (value & 0xe000f000) != 0xe000f000) { return 2; } } return 4; } case ARCH_ARM64: { #ifdef SENTRY_REMOVED case ARCH_RISCV64: { #endif // SENTRY_REMOVED if (rel_pc < 4) { return 0; } return 4; #ifdef SENTRY_REMOVED } case ARCH_MIPS: case ARCH_MIPS64: { if (rel_pc < 8) { return 0; } // For now, just assume no compact branches return 8; #endif // SENTRY_REMOVED } case ARCH_X86: case ARCH_X86_64: { if (rel_pc == 0) { return 0; } return 1; } case ARCH_UNKNOWN: return 0; } } } // namespace unwindstack